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Objectives

= Briefly describe rotations/orientations
" |ntroduce Rodrigues-Frank vectors
" |Introduce quaternions

" |Learn how to manipulate and use quaternions
as rotation operators

= Discuss conversions between Euler angles,
rotation matrices, RF vectors, and (unit)
guaternions



Why do we need to learn about
orientations and rotations?
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Orientation distributions: Define single-grain
orientations relative sample reference frame, and take
symmetry into account (both sample and crystal).



Why do we need to learn about
orientations and rotations?
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Misorientation distributions: Compare orientations on
either side of grain boundaries to determine boundary
character.

MISORIENTATION : The rotation required to transform from the
coordinate system of grain A to grain B



Review: Euler angles

Euler angles:

= ANY rotation can be written as
the composition of at most 3 very
simple rotations.

R, D,9,) = Rlp,) R(P)R(¢,)

= Once the Euler angles are
known, rotation matrices for any
rotation are therefore straight-
forward to compute.

Z-X-z rotation sequence
Movie credit: Wikipedia



Review: Euler angles

Difficulties with Euler angles:

= Non-intuitive, difficult to visualize.
= There are 12 different possible
axis-angle sequences. The
“standard” sequence varies from
field to field, and even within fields.
= Every rotation sequence contains
at least one artificial singularity,
where Euler angles do not make
sense, and which can lead to
numerical instability in nearby
regions.

= Operations involving rotation
matricies derived from Euler angles
are not nearly as efficient as
guaternions.

z-X-z rotation sequence

Movie credit: Wikipedia



Passive rotations

We want to be able to
quantify transformations
between coordinate systems

“Passive” rotations:

Given the coordinates
(v, v,,v,) of vector v in the
black coordinate system,
what are its coordinates

(v, v,,v.) in the red
system?

Unit sphere



Active rotations

We want to be able to
quantify transformations
between coordinate systems

“Active” rotations:

Given the coordinates
(vx,vy, v,) of vector v in the
black coordinate system, what
are the coordinates (w,,w,,w,)
of the rotated vector w in the
black system?

Unit sphere

Passive / Active : “only a minus sign” difference,
but it is very important




Basics, reviewed

We also need to describe t

how to quantify and
represent the rotation that
relates any two orientations

An orientation may be
represented by the rotation
required to transform from a

specified reference

orientation (sample axes) Unit sphere

We need to be able to quantitatively represent and
manipulate 3D rotations in order to deal with orientations



How to relate two orthonormal
bases?

First pick a direction
represented by a unit
normal r

Two numbers related to
the black system are
needed to determiner

Unit sphere

(i.e.7. and r,, or latitude and longitude, or
azimuthal and polar angles)



How to relate two orthonormal
bases?

To specify an orthonormal

basis, one more number is
needed (such as an angle in
the plane perpendicular to r)

Three numbers are
required to describe
a transformation
from the black basis
to the red basis

Unit sphere
.. .the “right hand rule” and

orthogonality determine the
position of third basis vector.




Rodrigues vectors

Any rotation may therefore be
characterized by an axis r and a
rotation angle a about this axis

Rir, o)

“axis-angle” representation

The RF representation
instead scales r by the
tangent of a/2

0 = ftan(o;/ 2)

Note semi-angle

BEWARE: Rodrigues vectors do NOT obey
the parallelogram rule (because rotations are
NOT commutative!) See slide 16...



Rodrigues vectors

= Rodrigues vectors were popularized by Frank [“Orientation
mapping.” Metall. Trans. 19A: 403-408 (1988)], hence the
term Rodrigues-Frank space for the set of vectors.

= Most useful for representation of misorientations, 1.e. grain
boundary character; also useful for orientations (texture
components).

= Application to misorientations 1s popular because the
Rodrigues vector 1s so closely linked to the rotation axis,
which 1s meaningful for the crystallography of grain
boundaries.



Miller Index
Map in RF-
space

= The map shows the
location of texture
components, identified as
(hkD[uvw], up to order 2.

= Note that many of the low
index points lie on the
boundary of the cubic-
triclinic fundamental
zone.

= |f the component has a
name, or belongs to a
fiber, that is noted next to
the point.

Generated by RFpoints_ HKLUVW_1Jun07.f
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Transformation Matrix
from Axis-Angle Pair

Written out as a complete 3x3 matrix:

g, =0, cos0+rr(1-cosb)
+ Eeijkrk sinf
k=1,3
[ cos + u’(1-cos®)  uv(l-cosf)+wsind uw(l-cosb)-v sinf)

uv(l1-cos@)-wsin®  cosf+v(1-cos@) vw(l-cosf)+ usind

\uw(l—cosﬁ)+vsin9 yw(l-cosf) - usind cosf + wz(l—cosﬁ)/

Note the “+” sign before the third term (with permutation tensor),

signifying a passive rotation. .




