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Objective
! The objective of this lecture is to explain how we

can use Eshelby's theory of interaction between an
inclusion and its surrounding matrix to model
anisotropic deformation.

! Further, to show how to calculate the stresses and
distribution of slips in each grain of a polycrystal
using the Viscoplastic Selfconsistent code, VPSC.

! A basic understanding of how polycrystal plasticity 
works based on multiple slip in each grain.

Requirements:



Questions & Answers
! What does “self-consistent” mean? This refers to the design of the algorithm

that ensures that the polycrystal ensemble satisfies the boundary conditions of 
the imposed strain rate (velocity gradient), perhaps combined with certain 
stress boundary conditions.

! What does “visco-plastic” mean? This refers to the use of a strain-rate 
sensitive yield function at the single slip system scale, i.e., the shear (slip) rate 
is proportional to the RSS/CRSS raised to a power.  The exponent is typically in 
the range 10 to 50.

! What improvement does VPSC offer over the Taylor model? The VPSC model 
allows each grain to deviate from the polycrystal average in a fashion that is 
consistent (that word again!) with the Eshelby-Kröner inclusion model. The 
stiffer the interaction, the smaller the deviation (in strain rate).

! For which materials is VPSC most useful? The larger the anisotropy of the 
single crystal yield surface (think hexagonal versus cubic), the larger the 
potential deviation of an individual grain from the polycrystal (homogeneous 
medium).
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Background, Concepts

! The original Taylor model is a pure strain-based boundary condition on 
the grains. Commonly known as the “full constraints” (FC) model.

! Mecking developed a “relaxed constraints” (RC) model. This was mainly 
directed at rolling (plane strain compression) that develops strongly 
flattened grains such that two shear components could be non-zero 
with only a small penalty in compatibility. Adoption of the RC model 
resulted in improved agreement between simulated and measured 
textures.

! The essential idea behind the (viscoplastic) self-consistent (VPSC) 
model is to compute the stress in each grain as if it were an inclusion 
embedded in an otherwise homogeneous medium.  The “medium” is 
simply the averaged polycrystal in terms of plastic stiffness.

! A later variant is known as the elasto-viscoplastic self-consistent model 
(ESCP) in which the effects of elastic anisotropy are included.
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Eigenstrains and Eigenstresses
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Self-Consistent Model
! Following slides contain information about a more 

sophisticated model (than the Taylor model) for crystal 
plasticity, called the self-consistent model.

! It is based on a finding a mean-field approximation to the 
environment of each individual grain.

! This provides the basis for the popular code VPSC made 
available by Tomé and Lebensohn (Lebensohn, R. A. and 
C. N. Tome (1993). "A Self-Consistent Anisotropic 
Approach for the Simulation of Plastic-Deformation and 
Texture Development of Polycrystals - Application to 
Zirconium Alloys." Acta Metallurgica et Materialia 41
2611-2624).
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VPSC: Inclusion

8



Eshelby Theory
! Eshelby analyzed the situation of an ellipsoidal inclusion within an infinite 

matrix that has undergone some eigenstrain. A thermoelastic potential 
may be defined for inclusions in a matrix with thermal eigen-strains and 
used to compute the resultant thermal stresses. The potential is 
employed to determine the displacement at all locations within the solid. 
Eshelby used this formulation to compute surface integrals at the 
inclusion surface, which he later simplified to what are known today as 
Eshelby tensors. These Eshelby tensors transform the local thermoelastic 
eigenstrain tensors to local total strain tensors.
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3.2. ANALYTICAL SOLUTIONS 46

3.2.1 Eshelby’s Solution

Eshelby was one of the first to compute the analytical solutions for an ellipsoidal

inclusion within an infinite matrix which has undergone some eigenstrain. [76] A

thermoelastic potential may be defined for inclusions in a matrix with thermal eigen-

strains and used to compute the resultant thermal stresses. [75, 76, 77, 78, 79] The

potential is employed to determine the displacement at all locations within the solid.

