Rodrigues vectors and unit Quaternions

27-750
Texture, Microstructure & Anisotropy
A.D. (Tony) Rollett, Seth R. Wilson*

*Iowa State Univ. Last revised: 21st Mar. 2014
Objectives

- Briefly describe rotations/orientations
- Introduce Rodrigues-Frank vectors
- Introduce quaternions
- Learn how to manipulate and use quaternions as rotation operators
- Discuss conversions between Euler angles, rotation matrices, RF vectors, and (unit) quaternions
Why do we need to learn about orientations and rotations?

Orientation distributions: Define single-grain orientations relative sample reference frame, and take symmetry into account (both sample and crystal).
Why do we need to learn about orientations and rotations?

Misorientation distributions: Compare orientations on either side of grain boundaries to determine boundary character.

MISORIENTATION: The rotation required to transform from the coordinate system of grain A to grain B.

\[\Delta g_{AB} = g_B g_A^{-1} \]
Review: Euler angles

Euler angles:

- ANY rotation can be written as the composition of at most 3 very simple rotations.

\[R(\varphi_1, \Phi, \varphi_2) = R(\varphi_2)R(\Phi)R(\varphi_1) \]

- Once the Euler angles are known, rotation matrices for any rotation are therefore straightforward to compute.

z-x-z rotation sequence
Review: Euler angles

Difficulties with Euler angles:

- Non-intuitive, difficult to visualize.
- There are 12 different possible axis-angle sequences. The “standard” sequence varies from field to field, and even within fields.
- Every rotation sequence contains at least one artificial singularity, where Euler angles do not make sense, and which can lead to numerical instability in nearby regions.
- Operations involving rotation matrices derived from Euler angles are not nearly as efficient as quaternions.

Passive rotations

We want to be able to quantify transformations between coordinate systems.

"Passive" rotations:

Given the coordinates \((v_x, v_y, v_z)\) of vector \(\mathbf{v}\) in the black coordinate system, what are its coordinates \((v'_x, v'_y, v'_z)\) in the red system?
Active rotations

We want to be able to quantify transformations between coordinate systems.

"Active" rotations:
Given the coordinates \((v_x, v_y, v_z)\) of vector \(v\) in the black coordinate system, what are the coordinates \((w_x, w_y, w_z)\) of the rotated vector \(w\) in the black system?

Passive / Active: “only a minus sign” difference, but it is very important.
Basics, reviewed

We also need to describe how to quantify and represent the rotation that relates any two orientations.

An orientation may be represented by the rotation required to transform from a specified reference orientation (sample axes).

We need to be able to quantitatively represent and manipulate 3D rotations in order to deal with orientations.
How to relate two orthonormal bases?

First pick a direction represented by a unit normal \(\mathbf{r} \)

Two numbers related to the black system are needed to determine \(\mathbf{r} \)

(i.e. \(r_x \) and \(r_y \), or latitude and longitude, or azimuthal and polar angles)
How to relate two orthonormal bases?

To specify an orthonormal basis, one more number is needed (such as an angle in the plane perpendicular to r).

Three numbers are required to describe a transformation from the black basis to the red basis.

...the “right hand rule” and orthogonality determine the position of third basis vector.
Rodrigues vectors

Any rotation may therefore be characterized by an axis r and a rotation angle α about this axis

$$\mathcal{R}(r, \alpha)$$

“axis-angle” representation

The RF representation instead scales r by the tangent of $\alpha/2$

$$\rho = \hat{r} \tan\left(\frac{\alpha}{2}\right)$$

Note semi-angle

BEWARE: Rodrigues vectors do NOT obey the parallelogram rule (because rotations are NOT commutative!) See slide 16…
Rodrigues vectors

- Rodrigues vectors were popularized by Frank [“Orientation mapping.” *Metall. Trans.* **19A**: 403-408 (1988)], hence the term Rodrigues-Frank space for the set of vectors.
- Most useful for representation of *misorientations*, i.e. grain boundary character; also useful for orientations (texture components).
- Application to misorientations is popular because the Rodrigues vector is so closely linked to the rotation axis, which is meaningful for the crystallography of grain boundaries.
Miller Index Map in RF-space

- The map shows the location of texture components, identified as \((hkl)[uvw]\), up to order 2.
- Note that many of the low index points lie on the boundary of the cubic-triclinic fundamental zone.
- If the component has a name, or belongs to a fiber, that is noted next to the point.

