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Objectives
• Definition and explanation of the pole figure.
• Provide information on how to measure x-ray pole figures.
• Explain the stereographic and equal area projections.
• Explain the defocussing correction.
• Explain how pole figures of single orientations relate to 

stereographic projections.
• Explain how to compute a pole figure based on the orientation 

matrix.
• Spherical angle grid, area element and normalization of pole 

figure data.
• Define and explain the inverse pole figure.
• Computation of an inverse pole figure
• Description of High Energy Diffraction Microscopy: near-field 

and far-field variants.
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In	Class	Questions:	1

• How is an x-ray pole figure measured?
• Why does it not provide complete orientaVon 

informaVon for a polycrystalline sample?
• How can one construct a pole figure for a single 

orientaVon?
• Why does a pole figure for a single orientaVon 

provide the complete orientaVon (by contrast to 
the single crystal case)?

• Why does an experimental pole figure not 
correspond to a theoreVcal one at the edges? 
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In	Class	Questions:	2

• How does the stereographic projection work?
• How does the equal area projection work?
• Given an orientation (e.g. the orientation matrix), 

how do you calculate the positions of the poles in 
a pole figure?

• How do you compute an inverse pole figure?
• How does one normalize the data for a pole 

figure to obtain “multiples of a random density 
(MRD)”?
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Pole	Figure:	Definition
• A pole figure (in the context of texture) is a map of a selected set of crystal plane normals plotted with 

respect to the sample frame.  Think of the rows (not columns) in the orientation matrix, which define the 
coordinates of each crystal axis with respect to the sample frame.  

• This definition refers to plane normals because of the standard use of x-ray diffraction to measure pole 
figures; crystal directions can equally well be treated.

• Since each plane normal is plotted by itself, there is no information in the resulting plot about directions lying 
in that plane.  Therefore pole figures represent a projection of the texture information.

• Each chosen crystal direction is generally specified as a low-index plane normal, e.g. {100}, {110}, {001}.
• Crystal symmetry is generally assumed to apply such that all equivalent plane normals sharing the same 

Miller indices are shown.  For cubic materials, obviously, plane normals and directions are coincident but this 
is not the case for lower symmetry Bravais lattices.

• Since unit vectors representing directions with respect to a common origin live on a sphere, it is natural to 
transform the coordinates to spherical angles such as azimuth (longitude) and declination (co-latitude).  This 
makes it more clear that, for each crystallite, its 3-parameter orientation (e.g. Euler angles) is reduced 
(projected) to only two (2) parameters.

• Only the upper hemisphere is plotted, by convention.  The resulting diagram is often called a stereogram, 
although this implies something about the choice of projection (see later slides).

• If only a few distinct orientations are displayed, multiple poles can be plotted on the same diagram as a 
discrete pole figure.

• When many crystallites are included in the dataset, which have variable orientation, it is impracticable to 
have more than one pole.  Also it is necessary to bin the data and convert points to densities.  For display 
purposes, contour plots are the easiest way to understand the result.
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Crystal	Directions	on	the	Sphere
• Uses the inclination of the 

normal to the 
crystallographic plane: the 
points are the intersection 
of each crystal direction 
with a (unit radius) sphere.

• This is an orthographic 
projection to illustrate the 
physical directions, not a 
stereographic projection.



7

Projection	from	Sphere	to	Plane
• The measured pole figure exists on

the surface of a (hemi-)sphere. To
make figures for publication one must
project the information onto a flat
page. This is a traditional problem in
cartography. We exploit just two of
the many possible projection
methods.