Eshelby used this formulation to compute surface integrals at the inclusion surface,

which he later simplified to what are known today as Eshelby tensors. These Eshelby

tensors transform the local thermoelastic eigenstrain tensors to local total strain ten-

sors.

✏ij(x) = Sijkl(x) ✏⇤kl(x) (3.1)

The stress state is then computed using the thermoelastic Hooke’s law, Eqn. 2.33.

Symmetry of the strain state from compatibility reduces the number of distinct Es-

helby tensors that must be computed.

Sijkl = Sjikl = Sijlk

Because of the complexity of the surface integrals, only those corresponding to

ellipsoidal inclusions were computed. Ellipsoids are defined by three semi-axes, a1,

a2, and a3 parallel to the sample x1-, x2-, and x3-axes, respectively. The two most

simple geometries to compare to the thermoelastic FFT solutions are when all semi-

axes are equal and when the a3-axis is much longer than a1 and a2, approaching

infinity, i.e. a3 ! 1. These geometries correspond to spherical and cylindrical

inclusions, respectively. Eshelby’s isotropic solution for each geometry is discussed

below.

One of the most significant conclusions from Eshelby’s approach is the finding that

surface integrals are independent of location within the inclusion itself, and thus, the

Investigation of Thermoelastic Eigenstresses B.S. Anglin

3.2. ANALYTICAL SOLUTIONS 48

as:

S1111 =
7� 5⌫

15 (1� ⌫)
, (3.2)

S1122 =
5⌫ � 1

15 (1� ⌫)
, (3.3)

S1212 =
4� 5⌫

15 (1� ⌫)
, (3.4)

where ⌫ is the Poisson’s ratio of the isotropic solid. Notice that the solution is

independent of location and radius of the inclusion. Because the matrix is infinite,

the radius of the inclusion is infinitesimally small.

Eshelby tensors on the exterior are more di�cult to compute because they are

location dependent. An explanation of the formulae to compute these are given on

pages 84–88 of [58]. Because these formulae are not directly used, they are omitted

from this document.

Despite the complexity involved in computing the Eshelby tensors for exterior

points, a simple solution can be found when the spherical symmetry of the problem is

exploited. Several texts [58, 78, 79] have used symmetry to find the solution in spher-

ical coordinates. The spherical coordinates used within this framework are defined in

Fig. 3.1. ✓ is the azimuthal angle, � is the inclination angle, and ⇢ is the distance to

the origin.

In the case of an isotropic thermoelastic inclusion with no body forces, the only

displacement, u, will be in the radial direction because of dilatation of the inclusion

from thermal expansion. Only three strain values are present in spherical coordinates

for thermoelastic problems of this nature: radial strain, ✏R, tangential strain, ✏t,

and circumferential strain, ✏c. Note that u will denote only the radial displacement

Investigation of Thermoelastic Eigenstresses B.S. Anglin

• One of the most significant conclusions from 
Eshelby’s approach is the finding that the surface 
integrals are independent of location within the 
inclusion itself, and thus, the stress and strain states 
are constant. For spherical symmetry, the 3 
independent tensors are computed as shown on the 
right.
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Kröner, Budiansky and Wu’s Model

Taylor Model  
- compatibility across grain 
boundary
- violation of the equilibrium 
between the grains

Budiansky and Wu’s Model
- Self-consistent model
- Ensures both compatibility and 
equilibrium conditions on grain 
boundaries
- Based on the Eshelby inclusion 
model
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Kröner, Budiansky and Wu’s Model

The model:
v Sphere (single crystal grain) 
embedded in a homogeneous 
polycrystal matrix.

v Can be described by an elastic stiffness tensor C, which has an 
inverse C-1.

v The matrix is considered to be of infinite extent.

v The overall quantities              and            are considered to be  the 
average values of the local quantities           and          over all 
randomly distributed single crystal grains. 

v The grain and the matrix are 
elastically isotropic.