Cubic crystal symmetry; no sample symmetry

Generated by RFpoints_HKLUVW_1Jun07.f
Transformation Matrix from Axis-Angle Pair

Written out as a complete 3x3 matrix:

\[g_{ij} = \delta_{ij} \cos \theta + r_i r_j (1 - \cos \theta) \]
\[+ \sum_{k=1,3} \varepsilon_{ijk} r_k \sin \theta \]

\[
\begin{pmatrix}
\cos \theta + u^2 (1 - \cos \theta) & uv(1 - \cos \theta) + w \sin \theta & uw(1 - \cos \theta) - v \sin \theta \\
uv(1 - \cos \theta) - w \sin \theta & \cos \theta + v^2 (1 - \cos \theta) & vw(1 - \cos \theta) + u \sin \theta \\
uw(1 - \cos \theta) + v \sin \theta & vw(1 - \cos \theta) - u \sin \theta & \cos \theta + w^2 (1 - \cos \theta)
\end{pmatrix}
\]

Note the “+” sign before the third term (with permutation tensor), signifying a passive rotation.
Axis-Angle from Matrix

The rotation axis, \(\mathbf{r} \), is obtained from the skew-symmetric part of the matrix:

\[
\hat{\mathbf{r}} = \frac{(a_{23} - a_{32}), (a_{31} - a_{13}), (a_{12} - a_{21})}{\sqrt{(a_{23} - a_{32})^2 + (a_{31} - a_{13})^2 + (a_{12} - a_{21})^2}}
\]

Another useful relation gives us the magnitude of the rotation, \(\theta \), in terms of the *trace* of the matrix, \(a_{ii} \):

\[
a_{ii} = 3 \cos \theta + (1 - \cos \theta) n_i^2 = 1 + 2 \cos \theta
\]

, therefore,

\[
\cos \theta = 0.5 \ (\text{trace}(a) - 1).
\]

See the slides on Rotation matrices for what to do when you have small angles, or if you want to use the full range of 0-360° and deal with switching the sign of the rotation axis. Also, be careful that the argument to arc-cosine is in the range -1 to +1 : round-off in the computer can result in a value outside this range.
Symmetry Operator examples

- Diad on z: \([uvw] = [001]\), \(\theta = 180^\circ\) - substitute the values of \(uvw\) and angle into the formula

\[
g_{ij} = \begin{pmatrix}
\cos 180 + 0^2(1 - \cos 180) & 0*0(1 - \cos 180) + 1*\sin 180 & 0*1(1 - \cos 180) - 0\sin 180 \\
0*0(1 - \cos 180) - w\sin 180 & \cos 180 + 0^2(1 - \cos 180) & 0*1(1 - \cos 180) + 0\sin 180 \\
0*1(1 - \cos 180) + 0\sin 180 & 0*1(1 - \cos 180) - 0\sin 180 & \cos 180 + 1^2(1 - \cos 180)
\end{pmatrix} = \begin{pmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

- 4-fold on x:
 \([uvw] = [100]\)
 \(\theta = 90^\circ\)

\[
g_{ij} = \begin{pmatrix}
\cos 90 + 1^2(1 - \cos 90) & 1*0(1 - \cos 90) + w\sin 90 & 0*1(1 - \cos 90) - 0\sin 90 \\
0*1(1 - \cos 90) - 0\sin 90 & \cos 90 + 0^2(1 - \cos 90) & 1*0(1 - \cos 90) + 1\sin 90 \\
0*1(1 - \cos 90) + 0\sin 90 & 0*0(1 - \cos 90) - 1\sin 90 & \cos 90 + 0^2(1 - \cos 90)
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{pmatrix}
\]
Matrix representation of the rotation point groups

What is a group? A group is a set of objects that form a closed set: if you combine any two of them together, the result is simply a different member of that same group of objects. Rotations in a given point group form closed sets - try it for yourself!