• Projection of spherical information 
onto a flat surface

– Equal area projection, or,
Schmid projection

– Equiangular projection, or,
Wulff projection, 
more common in crystallography

[Cullity]
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Stereographic	vs.	Equal	Area	Projection

Stereographic

Equal	Area

[Kocks]

*	Many	texts,	e.g.	Cullity,	show	the	
plane	touching	the	sphere	at	N:	
this	changes	the	magnification	
factor	for	the	projection,	but	not	its	
geometry.
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Stereographic	Projections
• Connect a line from the South pole to the point on the surface of the 

sphere.  The intersection of the line with the equatorial plane defines 
the project point.  The equatorial plane is the projection plane.  The 
radius from the origin (center) of the sphere, r, where R is the radius 
of the sphere, and a is the angle from the North Pole vector to the 
point to be projected (co-latitude), is given by:

r =	R tan(a/2)
• Given spherical coordinates (a,y), where the longitude is y (as 

before), the Cartesian coordinates on the projection are therefore:
(x,y)	=	r(cosy,	siny)	=	R tan(a/2)(cosy,	siny)

• To obtain the spherical angles from [uvw], we calculate the co-latitude 
and longitude angles as:

cosa = w
tany = v/u		

!Careful:	Use	ATAN2(v,u),	and	remember	the	difference	between	
atan2(x,y)	in	excel,	and	atan2(y,x)	in	fortran and	c++!



Stereographic	Projection	– Step	1
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North pole

Equator

Point “p” to be projected, 
whose co-latitude = a

South pole

Vertical cross-
section of sphere 
through a point to 
be projected onto 
equatorial plane



Stereographic	Projection	– Step	2
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North pole

Equator

Point to be projected

Connect point “p” to 
the South Pole

South pole



Stereographic	Projection	– Step	3
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North pole

Equator

Point to be projected

Identify projected point 
p’ on the equatorial 
plane

South pole



Stereographic	Projection	– Step	4
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North pole

Equator

Point to be projected

Compute radius of 
projected point p’ on 
the equatorial plane

South pole



Stereographic	Projection	– Step	5
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O

p’

Radius = R tan(a/2)
f

p’ = Rtan(a/2)[cos(f),sin(f)]

Longitude of 
the projected 
point = f
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Texture	Component	® Pole	Figure
• To calculate where a texture component shows up in a pole figure, there are various operations that must 

be performed.
• The key concept is that of thinking of the pole figure as a set of crystal plane normals (e.g. {100}, or {111}) 

in the reference configuration (“cube component”) and applying the orientation as a transformation to 
that pole (or set of poles) to find its position with respect to the sample frame.

• Step 1: write the crystallographic pole (plane normal) of interest as a unit vector; 
e.g. (111) = 1/√3(1,1,1) = h. In general, you will repeat this for all symmetrically equivalent poles (so for 
cubics, one would also calculate {-1,1,1}, {1,-1,1} etc.).  In the future, we will use a set of symmetry 
operators to obtain all the symmetry related copies of a given pole.

• Step 2: apply the inverse transformation (passive rotation), g-1, to obtain the coordinates of the pole 
(Miller indices, normalized, crystal axes) in the pole figure (direction in sample axes): 
h’ =	g-1h
(pre-multiply the vector by, e.g.  the transpose of the orientation matrix, g, that represents the 
orientation; Rodrigues vectors or unit quaternions can also be used).

• Step 3: convert the rotated pole into spherical angles (to help visualize the result, and to simplify Step 4) 
where Q is the co-latitude and f is the longitude: 
Q =	cos-1(h’z), f =	tan-1(h’y/h’x).
Remember - use ATAN2(h’y,h’x)	in your program or spreadsheet and be careful about the order of the 
arguments!

• Step 4: project the pole onto a point, p, in the plane (stereographic or equal-area):
px =	tan(Q/2) cosf;	py =	tan(Q/2) sinf. [corrected sine and cosine for py and px components 25 i 08]
The previous slide explains where this formula comes from.

• Note: why do we use the inverse transformation (passive rotation)?! One way to understand this is to 
recall that the orientation is, by convention (in materials science), written as an axis transformation from 
sample axes to crystal axes.  To construct a pole figure, we need to transform a known crystal direction (i.e. 
the plane normal) to the sample frame so that we know its coefficients in the latter system.