**,εσ p*ε
εσ , pε

Khan & Huang
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Kröner, Budiansky and Wu’s Model
The initial problem  can be solved by the following approach  

1 – split the proposed scheme into two others as follows, where 
the overbar indicates the polycrystal ave. and S is an Eshelby
tensor

Khan & Huang
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Kröner, Budiansky and Wu’s Model

1.a – The aggregate and grain are subject to the overall 
quantities                and           . In this case the total strain is 
given by the sum of the elastic and plastic strains:

€ 

σ ,ε 

€ 

ε p

€ 

ε = C-1 :σ +ε p

Khan & Huang
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Kröner, Budiansky and Wu’s Model

1.b – The sphere 

€ 

" ε = ε p -ε pcomposite
v has a stress-free transformation strain, e’, which originates in the 
difference in plastic response of the individual grain from the matrix as a 
whole. This transformation strain is an eigenstrain;

v has the same elastic property as the aggregate;

v is small when compared with the aggregate  (the aggregate is 
considered to extend to infinity).
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€ 

ε =S : # ε =S : (ε p -ε p)

Kröner, Budiansky and Wu’s Model

The strain inside the sphere due to the elastic interaction 
between the grain and the aggregate caused by        is given 
by

€ 

" ε 

Where,
S is the Eshelby tensor 
(not a compliance 
tensor) for a spherical 
inclusion in an 
isotropic elastic matrix
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Kröner, Budiansky and Wu’s Model

Then the actual strain inside the sphere is given by the sum of 
the two representations (1a and 1b) as follows

€ 

ε = C-1 :σ +ε p + S : (ε p -ε p)   
Given that,

€ 

S : (ε p -ε p) = β(ε p -ε p) 
where

( )     
)1(15

542=
ν
ν

β
−

−

This leads to

€ 

ε = C :σ +ε p + β(ε p -ε p)

The	fraction	𝛽 was	shown	earlier	as	S1212
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Kröner, Budiansky and Wu’s Model

From the previous equation, it follows that the stress inside 
the sphere is given by

=−= )(::C= pεεεσ Ce

€ 

=σ − 2G(1− β)(ε p -ε p)
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Kröner, Budiansky and Wu’s Model

In incremental form

€ 

˙ σ = ˙ σ − 2G(1− β)( ˙ ε p - ˙ ε p)
where

€ 

σ = (σ)ave,      ˙ σ = ( ˙ σ )ave

ε p = (ε p)ave,      ˙ ε p = ( ˙ ε p)ave  



ViscoPlastic-SelfConsistent code (VPSC)
! VPSC is based on the Taylor model (uniform plastic strain across a 

polycrystal) but modified to allow for interactions between each grain and 
the polycrystal in which it is embedded. 

! There is no microstructure in VPSC: it works with just a set (list) of 
orientations.  Therefore, there is no local interaction between a grain and 
some set of neighbor grains, only with the homogeneous effective medium 
(HEM).

! The modification allows the deformation of each grain to deviate from that 
of the polycrystal. The constraint on each grain is computed with Eshelby 
theory (for inclusions).

! Compared to any full-field (FE or FFT) computation with crystal plasticity, 
VPSC is an order of magnitude more efficient. For example, it is very useful 
for fitting Voce hardening parameters to experimental data.  It is also very 
efficient for determining constitutive parameters such as CRSS values that 
evolve with strain for fitting to experimental texture data.
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VPSC

20Source: Carlos Tome, EFRC Summer School 2012

• Each grain is a visco-plastic anisotropic ellipsoidal inclusion embedded in 
a visco-plastic anisotropic Homogeneous Effective Medium (HEM).

• Eshelby result: Stress and strain rate are uniform inside the inclusion but 
differ from macroscopic (average) values

Connection between stress in inclusion/grain versus average stress

Avg stress= Macroscopic stress → Self consistent



Assumptions for VPSC 21

Kocks,
Tomé,
Wenk: 
Ch. 8



FULL CONSTRAINTS (FC) POLYCRYSTAL MODEL 

• Also known as Taylor model. Based on enforcing strain continuity over stress 
equilibrium. Represents an absolute upper bound for macroscopic stress. 

n

s

s

s

s
ij0ij

:mm' ÷
÷
ø

ö
ç
ç
è

æ

t

s
åg=e !!

ijij '' e=e !!

grain strain rate

impose

• Imposes the same velocity gradient (plastic strain 
and plastic spin) to all the grains

• solve non-linear equation (typically n=20) for the stress in each grain

• calculate shear rates in every slip system
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• update hardening and grain orientation incrementally

Source: Carlos Tome, EFRC Summer School 2012



VISCO-PLASTIC SELF-CONSISTENT (VPSC) POLYCRYSTAL MODEL  [1]

• Each grain is a visco-plastic anisotropic ellipsoidal inclusion embedded in 
a visco-plastic anisotropic Homogeneous Effective Medium (HEM). 