Note: the 3rd matrix in the 1st column (x-diad) is missing a “-” on the 33 element; this is corrected in this slide. Also, in the 2nd from the bottom, last column: the 33 element should be +1, not -1. In some versions of the book, in the last matrix (bottom right corner) the 33 element is incorrectly given as -1; here the +1 is correct.

Kocks, Tomé, Wenk: Ch. 1 Table II

The 4 operators enclosed in orange boxes are also the 222 point group, appropriate to orthorhombic symmetry.
Cubic Crystal Symmetry Operators

<table>
<thead>
<tr>
<th>Symmetry Operator</th>
<th>Rodrigues Vector</th>
<th>Unit Quaternion</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-fold on (<100>)</td>
<td>(L_{100}^2)</td>
<td>(\infty(1,0,0)), (\infty(0,1,0)), (\infty(0,0,1))</td>
</tr>
<tr>
<td>4-fold on (<100>)</td>
<td>(L_{100}^4)</td>
<td>(\pm(1,0,0)), (\pm(0,1,0)), (\pm(0,0,1))</td>
</tr>
<tr>
<td>2-fold on (<110>)</td>
<td>(L_{110}^2)</td>
<td>(\infty(1, \pm1,0)), (\infty(1,0, \pm1)), (\infty(0,1, \pm1))</td>
</tr>
<tr>
<td>3-fold on (<111>)</td>
<td>(L_{111}^3)</td>
<td>(\pm(1,1,1)), (\pm(1,-1,1)), (\pm(1,1,-1)), (\pm(-1,-1,1))</td>
</tr>
</tbody>
</table>

The numerical values of these symmetry operators can be found at: http://neon.materials.cmu.edu/texture_subroutines: quat.cubic.symm etc.
(432) in unit quaternions

Cubic point group; proper rotations expressed as quaternions; the first four lines/elements/operators are equivalent to (222) and represent orthorhombic symmetry; the next 12 lines are 90° rotations about <100> or 180° rotations about <110>; the last 8 lines are 120° rotations.
Conversions: matrix \rightarrow RF vector

- Conversion from rotation (misorientation) matrix, due to Morawiec, with

$$\Delta g_{AB} = g_B g_A^{-1}:$$

$$
\begin{pmatrix}
\rho_1 \\
\rho_2 \\
\rho_3
\end{pmatrix} =
\begin{bmatrix}
[\Delta g(2,3) - \Delta g(3,2)]/[1 + tr(\Delta g)] \\
[\Delta g(3,1) - \Delta g(1,3)]/[1 + tr(\Delta g)] \\
[\Delta g(1,2) - \Delta g(2,1)]/[1 + tr(\Delta g)]
\end{bmatrix}
$$
Conversion from Bunge Euler Angles

- \(\tan(\alpha/2) = \sqrt{(1/\cos(\Phi/2) \cos((\phi_1 + \phi_2)/2))^2 - 1} \)
- \(\rho_1 = \tan(\Phi/2) \left[\cos\left\{(\phi_1 - \phi_2)/2\right\}/\cos\left\{(\phi_1 + \phi_2)/2\right\} \right] \)
- \(\rho_2 = \tan(\Phi/2) \left[\sin\left\{(\phi_1 - \phi_2)/2\right\}/\cos\left\{(\phi_1 + \phi_2)/2\right\} \right] \)
- \(\rho_3 = \tan\left\{(\phi_1 + \phi_2)/2\right\} \)

Conversion from Rodrigues to Bunge Euler angles:

\(\text{sum} = \tan(R_3) \); \(\text{diff} = \tan \left(\frac{R_2}{R_1} \right) \)

\(\phi_1 = \text{sum} + \text{diff}; \Phi = 2. \times \tan(R2 \times \cos(\text{sum}) / \sin(\text{diff})) ; \phi_2 = \text{sum} - \text{diff} \)
Conversion Rodrigues vector to axis transformation matrix

- Due to Morawiec:

\[a_{ij} = \frac{1}{1 + \rho_i \rho_l} \left([1 - \rho_i \rho_l] \delta_{ij} + 2\rho_i \rho_j + 2\epsilon_{ijk} \rho_k \right) \]