Texture	Component	® Pole	Figure:	
pseudo	code
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• Repeat these steps for each crystallographically equivalent 
pole, where the sphere (and projecVon circle) have unit radius 
-

• Step 1: write the crystallographic pole (plane normal) of 
interest as a unit vector; e.g. h	=	1/√3(1,1,1)

• Step 2: transform pole to sample ref. frame: 
h’ =	g-1h

• Step 3: convert the transformed pole into spherical angles: 
Q =	cos-1(h’z), f =	tan-1(h’y/h’x)

• Step 4: stereographic projecVon of the pole onto a point:
px =	tan(Q/2) cosf;	py =	tan(Q/2) sinf. 



Matlab help
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• Matrix multiplication in Matlab can be accomplished 
several different ways.

• For matrices of the same dimensions, one can simply 
use “*”, as in “A * B”, where A and B are, say, 3x3 
matrices.  There is a function mmult(A,B) that 
accomplishes the same multiplication.

• To get the inverse of a transformation/rotation matrix, 
=A-1 or (in Matlab) “A^-1”, one only needs the 
transpose.  The transpose of a matrix can be written as 
“A’” where the apostrophe signifies transpose.

• To left multiply a vector by a 3x3 matrix (matrix on the 
left, vector on the right) one needs a column vector.  
However, if one enters a vector as h=[1,1,1], for 
example, the result (“h”) is a row vector.  The fix is to 
use the transpose of the vector, thus:  “hnew = A * h’”.
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Standard	(001)	Projection
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Equal	Area	Projection
• Connect a line from the North Pole to the point to be 

projected.  Rotate that line onto the plane tangent to the 
North Pole (which is the projecVon plane).  The radius, r, of 
the projected point from the North Pole, where R is the radius 
of the sphere, and a is the angle from the North Pole vector 
(co-laVtude) to the point to be projected, is given by:

r =	2R sin(a/2)
• Given spherical coordinates (a,y), where the longitude is y

(as before), the Cartesian coordinates on the projecVon are 
therefore:

(x,y) = r(cosy, siny) = 2R sin(a/2)(cosy, siny)

Concept		Params.	Euler		Normalize		Vol.Frac.		Cartesian		Polar	Components
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Standard	Stereographic	
Projections

• Pole figures are familiar diagrams.  Standard 
Stereographic projections provide maps of low 
index directions and planes.

• PFs of single crystals can be derived from SSTs by 
deleting all except one Miller index.

• Construct {100}, {110} and {111} PFs for cube 
component.
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Cube	Component	=	{001}<100>

{110}

{100}

{111}

Think	of	the	q-2q setting	as	acting	as	a	filter on	the	
standard	stereographic	projection,
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How	to	Measure	Texture

• X-ray diffraction; pole figures; measures average texture 
at a surface (µms penetration); projection (2 angles).

• Neutron diffraction; type of data depends on neutron 
source; measures average texture in bulk (cms penetration in 
most materials) ; projection (2 angles).

• Electron [back scatter] diffraction; easiest [to automate] in 
scanning electron microscopy (SEM); local surface texture 
(nms penetration in most materials); complete orientation (3 
angles).

• Optical microscopy: optical activity (plane of polarization); 
limited information (one angle).
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Texture:	Quantitative	Description
• Three (3) parameters needed to describe the 

orientaVon [of a crystal relaVve to the embedding 
body or its environment].

• Most common: 3 [rotaVon] Euler angles.
• Most experimental methods [X-ray and neutron 

pole figures included] do not measure all 3 angles, 
so orientaLon distribuLon must be calculated.

• Best mathemaVcal representaVon for graphing, 
illustraVng symmetry: Rodrigues-Frank vectors. 

• Best mathemaVcal representaVon for calculaVons: 
quaternions.
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X-ray	Pole	Figures
• X-ray pole figures are the most common source of texture 

information; cheapest, easiest to perform. They have the advantage 
of providing an average texture over a reasonably large surface area 
(~1mm2), compared to EBSD. For a grain size finer than about 100 
µm, this means that thousands of grains are included in the 
measurement, which ensures statistical viability. 

• Pole figure:= variation in diffracted intensity with respect to direction 
in the specimen.