• Deviatoric constitutive response:

'
klijkl

n

s

s

s

s
ij0ij M:mm' s=÷

÷
ø

ö
ç
ç
è

æ

t

s
åg=e !!

'
klijklij M' s=e!

grain

Homog. medium

[1]  R.A. Lebensohn & C.N. Tomé, Acta Materialia 41 (1993) 2611

bn

Solve stress equilibrium equation for 
inclusion in the homogeneous medium 0)p( j,ij

'
ijj,ij =d+s=s

Eshelby result: stress and strain-rate are uniform inside the inclusion 
…but different from the macroscopic stress and strain rate !

Source: Carlos Tome, EFRC Summer School 2012



VPSC model  à interaction equation

M is the compliance of the medium and relates 
stress with strain rate

Solving stress equilibrium equation for the VP inclusion embedded in the VP  
medium leads to the interaction equation

)''(M~)''( klklijklijij s-s-=e-e !!

( )
tensorEshelbytheisSand

MSSIM~where

)M(

pqklmnpq
1
ijmnijkl
--=

+Ds-Ds
( )

Sachs

Taylor

-

-

FIGURE 1
COMPLIANCES
10/29/98 10:24

tangent

secant
D

s

M large: the medium is very compliant à stress continuity  à Sachs

M small: the medium is very stiff  à strain continuity  à Taylor

Intermediate cases: secant, affine, tangent (different choices in vpsc7.in)

'
klijklij M' s=e!

affine

Source: Carlos Tome, EFRC Summer School 2012



Visco-Plastic Self-Consistent Polycrystal Model

B: localization tensor
klijklij B s¢=s¢

Assumption for having a polycrystal model: treat each grain as an 
inclusion inside the effective macroscopic medium.

The condition that the average stress over all grains has to be equal to the 
macroscopic stress …

ijij s¢=s¢

…leads to a self-consistent equation for the plastic moduli of the aggregate:

klmnijklijmn BMM =

The interaction equation can be written as a localization equation that relates 
stress in the inclusion with average stress

Source: Carlos Tome, EFRC Summer School 2012



Hardening of slip modes inside VPSC

An ‘extended Voce’ law is used in VPSC to 
describe the hardening of slip and twin 
systems vs accumulated shear in grain G
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Running the code VPSC: input & output

INPUT:
• Parameters of the run and names of datafiles (file VPSC7.IN)

INITIAL TEXTURE (discrete orientation file)
ACTIVE SLIP AND TWIN SYSTEMS (hardening parameters)
MACROSCOPIC VELOCITY GRADIENT (strain history) 

OUTPUT:
• Parameters of the run and input data (file RUN_LOG.OUT)

FINAL TEXTURE (discrete orientation file  à TEX_PH1.OUT)
STRESS-STRAIN RESPONSE (hardening  à STR_STR.OUT)
STATISTICS (system activity, twin fractions  à ACT_PH1.OUT)

Source: Carlos Tome, EFRC Summer School 2012



Running VPSC  à control file VPSC7.IN
. . . . . . 
0                             grain shape and orient ctrl (ishape=0 to 4)
1.0  1.0  1.0            initial ellipsoid ratios (dummy if ishape=4)
0.0  0.0  0.0            init Eul ang ellips axes (dummy if ishape=3,4)
* name and path of texture file (filetext)
example1\rand500.tex
* name and path of single crystal file (filecrys)
example1\fcc.sx
. . . . . . . 
. . . . . . .
*MODELING CONDITIONS FOR THE RUN
0              ihardlaw (0:Voce, 1:MTS, 2:composite grain)
1              iratesens (0:rate insensitive, 1:rate sensitive)
0              interaction (0:FC,1:affine,2:secant,3:neff=10,4:tangent,5:SO)
1  1  1      iupdate: update orient, grain shape, hardening
. . . . . . 
*NUMBER OF PROCESSES 
1
*IVGVAR AND PATH\NAME OF FILE FOR EACH PROCESS
0
example1\tension.3

