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Objective

! The objec(ve of this lecture is to show how plas(c
deforma(on in polycrystals requires mul$ple slip in each
grain. This is commonly referred to as the “Taylor model” in
the literature.

! Further, to show how to calculate the distribu(on of slips in
each grain of a polycrystal (principles of opera(on of Los
Alamos polycrystal plas(city, LApp; also the Viscoplas(c
Selfconsistent code, VPSC; also “crystal plas(city”
simula(ons in general).

! Dislocation controlled plastic strain
! Mechanics of Materials, or, micro-mechanics
! Continuum Mechanics

Requirements:



Questions & Answers
! What is the key aspect of the Taylor model?  Assump7on of uniform strain BCs.
! What is the difference between single slip and mul7ple slip in terms of boundary condi7ons (BCs)? Uniform strain for 

mul7-slip and uniform stress for single slip.
! What is “deviatoric stress” and why does it have 5 components? Deviatoric stress is any stress that is a shear stress 

(without a normal component) 
! How does the von Mises criterion for duc7lity relate to the 5 components of deviatoric stress and strain? The von 

Mises stress is one of the invariants of the stress tensor that, in effect, sums up all the shear components.
! How does the Bishop-Hill theory work? By tes7ng which of a small set of ver7ces in the single crystal yield surface 

(SXYS) is closest to the applied strain (direc7on). What is the input and output to the algorithm? The strain direc7on in 
the crystal frame. What is meant by the “maximum work” principle? The idea is that the combina7on of the opera7ng 
SXYS vertex and strain direc7on that provides the largest (max.) work product is the opera7ve vertex.

! What is the Taylor factor (both defini7on and physical meaning)? The Taylor factor is the ra7o of the total slip over the 
von Mises equivalent strain; high values signify a hard grain and vice versa.

! Why is the rate-sensi7ve formula7on for mul7ple slip useful above and beyond what the Bishop-Hill approach gives? 
Because it allows the opera7ve stress to be a con7nuous (tensor) variable instead of just a discrete list of values.

! What is it that causes/controls texture development? The slip that occurs during plas7c deforma7on (almost always) 
causes the laUce to rotate in a biased way, leading to texture i.e., preferred orienta7on

! On what quan77es is laUce reorienta7on based (during mul7ple slip)? The skew-symmetric part of the summed 
(tensor) slips.

! How can we compute the macroscopic strain due to any given slip system? Mul7ply the Schmid matrix for that system 
by the slip magnitude and transform to the sample frame.

! How can we compute the resolved shear stress on a given slip system, star7ng with the macroscopic stress (tensor)? 
transform the stress to the crystal frame and mul7ply the Schmid matrix for that system into the resul7ng stress 
(tensor).

! What does Bishop & Hill state of stress mean (what is the physical meaning)? Each B&H stress state (one of the 28) 
corresponds to a corner of the single xtal yield surface that ac7vates either 6 or 8 slip systems simultaneously.
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WriLen from the perspec7ve of con7nuum mechanics.

! Gur7n: An Introduc>on to Con>nuum Mechanics, ISBN 0123097509, Academic Press, 
1981.
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Output of LApp*
! Figure shows pole figures 

for a simulation of the 
development of rolling 
texture in an fcc metal.

! Top = 0.25 von Mises 
equivalent strain; 0.50, 
0.75, 1.50 (bottom).

! Note the increasing texture 
strength as the strain level 
increases.

*LApp = Los Alamos 
polycrystal plasticity (code); 
this can also be simulated with 
the VPSC code.

Increasing strain
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Development

The mathematical representation and models
q Initially proposed by Sachs (1928), Cox and Sopwith (1937), 
and Taylor in 1938.  Elaborated by Bishop and Hill (1951), Kocks
(1970), Asaro & Needleman (1985), Canova (1984).
q Self-Consistent model by Kröner (1958, 1961), extended by 
Budiansky and Wu (1962). 
q Further developments by Hill (1965a,b) and Lin (1966, 1974, 
1984) and others.

The  Theory depends upon:
Ø The physics of single crystal plastic deformation;
Ø relations between  macroscopic and microscopic 
quantities ( strain, stress ...);

• Read Taylor (1938) “Plastic strain in metals.” J. Inst. Metals (U.K.) 62, 307; 
available as: Taylor_1938.pdf
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Sachs versus Taylor
Sachs Model (previous lecture on single crystal):

- All single-crystal grains with aggregate or polycrystal 
experience the same state of stress;
- Equilibrium condition across the grain boundaries satisfied;
- Compatibility conditions between the grains violated, thus, 
finite strains will lead to gaps and overlaps between grains;
- Generally most successful for single crystal deformation with 
stress boundary conditions on each grain. 