• Representation:= map in projection of diffracted intensity.  
• Each PF is equivalent to a geographic map of a hemisphere (North 

pole in the center).
• Map of the density of a specific crystal direction w.r.t. sample 

reference frame.  More concretely, it is the frequency of occurrence of 
a given crystal plane normal per unit spherical area.  Think of a 
(spherical) pin cushion with each pin representing the normal to {hkl}.
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PF	apparatus
• From Wenk’s chapter in Kocks

book.
• Fig. 20: showing path 

difference between adjacent 
planes leading to destructive 
or constructive interference.  
The path length condition for 
constructive interference is 
the basis for the Bragg 
equation:
2	d	sinq =	n	l

• Fig. 21: pole figure 
goniometer for use with x-ray 
sources.

[Kocks]
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Pole	Figure	measurement
• PF measured with 5-axis goniometer.
• 2 axes used to set Bragg angle (choose a specific crystallographic plane with 

q/2q), which determines the Miller indices associated with the PF.  These 
settings remain constant during the measurement of a given pole figure.

• Third axis tilts specimen plane w.r.t. the focusing plane (co-latitude angle in the 
PF, i.e. distance from North Pole).  Although this angle can be as large as 90°, 
no diffracted intensity will be measured with the plane of the beams parallel to 
the surface: this limits the maximum tilt angle at which PFs can be measured in 
reflection to about 80°.

• Fourth axis spins the specimen about its normal (longitude angle in the PF).
• Fifth axis (optional) oscillates the Specimen under the beam in order to 

maximize the number of grains included in the measurement.
• For texture calculation, at least 2 PFs required and 3 are preferable even for 

materials with high crystal symmetry.
• N.B. deviations of relative intensities in a standard q/2q scan from powder file 

indicate texture but only on a qualitative basis.
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Pole	Figure	Example
• If the goniometer is set for {100} reflections, then all 

directions in the sample that are parallel to <100> 
directions will exhibit diffraction.

Note the convention with the RD pointing up, TD to the right, and ND 
out of the plane.  This is an unfortunate convention because it is a left-
handed set of axes!

[Bunge]
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Practical	Aspects
• Typical to measure three PFs for the 3 lowest values of 

Miller indices (smallest available angles of Bragg peaks).
• Why?  

– Small Bragg angles correspond to normals coincident with 
symmetry elements of the crystal, which means fewer symmetry-
related poles, and, consequently, greater dynamic range of 
intensity (peak to valley).

– A single PF does not uniquely determine orientation(s), texture 
components because only the plane normal is measured, but not 
directions in the plane (2 out of 3 parameters).

– Multiple PFs required for calculation of Orientation Distribution
– The lowest index reflections have the smallest Bragg angles and 

are therefore the easiest to measure, with the highest intensities.
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Corrections	to	Measured	Data
• Random texture [=uniform dispersion of orientations] means same 

intensity in all directions.
• Background count must be subtracted, just as in conventional x-ray 

diffraction analysis.
• X-ray beam becomes defocused at large tilt angles (> ~60°); measured 

intensity even from a sample with random texture decreases towards 
edge of PF because less of the diffracted beam intersects with, or is 
captured by the detector.

• Defocusing correction required to increase the intensity towards the 
edge of the PF.  (Despite the uncertainty associated with this 
correction, it is better to measure in reflection out to as large a tilt as 
possible, in preference to trying to combine reflection and transmission 
figures.)

• After these corrections have been applied, the dataset must be 
normalized in order that the average intensity is equal to unity (similar 
to, although not the same as, making sure that a probability 
distribution has unit area under the curve).

• Units: multiples of a random density (MRD).  To be explained …
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Defocussing
• The combinaVon of the q-2q

se{ng and the Vlt of the 
specimen face out of the 
focusing plane spreads out the 
beam on the specimen surface.

• Above a certain spread, not all 
the diffracted beam enters the 
detector.

• Therefore, at large Vlt angles, 
the intensity decreases for 
purely geometrical reasons.

• This loss of intensity must be 
compensated for, using the 
defocussing correcLon.