Axis-Angle from Matrix

The rotation axis, r, is obtained from the skew-symmetric part of the matrix:

(ay —ay),(a;, —a),(a, —a,)

2 2 2
\/(Cl23 - a32) + (031 - 6113) + (a12 — agl)

Another useful relation gives us the magnitude of the rotation, 6, in terms of the
trace of the matrix, a;;:

r =

a.=3cosf+(1-cosOn’ =1+2cosb

, therefore,
cos 8= 0.5 (trace(a) — 1).

See the slides on Rotation _matrices for what to do when you have small angles, or
if you want to use the full range of 0-360° and deal with switching the sign of the
rotation axis. Also, be careful that the argument to arc-cosine is in the range -1 to
+1 : round-off in the computer can result in a value outside this range.



Symmetry Operator examples

e Diad on z: [uvw] =[001], 6=180° -
substitute the values of uvw and angle into

the formula
cos180 +0*(1-cos180)  0*0(1-cos180)+ 1*sin180 0*1(1c03180)03in180] [—1 0 0]

0*0(1—c05180)—wsin180 003180+02(1—003180) 0*1(1—003180)+Osin180 0O -1 0

gij=
0*1(1—c03180)+0sin180 0*1(1—003180)—03in180 cosl80+12(1—005180) 0 0 1

e 4-fold on x:
[uvw] = [100]

6=90°
0890 + 1*(1-c0s90)  1*0(1-c0s90)+ wsin90 0*1(1-cos90)-0sin90| (1 0 0
g; =[0%1(1-c0s90)-0sin90  cos90+0%*(1-cos90)  1*0(1-cos90)+1sin90 [=[0 0 1
0*1(1-c0s90)+0sin90  0*0(1-cos90)-1sin90  c0s90 +0*(1 - cos90) 0 -1 0

17
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} ) ) 0 0 -1 0 0 -1 O | B B
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.. . point group,
33 element is |Qcorrectly given as appropriate to The dashed boxes The dashed boxes The dashed box
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make up group 4. make up group 32. comprises the 3-fold axes only.

Table II. Symmetry operators of rotation groups




Cubic Crystal Symmetry Operators

Symmetry Operator Rodrigues Vector | Unit Quaternion
2-fold on <100> L,. |(1,00) +(1,0,0,0),
(0,1,0) +(0,1,0,0)
(0,0,1) +(0,0,1,0)
4-fold on <100> L, |=(100) +1/V/2(x1,0,0,1),
+(0,1,0) +1/7/2 (0, =1,0,1)
+(0,0,1) +1/7/2 (0,0, +1,1)
2-fold on <110> L, |o(1,=10) +1/V2 (x1,1,0,0),
(1,0, =1) +1/7/2 (0,1, +1,0)
(0,1, =1) +1/7/2 (1,0,1,0)
3-fold on <111> L,’ =11, +1/2 (=1,1,1,1),
+(1,-1,1) +1/2 (1,-1, 1,1),
+(1,1,-1) +1/2 (1,1,~1,1),
+(-1,-1,1) +1/2 (-1~1, 1,1)

+1/2 (-1,1,-1,1),
+1/2 (1,-1,-1,1)
+1/2 (-1,-1,-1,1))

The numerical values of these symmetry operators can be found at:
http://neon.materials.cmu.edu/texture subroutines: quat.cubic.symm etc.




(432) 1n unit quaternions

quat.symm.cubic

24

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0.707107 0 0 0.707107
0 0.707107 0 0.707107
0 0 0.707107 0.707107

-0.707107 0 0 0.707107
0 -0.707107 0 0.707107
0 0 -0.707107 0.707107
0.707107 0.707107 0 0

-0.707107 0.707107 0 0
0 0.707107 0.707107 0
0 -0.707107 0.707107 0

0.707107 0 0.707107 0
-0.707107 0 0.707107 0
0.5 0.5 0.5 0.5
-0.5 -0.5 -0.5 0.5

0.5 -0.5 0.5 0.5
-0.5 0.5 -0.5 0.5

-0.5 0.5 0.5 0.5
0.5 -0.5 -0.5 0.5
-0.5 -0.5 0.5 0.5

0.5 0.5 -0.5 0.5

file with 24 proper rotations in quaternion form

Cubic point group;

proper rotations expressed
as quaternions;

the first four lines/elements/
operators are equivalent to
(222) and represent
orthorhombic symmetry;
the next 12 lines are 90°
rotations about <100> or
180° rotations about <110>;
the last 8 lines are 120°
rotations.