Taylor Model (this lecture):
- All single-crystal grains within the aggregate  experience the 
same state of deforma>on (strain rate);
- Equilibrium condi7on across the grain boundaries violated, 
because the vertex stress states required to ac7vate mul7ple 
slip in each grain vary from grain to grain;
- Compa7bility condi7ons between the grains sa7sfied;
- Generally most successful for polycrystals with strain boundary 
condi>ons on each grain. 
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Sachs versus Taylor: 2

! Diagrams illustrate 
the difference 
between the Sachs 
iso-stress assumption 
of single slip in each 
grain (a, c and e) 
versus the Taylor 
assumption of iso-
strain with multiple 
slip in each grain (b, 
d).

iso-stress iso-strain



10 Sachs versus Taylor: 3
Single     versus   Multiple Slip

External Stress          or            External Strain

Small arrows
indicate variable 
stress state in each 
grain

Small arrows
indicate identical 
stress state in 
each grain

Multiple slip (with 5 or 
more systems) in each 
grain satisfies the 
externally imposed 
strain, D

Each grain deforms 
according to which 
single slip system is 
ac5ve (based on 
Schmid factor)
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Taylor model: uniform strain
11

An essential assumption of the Taylor model is that each grain 
conforms to the macroscopic strain imposed on the polycrystal

Taylor (1938) “Plastic strain in metals.” 



12 Example of Slip Lines at Surface 
(plane strain stretched Al 6022)

T-Sample at 15 % strain

PD // TD

PSD // RD

! Note how each grain 
exhibits varying degrees 
of slip line markings.

! Although any given grain 
has one dominant slip 
line (trace of a slip plane), 
more than one is 
generally present.

! Taken from CMU PhD 
research of Yoon-Suk 
Choi (Pusan U) on surface 
roughness development 
in Al 6022
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Notation: 1

! Strain, local: Elocal; global: Eglobal

! Slip direction (unit vector): b or	s
! Slip plane (unit) normal: n
! Slip, or Schmid tensor, mij=	binj=Pij
! Stress (tensor or vector): s
! Shear stress (usually on a slip system): t
! Shear strain (usually on a slip system): g
! Stress deviator (tensor): S
! Rate sensitivity exponent: n
! Slip system index: s or a
! Note that when an index (e.g., of a Slip system, b(s)n(s)) is enclosed in 

parentheses, it means that the summation convention does not apply 
even if the index is repeated in the equation. 
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Notation: 2
! Coordinates: current: x; reference X
! Velocity of a point: v.
! Displacement: u
! Hardening coefficient: h  (ds = h dg )
! Strain, e

! measures the change in shape
! Work increment: dW

! do not confuse with lattice spin!
! Infinitesimal rotation tensor: W
! Elastic Stiffness Tensor (4th rank): C
! Load, e.g., on a tensile sample: P

! do not confuse with slip tensor!
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Notation: 3

! Plastic spin: W (sometimes W)
! measures the rotation rate; more than one kind of 

spin is used:
! “Rigid body” spin of the whole polycrystal: W
! “grain spin” of the grain axes (e.g., in torsion): Wg

! “lattice spin” from slip/twinning of the crystal (skew 
symmetric part of the strain): Wc.

! Rotation (small): w
! Six deviatoric components of stress: A, B, C, F, G, H
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Notation: 4

! DeformaSon gradient: F
! Measures the total change in shape (rotaCons 

included).
! Velocity gradient: L

! Tensor, measures the rate of change of the 
deformaCon gradient, not necessarily symmetric

! Time: t
! Slip geometry matrix: E (do not confuse with strain)

! PlasSc strain rate: D
! symmetric tensor; D =	symm(L)

€ 

≡ ˙ ε ≡ dε
dt

€ 

Fij =
∂xi
∂X j



Basic Equations
Sachs model: iso-stress:
Identify the index, s, of the active system(s) from k available systems from the 
maximum Schmid factor: maxs(b(s) s n(s) ).
If strain is accumulated compute the slip (shear strain) from the macroscopic 
applied strain. If more than one system is active (e.g., primary+conjugate) 
divide the shear strains equally.
Taylor model: iso-strain (Bishop & Hill variant for fcc/bcc only):
Identify the index, r, active (multi-slip) stress state (from list of 28) from the 
maximum inner product between the vertex stress state and the applied strain: 
maxr(|s(r)de|).
Each possible vertex stress state activates 6 or 8 slip systems; either make an 
arbitrary choice of 5 to satisfy the external slip or, more typically compute the 
solution to the "rate-sensitive slip equation", below, i.e., the stress that satisfies 
the imposed strain rate.  The slip rate on the sth system is given by the 
exponentiated expression.  Lattice spin is computed from the skew-symmetric 
version of the same expression.