Source: Carlos Tome, EFRC Summer School 2012



Running VPSC7  à TEXTURE file

dummy
dummy
random texture generated by RANDTEXT.FOR (23/01/97)
B   500  

102.74    119.56     33.65  1.000000
219.06     36.21     70.51  1.000000
166.66     28.59     45.80  1.000000
149.74     86.13     38.68  1.000000

. . . . . . . 

. . . . . . .

RAND500.TEX  à a file containing 500 randomly generated orientations

Source: Carlos Tome, EFRC Summer School 2012



Running VPSC7  à PROCESS file

50   3   0.02    298.         nsteps ictrl eqincr temp
* boundary conditions

1       1       1           iudot |    flag for vel.grad.
1       1       1                    |    (0:unkn-1:known)
1       1       1                    |

-0.5     0.      0.          udot |    vel.grad
0.     -0.5     0.                  |
0.      0.      1.0                 |

0       0       0          iscau |    flag for Cauchy
0       0                    |   (0:unkn-1:known)

0                    |

0.      0.      0.     scauchy |    Cauchy stress
0.      0.                   |

0.                   |

TENSION.3  à 50 steps of 2% axial strain along direction 3

Source: Carlos Tome, EFRC Summer School 2012



Running VPSC7  à SINGLE CRYSTAL FILE

*Material: AUSTENITIC STEEL
cubic crysym
1.   1.   1.      90.   90.   90.     unit cell axes and angles

Elastic stiffness (single crystal [GPa])
205.0   138.0   138.0   000.0   000.0   000.0
….

*Info about slip & twinning modes in this file:
2          nmodesx (total # of modes listed in file)
1          nmodes (# of modes to be used in the calculation)
1          mode(i)    (label of the modes to be used)
<111>{110} SLIP
1  12  20 1                               modex,nsmx,nrsx,iopsysx
0.000   0       0.000   0.000        twshx,isectw,thres1,thres2
1.0     0.0     0.0     0.0 0.  0.  tau0,tau1,thet0,thet1 ,hpfac,gndfac

1.0     1.0                            hlat(nmodes)
1  1  1        0  1 -1
1  1  1        1  0 -1
1  1  1        1 -1  0
……….     ………

FCC.SX  à slip systems and hardening parameters for FCC

Source: Carlos Tome, EFRC Summer School 2012



EXAMPLE 1: TENSION & COMPRESSION of FCC

Simulate axial tension and compression of an initially 
random FCC aggregate.

Deformation by slip in the <110> direction and on {111} 
crystallographic planes. The CRSS = ts = constant = 1

The Voce hardening is rigid perfectly plastic: 

The imposed velocity gradient is symmetric and equal to 
the strain rate tensor:

ratetensileaxial
100
05.00
005.0

L ijj,i
ú
ú
ú

û
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ê
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é
-
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=e= !

Source: Carlos Tome, EFRC Summer School 2012



EXAMPLE 1: TENSION & COMPRESSION of FCC à TEXTURE

Predicted textures after 100% axial tension and 
compression using different grain-matrix interaction and 
compression (INTERACTION=0,1,2,3,4) 

TENSION

COMPRESSION

AFFINE n=10 TANSECFC
(111)

(110)(001)    1
   2
   4
   8
  16
  32(111)

(110)(001)

Source: Carlos Tome, EFRC Summer School 2012



EXAMPLE 1: TENSION & COMPRESSION of FCC à STRESS

Stress (Taylor factor) evolution and Average Number of 
Active Systems per Grain using different grain-matrix 
interaction assumptions.