[Kocks]



31

Defocusing	Correction
• No defocusing correction needed at small tilts, c, because all the diffracted 

beam enters the detector.  The correction becomes more important with 
decreasing 2q and narrower receiving slit.

• Best procedure involves measuring the intensity from a reference sample 
with random texture. 

• If such a reference sample is not available, one may have to correct the 
available defocusing curves in order to optimize the correction.  This will be 
explained again in the context of using mtex or popLA.  

[Kocks]
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popLA	and	the	
Defocussing	Correction

demo    (from Cu1S40, smoothed a bit: UFK)
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If you change the DFB 
file, always plot the 
curves to check them 
visually!
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Area	Element,	Volume	Element
• If many data points (individual poles) 

are measured, a discrete plot is too 
crowded.  The points can be binned 
and then a contour plot generated.

• The simplest grid has equal increments 
in each of the two spherical angles, Q
and y.  These are co-latitude and 
longitude.

• Spherical coordinates result in an area 
element, dA, whose magnitude 
depends on the declination (or co-
latitude):

dA =	sinQ dQ dy

Q

dA

Concept		Params.	Euler Normalize		Vol.Frac.		Cartesian		Polar	Components	

dy
dq

[Kocks]

In practice, a diffracted intensity is 
measured at the center of each cell 
in the grid.  Therefore each value is 
associated with a different area.
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Normalization
• Normalization is the operation that ensures that “random” 

is equivalent to an intensity of one.
• This is achieved by integrating the un-normalized intensity, 
f’(q,y), over the full area of the pole figure, and dividing 
each value by the result, taking account of the solid area.  
Thus, the normalized intensity, 
f(q,y), must satisfy the following equation, where the 2π
accounts for the area of a hemisphere:

€ 

1
2π

f Θ,ψ( )sinΘdΘdψ∫ =1

Note that in popLA files, intensity levels are represented by i4 integers, so the 
random level = 100.  Also, in .EPF data sets, the outer few rings (typically, Q > 80°) 
are empty because they are unmeasurable; therefore the integration for 
normalization excludes these empty outer rings.



Inverse	Pole	Figure:	Dedinition
• An inverse pole figure (in the context of texture) is a map of a selected set of sample directions 

plotted with respect to the crystal frame.  Think of the columns (not rows) in the orientation 
matrix, which define the coordinates of each sample axis with respect to the crystal frame.  

• In general, only the 1, 2 & 3 (RD, TD, ND) directions are plotted.
• The sample directions are generally notated with Miller indices, e.g. [100], [010], [001].
• Sample symmetry is ignored because these 3 sample directions are (almost) never equivalent.
• Since unit vectors representing directions with respect to a common origin live on a sphere, it is 

natural to transform the coordinates to spherical angles such as azimuth (longitude) and 
declination (co-latitude).  This makes it more clear that, for each crystallite, its 3-parameter 
orientation (e.g. Euler angles) is reduced (projected) to only two (2) parameters.

• Only the upper hemisphere is plotted, by convention.  The resulting diagram is often called a 
stereogram, although this implies something about the choice of projection (see later slides).

• If only a few distinct orientations are displayed, multiple poles can be plotted on the same 
diagram as a discrete inverse pole figure.

• When many crystallites are included in the dataset it is necessary to bin the data and convert 
points to densities.  For display purposes, contour plots are the easiest way to understand the 
result.

• Because orientations are reduced (projected) to a single direction, the space required to display 
a unique result depends on the crystal symmetry.  For cubics, only the Standard Stereographic 
Triangle (SST) is needed.  See the Kocks book for lower symmetry cases.
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Inverse	Pole	Figures
36