Example for the 12 entry:

\[a_{12} = \frac{1}{1 + \rho_i \rho_l} \left([1 - \rho_i \rho_l] \delta_{12} + 2\rho_1 \rho_2 + 2\rho_3 \right) = \frac{2(\rho_1 \rho_2 + \rho_3)}{1 + \rho_i \rho_l} \]

NB Morawiec’s Eq on p22 has a minus sign in front of the last term; this will give an active rotation matrix, rather than the passive rotation matrix seen here.
Combining Rotations as RF vectors

- Two Rodrigues vectors combine to form a third, ρ_C, as follows, where ρ_B follows after ρ_A. Note that this is not the parallelogram law for vectors!

\[
\rho_C = (\rho_A, \rho_B) = \frac{\rho_A + \rho_B - \rho_A \times \rho_B}{1 - \rho_A \cdot \rho_B}
\]
Combining Rotations as RF vectors: component form

\[
\begin{pmatrix}
\rho_1^A + \rho_1^B - \left[\rho_2^A \rho_3^B - \rho_3^A \rho_2^B \right], \\
\rho_2^A + \rho_2^B - \left[\rho_3^A \rho_1^B - \rho_1^A \rho_3^B \right], \\
\rho_3^A + \rho_3^B - \left[\rho_1^A \rho_2^B - \rho_2^A \rho_1^B \right]
\end{pmatrix}

= \frac{\left(\rho_1^C , \rho_2^C , \rho_3^C\right)}{1 - \left(\rho_1^A \rho_1^B + \rho_2^A \rho_2^B + \rho_3^A \rho_3^B\right)}
Quaternions: Yet another representation of rotations

What is a quaternion?

A quaternion is first of all an ordered set of four real numbers $q_0, q_1, q_2, \text{ and } q_3,$ (sometimes $q_1, q_2 q_3, \text{ and } q_4$).

Here, i, j, k are the familiar unit vectors that correspond to the x, y, and z-axes, resp.

Addition of two quaternions and multiplication of a quaternion by a real number are as would be expected of normal four-component vectors.

$$ p + q = (p_0 + q_0) + i(p_1 + q_1) + j(p_2 + q_2) + k(p_3 + q_3) $$

Magnitude of a quaternion:

$$ |q|^2 = q^* q = q_0^2 + q_1^2 + q_2^2 + q_3^2 $$

Conjugate of a quaternion:

$$ q^* = q_0 - q = q_0 - iq_1 - jq_2 - kq_3 $$

Multiplication of two quaternions

However, quaternion multiplication is ingeniously defined in such a way so as to reproduce rotation composition.

Multiplication of the basis quaternions is defined as follows:

\[i^2 = j^2 = k^2 = ijk = -1 \]
\[ij = k = -ji \]
\[ki = j = -ik \]
\[jk = i = -kj \]

\[q = q_0 + iq_1 + jq_2 + kq_3 \]
\[= (q_0, q_1, q_2, q_3) \]
\[= q_0 + q \]

[1] Quaternion multiplication is non-commutative \((pq \neq qp)\).

[2] There are similarities to complex numbers (which correspond to rotations in 2D).

From these rules it can be shown that the product of two arbitrary quaternions \(p, q\) is given by:

\[pq = p_0q_0 - (p_1q_1 + p_2q_2 + p_3q_3) \]
\[+ p_0 (iq_1 + jq_2 + kq_3) + q_0 (ip_1 + jp_2 + kp_3) \]
\[+ i (p_2q_3 - p_3q_2) + j (p_3q_1 - p_1q_3) + k (p_1q_2 - p_2q_1) \]

Using more compact notation:

\[pq = [p_0q_0 - \mathbf{p} \cdot \mathbf{q}] + [p_0 \mathbf{q} + q_0 \mathbf{p} + \mathbf{p} \times \mathbf{q}] \]

Scalar part

Vector part

Unit quaternions as rotations

We state without proof that a rotation of α degrees about the (normalized) axis \mathbf{r} may be represented by the following unit quaternion:

$$ q = \cos \left(\frac{\alpha}{2} \right) + \mathbf{r} \sin \left(\frac{\alpha}{2} \right) $$

It is easy to see that this is a unit quaternion, i.e. that $q_0^2 + |q|^2 = 1$

Note the similarity to Rodrigues vectors, except with a different scaling.