20



Conversions: matrix—RF vector

= Conversion from rotation (misorientation)
matrix, due to Morawiec, with

Ag,5=g58, "
(o) [[Ag(2,3)-Ag(B2)1[1+ tr(Ag)]
0, | =|[Ag(3,) - Ag(1,3)1/[1+ tr(Ag)]
0s) | [Ag(1,2) - Ag2.D1/[1+ tr(Ag)]|
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Conversion from Bunge Euler Angles

= tan(a/2) = V{(1/[cos(D/2) cos{(¢, + ¢,)/2} ]2 — 1}
v o= tan(@2) [cos{(g, - .)/2}/cos{(@; + $,)/2}]
" p,= tan(P2) [sm{(¢, - ¢,)/2}/[cos{(¢; T ¢,)/2}]
. py=tan{(g, + 9,2}

P. Neumann (1991). “Representation of orientations of symmetrical
objects by Rodrigues vectors.”
Textures and Microstructures 14-18: 53-58.

Conversion from Rodrigues to Bunge Euler angles:
sum = atan(R;) ; diff = atan (R,/R;)

¢4 = sum + diff; & = 2. * atan(R2 * cos(sum) / sin(diff) ); ¢, = sum - diff
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Conversion Rodrigues vector to
axis transformation matrix

e Due to Morawiec:

Gij = 1 (1 = prpi]0ij + 2pips + 2€ijkpk)
L+ pipi
Example for the 12 entry:
a12 = : (L — pipi]ld12 + 2p1p2 + 2p3)
L+ pipi

2(p1p2 + p3)
L+ pipi

NB Morawiec’s Eq on p22 has a minus sign in front of the last term; this will give
an active rotation matrix, rather than the passive rotation matrix seen here.
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Combining Rotations as RF vectors

« Two Rodrigues vectors combine to form a third,
Pc, as follows, where pg follows after p,. Note
that this is not the parallelogram law for
vectors!

Pc = (Pas PB) =
{Pa*PB- PA X pei{1 - pa°Pr}

addition / \

vector product scalar product
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Combining Rotations as RF

vectors.: component form

o+ ! -

Py + P, -

\P? +05 -

3Py - pips
pipl -plps

plpy - pipl

1)

(0F .05 .05 ) =

L (o' ol + 205 +pipF )



Quaternions. Yet another
representation of rotations

What is a quaternion?

A quaternion is first of all an ordered set of q = qo+1iqg + jg2 + kags
four real numbers g, q,, ¢,, and g, = (g0, q1, 92, G3)
(sometimes ¢q,, ¢, g5, and q,,) . _
Here, i, j, k are the familiar unit vectors that  gcajar part — Vector part
correspond to the x-, y-, and z-axes, resp.

Addition of two quaternions and multiplication of a
guaternion by a real number are as would be expected
of normal four-component vectors.

p+q=(pPo+q)+ilpi+aq)+jp2+ q) +k(ps+ g3)

Magnitude of a quaternion: Conjugate of a quaternion:

d*=d'e=aq+a+a+a T=0-4
= qo — iq1 — Jg2 — kg3

On a New Species of Imaginary Quantities Connected with a Theory of Quaternions,
by William Rowan Hamilton, Proceedings of the Royal Irish Academy, 2 (1844), 424—434.



Multiplication of two quaternions

However, quaternion multiplication is q = qo+1iq1 + jg2 + kg3
ingeniously defined in such a way so as = (40, 91,92, q3)
to reproduce rotation composition. =qo+q

Multiplication of the basis

quaternions is defined as follows: | [1] Quaternion multiplication is
i’ =j =k =ijk=-1 non-commutative (pg#qp).
ij=k=—ji [2] There are similarities to
ki=j=—-ik complex numbers (which
jk=1i=-Kkj correspond to rotations in 2D).

From these rules it can be shown P¢ =pogo — (P1¢1 + P22 + P3qs)
that the product of two arbitrary po (i1 + jg2 + kqs) + qo (ip1 + jpa + kps)
quaternions p,q is given by: +1i (p2g3 — p3q2) +J (P31 — p1a3) + k (p1g2 — p2q1)

Using more compact notation:  2¢ = [Pogo — P - d] + [pod + qoP + P X q]
Scalar part Vector part

On a New Species of Imaginary Quantities Connected with a Theory of Quaternions,
by William Rowan Hamilton, Proceedings of the Royal Irish Academy, 2 (1844), 424—434.



Unit quaternions as rotations

We state without proof that a rotation of a degrees about
the (normalized) axis r may be represented by the following
unit quaternion:

q = cos(a/2) + rsin(a/2)

It is easy to see that this is a unit quaternion, i.e. that ¢ +la/° =1
Note the similarity to Rodrigues vectors, except with a different scaling.

For two rotations ¢ and p that share a single axis r, note what happens
when g and p are multiplied:

pq = [poqo — P - 4] + [poq + @P + P X q
= cosacos F — sinasin 8 4 r (sin av cos 3 + cos asin 3)

= cos (a + 3) + rsin (a + )



Multiplication of a quaternion
and a 3-D vector

It is useful to define the multiplication of vectors and
guaternions as well. Vectors have three components,
and quaternions have four. How to proceed?