• The figure above shows an example of a set of Inverse Pole 
Figures, derived from a sample of rolled copper (“DEMO” as found 
in the demonstration dataset for popLA).  From left to right, we 
see the distribution of the ND, TD and RD, respectively, with 
respect to the crystal reference frame.  The cubic crystal symmetry 
of copper means that we only need one unit triangle to represent 
the distribution.  Thus the Standard Stereographic Triangle (SST) is 
the fundamental zone for inverse pole figures for cubic materials.  
The (experimental) pole figures for this dataset are shown to the 
right.
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Inverse	Pole	Figure	- Procedure
• To calculate where a sample direcVon appears in an inverse pole figure, there are various operaVons that 

must be performed.
• The key concept is that of thinking of the inverse pole figure as a set of sample direcVons (e.g. RD, or ND) 

in the reference configuraVon and applying the orientaVon as a transformaLon to that direcVon (here one 
only needs to deal with a single direcVon, in contrast to the Pole Figure case) to find its posiVon with 
respect to the sample frame.

• Step 1: write the sample direcVon of interest as a unit vector; e.g. NDº[001] = h.
• Step 2: apply the transformaVon (passive rotaVon), g	(not g-1,	or gT), to obtain the coordinates of the 

sample direcVon in the inverse pole figure (in crystal axes): 
h’ =	gh
(pre-mulVply the vector by, e.g.  the orientaVon matrix, g, that represents the orientaVon; Rodrigues
vectors or quaternions can also be used).

• Step 3: convert the rotated direcVon into spherical angles (to help visualize the result, and to simplify Step 
4) where Q is the co-laVtude and f is the longitude: 
Q =	cos-1(h’z), f =	tan-1(h’y/h’x).
Remember - use ATAN2(h’y ,	h’x)	in your program or spreadsheet and be careful about the order of the 
arguments!

• Step 4: project the direcVon onto a point, p, in the plane (stereographic or equal-area):
px =	tan(Q/2) cosf;	py =	tan(Q/2) sinf. 
The previous slide explains where this formula comes from.  The axes of the inverse pole figure are x=100
and y=010.	(CauVon - this is simple and obvious for cubics.  For low symmetry crystals, these are Cartesian 
x and y, which may or may not correspond to the a and b crystal axes.  The locaVon of Cartesian x and y for 
hexagonal systems requires parVcular care!)

• Note: why do we use the transformaVon (passive rotaVon)?! One way to understand this is to recall that 
the orientaVon is, by convenVon (in materials science), wri}en as an axis transformaVon from sample axes 
to crystal axes.  For the inverse pole figure, we are transforming a sample direcVon into crystal axes so we 
can use the orientaVon matrix directly.
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Summary:	Pole	Figures
• The pole figure is explained as a plot in which poles of crystal 

planes are projected (stereographic or equal area) onto a 
circular plot with the sample axes as the reference frame.  If 
data is taken from an experiment or a large number of poles 
are binned, contour plots are displayed.

• A method to compute the positions of poles in such a figure is 
described, based on transforming the coefficients of a crystal 
plane normal to the sample frame.

• The typical reflection mode for measuring pole figures with x-
ray diffraction is described, along with the need for a 
defocussing correction and normalization to obtain units of 
multiples of a random density (MRD).

• The inverse pole figure is described in which sample directions 
are plotted in the crystal frame (also as a stereographic or equal 
area projection), along with the calculation method.



High	Energy	Diffraction	Microscopy

• HEDM will be discussed in a guest lecture by 
Rachel Lim
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High	Energy	X-Rays	from	Synchrotrons
• Extensive use of Synchrotron-based radiaVon for materials 

characterizaVon
• The high energy x-rays are uniquely able to penetrate high-Z, 

fully dense materials
• Enables both absorpVon and 

diffracVon experiments.