For two rotations q and p that share a single axis \mathbf{r}, note what happens when q and p are multiplied:

$$ pq = [p_0q_0 - \mathbf{p} \cdot \mathbf{q}] + [p_0q + q_0p + \mathbf{p} \times \mathbf{q}] $$
$$ = \cos \alpha \cos \beta - \sin \alpha \sin \beta + \mathbf{r} (\sin \alpha \cos \beta + \cos \alpha \sin \beta) $$
$$ = \cos (\alpha + \beta) + \mathbf{r} \sin (\alpha + \beta) $$
Multiplication of a quaternion and a 3-D vector

It is useful to define the multiplication of vectors and quaternions as well. Vectors have three components, and quaternions have four. How to proceed?

Every vector \mathbf{v} corresponds to a “pure” quaternion whose 0^{th} component is zero.

$$\mathbf{v} = 0 + i v_x + j v_y + k v_z$$

...and proceed as with two quaternions:

$$pq = [p_0q_0 - \mathbf{p} \cdot \mathbf{q}] + [p_0\mathbf{q} + q_0\mathbf{p} + \mathbf{p} \times \mathbf{q}]$$

Note that in general that the product of a quaternion and a vector can result in a non-pure quaternion with non-zero scalar component.
Rotation of a vector by a unit quaternion

Although the quantity qv may not be a vector, it can be shown that the triple products q^*vq and qvq^* are.

In fact, these vectors are the images of v by passive and active rotations corresponding to quaternion q.

\[
\begin{align*}
w &= q^*vq & \text{Passive rotation} \\
s &= qvq^* & \text{Active rotation}
\end{align*}
\]
Rotation of a vector by a unit quaternion

Expanding these expressions yields

\[w = \left(2q_0^2 - 1 \right) \mathbf{v} + 2 (\mathbf{v} \cdot \mathbf{q}) \mathbf{q} + 2q_0 (\mathbf{v} \times \mathbf{q}) \]
\[s = \left(q_0^2 - |\mathbf{q}|^2 \right) \mathbf{v} + 2 (\mathbf{v} \cdot \mathbf{q}) \mathbf{q} + 2q_0 (\mathbf{q} \times \mathbf{v}) \]

Moreover, the composition of two rotations (one rotation following another) is equivalent to quaternion multiplication.

\[w = q^* (p^* \mathbf{v} p) q \]
\[= (pq)^* \mathbf{v} (pq) \]

since

\[(pq)^* = q^* p^* \]
Example: Rotation of a Vector by Quaternion-Vector Multiplication

Consider rotating the vector \(\mathbf{i} \) by an angle of \(\alpha = 2\pi/3 \) about the \langle111\rangle direction.

Rotation axis:

\[
\mathbf{r} = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right)
\]

\[
q = \cos(\alpha/2) + \mathbf{r} \sin(\alpha/2) = \frac{1}{2} + \left(\mathbf{i} \frac{1}{\sqrt{3}} + \mathbf{j} \frac{1}{\sqrt{3}} + \mathbf{k} \frac{1}{\sqrt{3}} \right) \frac{\sqrt{3}}{2}
\]

\[
q_0 = \frac{1}{2} \quad q = \frac{1}{2} \mathbf{i} + \frac{1}{2} \mathbf{j} + \frac{1}{2} \mathbf{k}
\]

\[
q \cdot \mathbf{i} = \frac{1}{2} \quad q \times \mathbf{i} = \frac{1}{2} \mathbf{j} - \frac{1}{2} \mathbf{k}
\]

For an active rotation:

\[
\mathbf{s} = q \mathbf{i} q^* = \left(\frac{1}{4} - \frac{3}{4} \right) \mathbf{i} + 2 \left(\frac{1}{2} \right) \mathbf{q} + 2 \left(\frac{1}{2} \right) \left(\frac{1}{2} \mathbf{j} - \frac{1}{2} \mathbf{k} \right) = -\frac{1}{2} \mathbf{i} + \frac{1}{2} \mathbf{j} + \frac{1}{2} \mathbf{k} + \frac{1}{2} \mathbf{j} - \frac{1}{2} \mathbf{k} = \mathbf{j}
\]