TAYLOR (FC): 
upper bound and more 
than 6 active systems

TANGENT: 
lower bound, about 4 
active systems in 
tension and 3 in 
compression.

In general: Self-
Consistent leads to 
plane strain deformation 
of individual grains
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Source: Carlos Tome, EFRC Summer School 2012



EXAMPLE 2: ROLLING of FCC
Simulate plane strain deformation of an initially random FCC 
aggregate.

Deformation by slip in the <110> direction and on {111} crystallographic 
planes, up to E33=100% (63% reduction).

The Voce hardening is linearly increasing:  

The imposed velocity gradient is plane strain (EXAMPLE 2a):
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We also run plane strain with superimposed shear (EXAMPLE 2b):

Source: Carlos Tome, EFRC Summer School 2012



EXAMPLE 2: ROLLING of FCC  à PROCESS FILE

File VPSC7.INa enforces rolling followed by a yield locus calculation and a 
Lankford and Young modulus calculation.

. . . . . .

. . . . . . 
*NUMBER OF PROCESSES 
3
*IVGVAR AND PATH\NAME OF FILE OR STRESS SUBSPACE OR  ANG 
INCREM

0         ivgvar=0 will run a monotonic strain path
example2\rolling

2         ivgvar=2 will calculate PCYS at the end
1   2             -->   section of stress space

3         ivgvar=3 will calculate Lankford coefficients at the end
10              -->   angular increment for tensile probing

Source: Carlos Tome, EFRC Summer School 2012



EXAMPLE 2: ROLLING of FCC  à FINAL TEXTURE

The superimposed shear breaks the orthotropic symmetry of the rolling  texture

RD                                RD                               RD

(100)                            (110)                           (111)

(100)                            (110)                           (111)

plane strain + shear

plane strain

SIMULATED ROLLING OF FCC (63% reduction)

  0.7
  1.0
  1.4
  2.0
  2.8
  4.0
  5.6
  8.0
  11.

Source: Carlos Tome, EFRC Summer School 2012



EXAMPLE 2: ROLLING of FCC  à CHARACTERIZATION
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The superimposed shear 
alters the final texture. As 
a consequence,

the yield locus, 

the in-plane anisotropy 
(Lankford), 

the directional Young 
modulus, 

the final rolling 
components,

are different.

Plane strain

Plane strain + shear

Source: Carlos Tome, EFRC Summer School 2012



EXAMPLE 5: TORSION of FCC  à fixed ends

Simulate torsion (simple shear) of an initially random FCC aggregate.

Deformation by slip in the <110> direction and on {111} crystallographic 
planes, up to e12 = 2.0

The Voce hardening is linearly increasing:  

Case 5a: the imposed velocity gradient is fixed-end mode 
the hoop and radial stress components are imposed to zero
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Source: Carlos Tome, EFRC Summer School 2012



EXAMPLE 5: TORSION of FCC  à process sequence

The sequence of processes enforced through VPSC7.IN are:
1- 40 steps of 
2- calculation of intermediate yield surface, projection
3- 40 steps of 
4- calculation of the final yield surface, projection 

*NUMBER OF PROCESSES 
4
*IVGVAR AND PATH\NAME OF FILE; STRESS SUBSP OR ANG INCR
0
example5\torsion.a
2         ivgvar=2 will calculate PCYS at the end
1 5             -->   section of stress space
0
example5\torsion.a
2         ivgvar=2 will calculate PCYS at the end
1 5             -->   section of stress space

%5.212 =eD

%5.212 =eD

),( 2212 ss

),( 2212 ss

Source: Carlos Tome, EFRC Summer School 2012



EXAMPLE 5: TORSION of FCC  à free ends

Simulate torsion (simple shear) of an initially random FCC aggregate.

Deformation by slip in the <110> direction and on {111} crystallographic 
planes, up to

The Voce hardening is linearly increasing:  

Case 5b: the imposed velocity gradient is free-end mode 
the hoop and radial stress components are imposed as zero
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EXAMPLE 5: TORSION of FCC  à FINAL TEXTURE

TORSION TEXTURES AT e12=1 & e12=2

2 2

11

  0.7
  1.0
  1.4
  2.0
  4.0
  8.0

(111)                          (111)

FREE END TORSION

FIX END TORSION

2 2

11 (111)                          (111)

Textures are typical of 
shear.