• “Near field” HEDM maps provide 
both spatial and crystallographic 
orientation information

Spring 8, Japan ESRF, Grenoble, France Adv. Photon Src., Chicago
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3D Orientation Mapping: High Energy X-
ray Diffraction Microscopy (nf-HEDM)

Advanced Photon Source Measurements

• 1-ID high brilliance, high energy x-rays
• Millimeter samples probed with micron 

spatial, < 0.1 deg orientation resolution
• Tera-byte data sets
• > 3 x 106 Bragg peaks 
• 103 core parallel processing: 2D images to 

3D orientation maps Colors represent crystal lattice 
orientations

HEDM measurement schematic Computational reconstruction
Image diffracted beams 
• 360 images/layer
• ~100  successive cross-

sections

Optimizes orientations 
in > 107 voxels (volume 
elements)

3D copper microstructure

0.4 mm3

Poulsen, Springer  2004
Suter et al., Rev. Sci. Instruments, 2006

Li and Suter, J Appl. Cryst. 2013; LLNL-CODE-657639 41



Experimental	Setup

Setup:
High Energy X-Rays

• Energy: 51.996 keV
• Line Focused BeamSamples:

à Ti6Al4V
• As-received
• Stress relieved 

at 650 C
• Annealed at 850 

C
àTiFe Alloy
àAlSi10Mg
à316L Stainless 

Steel

Multi-modal Measurements:
Data Collection

• Near-field HEDM
• Far-field HEDM
• TomographyAPS Beamline 1-ID E



nf-HEDM:	Orientation	
Reconstruction
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Forward Modeling Method: Li et al., 
Journal Appl. Cryst. 46 (2013) 512-524.

Confidence: 

43
Laplacian segmentation: Lind et al. (2014) Proc. ICIP.



44 3D	microstructure	reconstruction	
from	nf-HEDM	experiment

Background 
subtraction and 
cleaning up tails 
around the “real 
intensity”

Reconstruction of 
2D orientation fields, 
which are then 
stacked together to 
obtain a 3D volume
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Pokharel, R et al. International Journal 
of Plasticity 67, (2015) 217-234
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Sample:
Cu: 99.995% pure

Initial diameter: 1mm

Initial length: 1mm

Heat treated at 550° C for 1 hr

# of measured states: 5

In-situ	uniaxial	tensile	
deformation	(3D)

0%-21%
tensile strain 
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• Non-destructive
• High energy (> 50keV) x-rays 
• Specimen cross sectional diameter up to 1.3 mm. 
• Typical beam height 4 μm
• Collection of diffractograms by a near-field detector
• Reconstruction: Software simulates the experiment

Suter, R. M. et al. (2006). Review of Scientific Instruments, 77(12):123905.
Suter, R. M. et al. (2008) Journal of Engineering Materials and Technology, 130(2):021007.

Li S.F., Suter R.M. (2013). Journal of Applied Crystallography, 46: 512-24. 48

Near	Field	High	Energy	X-Ray	Diffraction	Microscopy	(nf-HEDM)	
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Far-field	HEDM

Schematic of far field and near field data collection performed 
on polycrystalline specimens for grain mapping techniques.

D. Dale, Cornell Univ.
http://news.chess.cornell.edu/articles/2014/Koker_Fontes140813.html



Nf and	Ff High	Energy	X-ray	Diffraction	Microscopy	of	Au

As a calibration sample, low deformation Au

Single layer Nf-Grain structure reconstruction on the left, Ff-Center of mass 
reconstruction on the right (note that the axis scales are different)

Far-field COM, 
35 µm box 

beam



Near-field	Raw	Detector	Images
As-received 316L SS Heat treated at 1060 °C 316L SS

Diffractions from beam 
block, corrected for in 
background 
subtraction



52 Nf-High	Energy	X-ray	Diffraction	Microscopy	of	AM	Ti-6Al-4V

High power low velocity 3D printed Ti-6V-4Al (4x melt pool of nominal settings)
1 layer nf-HEDM hcp phase reconstruction

Grain structure on the left, confidence index on the right

Microstructure/property relationship investigation, experimental part: Near-field 
and far-field high energy X-ray diffraction microscopy (HEDM)

As-Received Alpha 
Reconstruction



53 Nf-High	Energy	X-ray	Diffraction	Microscopy	of	AM	Ti-6Al-4V

High power low velocity Ti64 (4x melt pool of nominal se{ngs)
1 layer nf-HEDM hcp phase reconstrucVon

Grain structure on the le�, confidence index on the right

Microstructure/property relationship investigation, experimental part: Near-field 
and far-field high energy X-ray diffraction microscopy (HEDM)

