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Why grain size distributions?

Statistical considerations of distributions

— The log-normal distribution
— PDFs and CDFs

Theoretical approaches to grain size distributions
— Hillert distribution
— Mullins distribution

Analysis of real microstructures

— Visualizations
» Histograms
» eCDFs
 Probability plots

— Sampling
— Extreme value theory
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Why grain size distributions?

= (Grain size has a measurable effect on material properties

_ C o, = yield stress
Hall-Petch: 0] Y X —F= C = constant

sV D D = ‘grain size’

¢ = strain rate

: : n n = creep exponent
Creep:
P ¢ X D D = ‘grain size’

= Real grain sizes exhibit dispersion, which leads to a grain
size distribution

= So why only one ‘grain size’ in the phenomenological
relationships?
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Why grain size distributions?

= Answer: no one likes to deal with statistics
= Another answer: it’s hard

= Kurzydlowski attempted to incorporate grain dispersion

into Hall-Petch by defining a constant size of grains (CSG)
polycrystal

= Berbenni extended Kurzydlowski by defining a size-
dependant constitutive equation for elasto-viscoplastic
behavior

= Both these approaches assume log-normal distributions of
grains; but are grain size distributions really log-normal?
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Log-normal distribution
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The log-normal distribution describes a random variable whose natural
logarithm follows the normal distribution. The cumulative distribution
function (CDF) of a log-normal distribution is:

1 I —
F,o(x)= §erfc n(z) — =

I ov2 ) o i

The probability density function (PDF) of a log-normal distribution is:

1 —(Inz — p)?
(1) = ex
f,0() ro/om 1 952
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= The PDF of a random variable defines the probability of
that variable taking a particular value (think ‘bell curve’
e.g. normal distribution)

b
The integral of a PDF along its domain
f (QZ') dZC = 1 must equal 1 (i.e., if discrete, all
a

probabilities sum to 1)

= The CDF of a random variable defines the probability that
a value of the variable will be found <= x (think ‘s-curve’

-

£r
The CDF can be defined as the integral of
F(LIZ‘) — / f(t)dt the PDF up to x
— OO
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= Hillert derived a limiting grain size distribution based on a
presumed growth equation

= Assume grain boundary velocity is proportional to the
local curvature:

1 1
v=MAP = Mo |
P1 P2
V = velocity o = grain boundary energy
M = mobility p = radii of curvature

P = pressure
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Theoretical approaches: Hillert

= The rate of change should be equivalent to the integral of
the velocity around the grain boundary surface

= This allows us to rewrite the velocity as a rate of change
for the grain size:

AR 11
Mo\ e R

R = circle/sphere equivalent radius
R, = critical radius
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= By the n-6 rule, the rate of change for grain size in 2D
becomes:

— 1
6

dt R

n = number of sides

dR__Ma(n )

= But where does n-6 come from? Originally derived by von
Neumann for soap froths, extended by Mullins
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Consider a plane curve r(6,t)

dA red = r(6,1)

d { - 27Tk blue = polar vector
green = (directed) tangent
k=Moo

J. von Neumann, Metal Interfaces, ASM, Cleveland (1952)
W.W. Mullins, J. Appl. Phys., vol. 27 pp.900-904 (1956)
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Consider a network of r,(6,t) d A
curves where all vertices
terminate at angles of 2n/3; — = k= (n — 6)
number the sides and vertices dt 3
of a given curve in the 9

following manner:

J. von Neumann, Metal Interfaces, ASM, Cleveland (1952)
W.W. Mullins, J. Appl. Phys., vol. 27 pp.900-904 (1956)



eQ'e "WQ/

DEPARTMENT OF o@d‘ %,
MATERIALS SCIENCE AND ENGINEERING 3 \[ S
] - E §
Theoretical approaches: Hillert é}

Now determine the average number of sides:

n =06+ O« 1] —
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Finally, after some calculus, arrive at the growth equation:

du?

d—TZV(U—l)—Uz

u=R/R,
y = 20Mo(dt/dR,,?)
T= Ich,Z

M Hillert, Acta Metall., vol. 13 pp. 227-238 (1965)
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The goal is now to arrive at a PDF for the limiting grain size
distribution. After some (more) calculus:

—2
P) = _55)% 5(2)% exp 5 _ﬁu

Is it a PDF?