For a passive rotation:

\[
\mathbf{w} = q^* \mathbf{i} q = \mathbf{k}
\]
Positive vs Negative Rotations

- One curious feature of quaternions that is not obvious from the definition is that they allow positive and negative rotations to be distinguished. This is more commonly described in terms of requiring a rotation of 4π to retrieve the same quaternion as you started out with but for visualization, it is more helpful to think in terms of a difference in the sign of rotation.
Positive vs Negative Rotations

- Let’s start with considering a positive rotation of θ about an arbitrary axis, r. From the point of view of the result one obtains the same thing if one rotates backwards by the complementary angle, $\theta - 2\pi$ (also about r). Expressed in terms of quaternions, however, the representation is different! Setting $r = [u,v,w]$ again,

- $q(r, \theta) = q(u \sin \theta/2, v \sin \theta/2, w \sin \theta/2, \cos \theta/2)$
Positive vs Negative Rotations

- \(q(r, \theta - 2\pi) = \)

\[
q(u \sin(\theta - 2\pi)/2, v \sin(\theta - 2\pi)/2, w \sin(\theta - 2\pi)/2, \cos(\theta - 2\pi)/2) = \\
q(-u \sin\theta/2, -v \sin\theta/2, -w \sin\theta/2, -\cos\theta/2) = -q(r, \theta)
\]
Positive vs Negative Rotations

- The result, then is that the quaternion representing the negative rotation is the negative of the original (positive) rotation. This has some significance for treating dynamic problems and rotation: angular momentum, for example, depends on the sense of rotation. For static rotations, however, the positive and negative quaternions are equivalent or, more to the point, physically indistinguishable, $q = -q$.

- Caution! By “negative rotation” we mean the position arrived at by rotating in the opposite direction. This is not the same as taking the same axis but rotating in the opposite sense.
Conversions: matrix → quaternion

Formulae, due to Morawiec:

\[
\cos \frac{\theta}{2} = \frac{1}{2} \sqrt{1 + \text{tr}(\Delta g)} \equiv q_4 = \pm \frac{\sqrt{1 + \text{tr}(\Delta g)}}{2}
\]

\[
q_i = \pm \frac{\varepsilon_{ijk} \Delta g_{jk}}{4 \sqrt{1 + \text{tr}(\Delta g)}}
\]

\[
\begin{pmatrix}
q_1 \\
q_2 \\
q_3 \\
q_4
\end{pmatrix} =
\begin{pmatrix}
\pm [\Delta g(2,3) - \Delta g(3,2)]/2 \sqrt{1 + \text{tr}(\Delta g)} \\
\pm [\Delta g(3,1) - \Delta g(1,3)]/2 \sqrt{1 + \text{tr}(\Delta g)} \\
\pm [\Delta g(1,2) - \Delta g(2,1)]/2 \sqrt{1 + \text{tr}(\Delta g)} \\
\pm \sqrt{1 + \text{tr}(\Delta g)}/2
\end{pmatrix}
\]

Note: passive rotation/axis transformation (axis changes sign for active rotation)

Note the coordination of choice of sign!
Bunge angles \(\rightarrow \) quaternion

\[
[q_1, q_2, q_3, q_4] = \\
\sin \Phi/2 \cos\{(\phi_1 - \phi_2)/2 \}, \\
\sin \Phi/2 \sin\{(\phi_1 - \phi_2)/2\}, \\
\cos \Phi/2 \sin\{\phi_1 + \phi_2)/2\}, \\
\cos \Phi/2 \cos\{(\phi_1 + \phi_2)/2\}
\]

Note the occurrence of sums and differences of the 1st and 3rd Euler angles (that eliminate the degeneracy at the origin of Euler space)!
References

- S. Altmann (2005 - reissue by Dover), Rotations, Quaternions and Double Groups, Oxford.