Every vector v corresponds to a “pure”

. . v =0+ 1iv, + ju, + ko,
quaternion whose 0t component is zero. '

...and proceed as with two quaternions:

pPq = [pogo — P - d] + [poq + qop + P X q]

Note that in general that the product of a quaternion and a
vector can result in a non-pure quaternion with non-zero scalar
component.



Rotation of a vector
by a unit quaternion

Although the quantity gv may not be a vector, it can
be shown that the triple products g*vg and gvg™* are.

In fact, these vectors are the images of v by passive
and active rotations corresponding to quaternion q.

W = Vg Passive rotation

%
S = qv(q Active rotation




Rotation of a vector
by a unit quaternion

Expanding these expressions yields

w=(2¢—1)v+2(v-q)q+2q (v xq) Passive rotation

S = (qg — |q|2) v+2(v-q)q+2q(qxV) Active rotation

Moreover, the composition of two rotations w=q (p'vp)q
(one rotation following another) is = (pq)* v (pq)

equivalent to quaternion multiplication. '
since

(pg)* =q"p"



Example: Rotation of a Vector by
Quaternion-Vector Multiplication

Consider rotating the vector i by an angle

of oo = 21/3 about the <111> direction. Rotation axis: ¥ = (1/\/57 1/V/3, 1/\/§>
q = cos (/2) +rsin («/2)

A 1 1 1\ V3
K 5*(‘7*%* \/?:) 2

L S PN P )

%—2 q 21+2.]+2

1 .1, 1

] ai=y  axi=gi—gk

For an active rotation:

i s = qiq”
1 3 1 1N\ /1. 1
—(Z_-2)i42(= 2(=) (32— zk
(i-1)i2(5)ar2(3) (3-5)
1. 1. 1. 1. 1. 1
) N PR PO PO NS PR
w = ¢*ig pl Ttk TSI~ g

For a passive rotation:
=k =]



Positive vs Negative Rotations

*= One curious feature of quaternions that is
not obvious from the definition is that they
allow positive and negative rotations to be
distinguished. This is more commonly
described in terms of requiring a rotation
of 41T to retrieve the same quaternion as
you started out with but for visualization, it
IS more helpful to think in terms of a
difference in the sign of rotation.

33



Positive vs Negative Rotations

= |et's start with considering a positive
rotation of 8 about an arbitrary axis, r.
From the point of view of the result one
obtains the same thing if one rotates
backwards by the complementary angle,
6 - 21T (also about r). Expressed in terms
of quaternions, however, the
representation is different! Setting
r = [u,v,w] again,

" q(r,0) =
q(u sin@/2,v sin0/2, w sin0/2, cos/2)

34



Positive vs Negative Rotations

" q(r,6-2m) =
q(u sin(6-2w)/2, v sin(6-2m)/2,
w sin(6-2wt)/2, cos(6-2m)/2)
q(-u sinf/2, -v sin6/2, 0
-w sinf/2, -cosb/2)= -q(r,0)

35



Positive vs Negative Rotations

= The result, then is that the quaternion representing
the negative rotation is the negative of the original
(positive) rotation. This has some significance for
treating dynamic problems and rotation: angular
momentum, for example, depends on the sense of
rotation. For static rotations, however, the positive
and negative quaternions are equivalent or, more to
the point, physically indistinguishable, q = -q.

= Caution! By “negative rotation” we mean the position

arrived at by rotating in the opposite direction. This
IS not the same as taking the same axis but rotating
In the opposite sense.

36
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Conversions: matrix—quaternion

Formulae, due to Morawiec:

COS% = /2\/1 + tr(Ag) =g, ==+ \/1 + ;r(Ag)

Note: passive rotation/ gijkAg Jjk

axis transformation qi = X

(axis changes sign for 4\/1 + tl”(Ag)
for active rotation)

(a) |£Ag(2,3) - Ag3.2)1/24/1+ ir(Ag).
q,| |+[Ag(3,1)-Ag(1,3)1/241+ tr(Ag)
q:| | +[Ag(1,2) - Ag2,1)1/241 + tr(Ag)
\d4) i\/l +1r(Ag) /2

Note the coordination of choice of sign!
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Bunge angles — quaternion

° [Qp qza q39 Q4] —

[sind/2 cos{ (¢, - ¢,)/2 },
sin@/2 sin{(¢, - ¢,)/2},
cosP/2 sin{ ¢, + ¢,)/2},

cosP/2 cos{ (¢, + ¢,)/2} |

Note the occurrence of sums and differences of
the 1t and 3 Euler angles (that eliminate the
degeneracy at the origin of Euler space)!
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