As-Received Alpha 
Reconstruction
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Nf-High	Energy	X-ray	Diffraction	Microscopy	of	AM	Ti6Al4V

Microstructure/property relationship investigation, experimental 
part: Near-field and far-field high energy X-ray diffraction microscopy 

(HEDM)

As-Received Beta Reconstruction
Low confidence as a result of prior beta grains sharing Bragg peaks with the alpha phase – to be quantified 

High power low velocity Ti64 (4x melt pool of nominal settings)
1 layer nf-HEDM bcc phase reconstruction

Grain structure on the left, confidence index on the right



55 Ff-High	Energy	X-ray	Diffraction	Microscopy	of	AM	Ti	Alloys
Microstructure/property relationship investigation, experimental part: Near-field and far-field 

high energy X-ray diffraction microscopy (HEDM)

Nominal settings, Ti64 As received Stress-relieved Annealed
High power low velocity Ti64 As received Stress-relieved Annealed



Reference	Frames
56

Unfortunately, it is necessary to 
take account of differences in 

reference frame when comparing 
different sources of data, just as 

with EBSD
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Supplemental	Slides

• The following slides contain revision material 
about Miller indices from the first two lectures.
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Kernel Average Misorientation (KAM)

€ 

KAM = θ gpoint ,gneighbor( ) |θ <ψ

neighbor

neighbor
neighbor

neighbor

∆g = {Oc}gBgA
-1{Oc}

• KAM is defined as average 
misorientation angle between 
each point (orange box), and its 
specified number of nearest 
neighbors (shown by purple 
arrows)
• Misorientation angles greater 
than a chosen threshold (y, say, = 
5°) are excluded. 
• Using of a threshold value 
eliminates any contribution from 
high angle boundaries.

Why is KAM important?
• Calculate local 

orientation variation
• Closely related to 

GNDs.
• Analyze local strain, 

surface distortion
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Miller	Indices
• Cubic system: directions, [uvw], are equivalent to planes, 

(hkl).
• Miller indices for a plane specify reciprocals of intercepts 

on each axis.
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Miller	<->	vectors

• Miller indices [integer representation of direction 
cosines] can be converted to a unit vector, n: 
{similar for [uvw]}.

  

€ 

 n = (h,k,l)
h2 + k 2 + l2
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Miller	indices	of	a	pole
Miller indices are a convenient way to represent a direction or a plane normal in a crystal, based 
on integer multiples of the repeat distance parallel to each axis of the unit cell of the crystal 
lattice.  This is simple to understand for cubic systems with equiaxed Cartesian  coordinate 
systems but is more complicated for systems with lower crystal symmetry.  Directions are simply 
defined by the set of multiples of lattice repeats in each direction.  Plane normals are defined in 
terms of reciprocal intercepts on each axis of the unit cell.  In cubic materials only, plane normals
are parallel to directions with the same Miller indices.

When a plane is written with 
parentheses, (hkl), this indicates a 
particular plane normal: by 
contrast when it is written with 
curly braces, {hkl}, this denotes a 
the family of planes related by the 
crystal symmetry.  Similarly a 
direction written as [uvw] with 
square brackets indicates a 
particular direction whereas 
writing within angle brackets , 
<uvw> indicates the family of 
directions related by the crystal 
symmetry.
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Miller	Index	Definition	of	
Texture	Component

• The commonest method for specifying a texture 
component is the plane-direction.

• Specify the crystallographic plane normal that is 
parallel to the specimen normal (e.g. the ND) and 
a crystallographic direction that is parallel to the 
long direction (e.g. the RD).  

(hkl) // ND, [uvw] // RD, or (hkl)[uvw]
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Direction	Cosines

• Definition of direction cosines:
• The components of a unit vector are equal to the 

cosines of the angle between the vector and each 
(orthogonal, Cartesian) reference axis.

• We can use axis transformations to describe 
vectors in different reference frames (room, 
specimen, crystal, slip system….)
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Euler	Angles,	Animated
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