2
/ P(u)du =1 YES!
0
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= Mullins derived a more general form for the limiting grain
size distribution that can extend up to oo (as opposed to just

2)
* The distribution requires a function of the number of sides

of a grain (s(x)) and a function G(x) that is conceptually
describes whether grains of a particular size will grow or

shrink:
d O
= R/<R>
G(Qf) — L — — / P(Qf/)dﬂfl )é:dir:ensionality
P/, o

NB: the integration need
not be taken to o<!
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Inverting G(x) yields an expression for the PDF:

P(x) = fo exp|— /Ox p” —dG(x’)dx/]

Not all G(x) necessarily yield a true PDF!

If s(x) is defined (in 2D) as a linear function of the number of
sides, then Mullins is degenerate to Hillert!

There is no (closed-form) analytical solution in 3D since we
lack a well-defined n-6 rule in higher dimensions
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Answer: not really...
(they fail the standard
tests)

They are not really
close to real grain size
distributions (or
simulations) either!

So where do we go
from here?
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Histograms provide a way to visualize the PDF

600 -

A histogram discretizes
the data by separating it
into bins (x axis). They
axis Is then the total
number of data points
that fall in each bin
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Empirical CDFs (eCDF) provide a way to visualize the CDF
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1
4

5
log(grain size)

The eCDF is a step
function that jumps by 1/
X for each of the x data
points

red = actual data
blue = sampled from
ideal normal
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Probability plots compare empirical data to a theoretical

distribution
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Probability plots may
have different types of
axes (quantiles or
probabilities)

The shape of the curve on
a probability plot
determines the shape of
the underlying
distribution
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= Actual problem: how does one sample data points from a
given PDF?
= One answer: /inverse transform sampling

= Inverse transform sampling requires knowing the quantile
function, which is the inverse of the CDF:

Q(p) = F ' (z) =inf{z | F(z) > p,0<p < 1}

= Unfortunately, not all CDFs can be expressed in terms of
elementary functions, and thus cannot be inverted (not even
the normal distribution); this is the case for the general
Mullins, but not for the Hillert
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Tx Y SJR) = 1S(0), f(29), f(31),

M A (N —=1),f(N)}

: R ={i,2i3i...,N—i N}
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Construct a numerical CDF by computing the cumulative sum
of the areas:

P = {A} A" 1 A% AT 4 A% 4 A3 )

A grain size can now be sampled by finding a random (real)
number, Q, on the interval [0,1], and comparing it to the set P:

Rsize — mln{‘ Pz — QZ |}
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In some material systems, large
grains (“as-large-as”, or ALA) play
an important role in failure, since
they often serve as the nucleation
site for fatigue cracks
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= Picky, known
distrib values
beyon( to the

genere

R.A. Fisher and L.H.C. Tippett, Mathematical Proceedings of the Cambridge Philosophical Society, vol. 24, pp. 180-190, 1927
J. Pickands, Annals of Statistics, vol. 3, pp. 119-131, 1975
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Extreme value theory
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¢ = shape parameter
O = scale parameter

W = location parameter
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Extreme value theory
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The tails of different grain size distributions can be
quantitatively compared (given suitable normalization)

Q. Liu et al., J. Amer. Cer. Soc., in press
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= The shapes of the upper tails of grain size distributions
appears correlated to grain growth kinetics: upper tails
become longer (more akin to log-normal) as the
microstructure stagnates

= Analytical approaches to plane curve evolution indicate
that the limiting (self-similar) size distribution is uniquely
determined by the initial tail distribution

= “Apalytical approaches” means application of mean
curvature flow to a collection of disjoint plane curves