A slight rotation of the 
texture between fix-
end and free-end is 
responsible for the 
rotation of the yield 
locus and the 
associated change in 
length. 

Source: Carlos Tome, EFRC Summer School 2012



EXAMPLE 5: TORSION of FCC  à CHARACTERIZATION

FIXED END:
Axial strain is zero à
strain rate 
perpendicular to the 
yield surface AND 
vertical.

Fixed-end torsion

Free-end torsion
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fix end
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free end

 

 

e12=1
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s22
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free end

 
 e22 e22s22=0

s12
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e12

 

 

0.0
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0.2

0.3

0.4

FREE END:
Axial stress is zero 
à strain rate 
perpendicular to the 
yield surface AND 
stress vector vertical.

Source: Carlos Tome, EFRC Summer School 2012



Plotting Results from VPSC: 
packages and installation

! Suggestion: use MTEX, which is available as an 
open source package within MATLAB. MATLAB 
is freely available for academic use for 
members of CMU.

! Step 1: install MATLAB
! Step 2: search on “github mtex” to find the 

webpage. Download it as a zip file. Unpack the 
zip.

! Step 3: open MATLAB and add the path to the 
MTEX folder.
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Specific Directions for M1 Macs

! Here are the directions from the Apple developer website for how to 
get TF up and running on an M1 mac. It suggests that you use 
miniconda rather than anaconda, so there might be some 
complications there. I was running into issues on my intel Mac 
because python was being compiled on an older version of clang. I 
would run this line "python -c "import platform; 
print(platform.mac_ver())"" to see which version of clang python was 
compiled on the first line needs to be either 11 or 12; I can't totally 
remember. My version that doesn't work is 10.13 so I think anything 
higher than that will work because that's when M1 was introduced. I 
doubt ARM64 compiled python versions would be on any clang from 
before that, so hopefully, this works for you without too much 
trouble. 

! Courtesy of Gregory Wong, CMU, Feb. 2022
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Plotting Results : Using MTEX
! Step 1: edit the file TEX_PH1-compression1.OUT, where the name depends on what you have in the 

VPSC control file, vpsc7.in. You can always do this by hand but a python/bash script would be worth 
implementing to automate it.
" Each texture output has 4 header lines. Insert “#” at the beginning of each of those lines. Add a 5th

line that reads “ phi1 Phi phi2 weight” so that MTEX can read in appropriate headers for each of 
the 4 columns of data.

! Go to https://mtex-toolbox.github.io/OrientationImport.html to find an example of how to import lists 
of orientations.
" For fcc metals such as Al, use cs = crystalSymmetry.load(‘Al-Aluminum.cif’) to load the correct crystal symmetry
" Add Folder to the MATLAB path where you have the VPSC results (with the edited TEX list).
" fname = fullfile(‘~/code/CarlosTome-self-consistent/vpsc7d_noexe/Al_Rollett ','TEX_PH1-compression1-

headers.txt’); note the different path name to the data
" plotPDF(ori,Miller({1,1,1},{0,0,1},{1,0,1},cs)); note the different set of Miller indices to specify which poles to plot
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Plotting Results: MTEX, odf

! https://mtex-toolbox.github.io/ODFTutorial.html
! This command should work to compute the odf from the list 

of orientations:
odf = calcDensity(ori)

! Assuming that you succeed in computing the odf, many 
different kinds of plot are possible.

! See https://mtex-
toolbox.github.io/orientation.calcDensity.html for more 
detail of options (kernel width, e.g.)

! pf = calcPoleFigure(odf,Miller({1,1,1},{0,0,1},{1,0,1},cs))
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https://mtex-toolbox.github.io/ODFTutorial.html
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Pole Figures

! https://mtex-
toolbox.github.io/PoleFigure.plot.html

! plot(pf,'contourf')
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