17
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Dislocations, Slip Systems, 
Crystallography

q This section is provided to remind students about the basic geometry of 
slip via dislocation glide.  Full details can, of course, be found in standard 
textbooks.

q The term “outer product” may not be familiar to most readers. In this 
context it refers to forming a 2nd rank tensor (the Schmid tensor) from the 
unit vectors for the slip direction and slip plane normal.
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Dislocations and Plastic Flow
q At room temperature the dominant mechanism of plastic deformation is 
dislocation motion through the crystal lattice.

q Dislocation glide occurs on certain crystal planes (slip planes) in certain 
crystallographic directions (// Burgers vector). Generally, these the most close-
packed plane and direction.

q A slip system is a combination of a slip direction and slip plane normal.

q A second-rank tensor (mij=	binj ) can be associated with each slip system, 
formed from the outer product of slip direction and normal.  The resolved shear 
stress on a slip system is then given by the inner product of the Schmid and the 
stress tensors: t = mijsij. This is called the Schimd tensor, which is traceless.

q The crystal structure of metals is not altered by the plastic flow because slip is 
a simple shear mode of deformation.  Moreover, no volume change is associated 
with slip, therefore the hydrostatic stress has no effect on plasticity (in the 
absence of voids and/or dilatational strain). Dislocation motion gives rise to slip 
and only requires breaking and re-forming bonds but with no long-range atom 
transport.  This explains the use of deviatoric stress in calculations.
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Crystallography of Slip

Slip direcTon – is the close-packed direcTon within the slip plane.

Slip plane – is the plane of greatest atomic density.

Slip occurs most readily in specific directions on certain 
crystallographic planes.

Slip system – is the combination of preferred slip planes and  slip 
directions (on  those specific planes) along which dislocation motion 
occurs.  Slip systems are dependent on the crystal structure. 
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Example:  Determine the slip system for the (111) plane in a fcc 
crystal and sketch the result.

The	slip	direction	in	fcc	is	<110>	
The	proof	that	a	slip	direction	[uvw]	
lies	in	the	slip	plane	(hkl)	is	given	
by	calculating	the	scalar	product:

hu	+	kv	+	lw	=0

Crystallography of Slip in fcc



Slip Systems in Hexagonal Metals

Basal
(0002) <2 -1 -1 0>

Pyramidal (c+a)
(1 0 -1 1) <1 -2 1 3>
Pyramidal (a)
(1 0 -1 1) <1 -2 1 0>

Prism
{0 -1 1 0}<2 -1 -1 0>
Also:
(2 -1 -1 0)

Pyramidal
(1 0 -1 2)

22
Berquist & Burke: Zr alloys
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Slip Systems in fcc, bcc, hexagonal

The	slip	systems	for	FCC,	BCC	and	hexagonal	crystals	are:

For	this	lecture	we	will	focus	on	FCC	crystals	only

In	the	case	of	FCC	crystals	we	can	see	in	the	table	that	there	are	12	slip	
systems.	However,	if	forward	and	reverse	systems	are	treated	as	
independent,	there	are	then	24	slip	systems.	

Note:

Also: Pyramidal (c+a)  (1 0 -1 1)             <1 -2 1 3>



Schmid / Sachs / Single Slip

! This secTon is included as a reminder of how to analyze 
single slip.  Since it assumes stress boundary condiTons 
the analysis is straighXorward.  More detail is provided 
in the lecture that explicitly addresses this topic.

24
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Schmid Law
q Initial	yield	stress	varies	from	sample	to	sample	depending	on,	among	
several	factors,	the	relation	between	the	crystal	lattice	to	the	loading	
axis	(i.e.,	orientation,	written	as	g).

q The	applied	stress	resolved	along	the	slip	direction	on	the	slip	plane	
(to	give	a	shear	stress)	initiates	and	controls	the	extent	of	plastic	
deformation.

q Yield	begins	on	a	given	slip	system	when	the	shear	stress	on	this	
system	reaches	a	critical	value,	called	the	critical	resolved	shear	stress	
(crss),	independent	of	the	tensile	stress	or	any	other	normal	stress	on	
the	lattice	plane	(in	less	symmetric	lattices,	however,	there	may	be	some	
dependence	on	the	hydrostatic	stress).

q The	magnitude	of	the	yield	stress	depends	on	the	density	and	
arrangement	of	obstacles	to	dislocation	?low,	such	as	precipitates	(not	
discussed	here).
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Under	stress	boundary	conditions,	single	slip	occurs
Uniaxial	Tension	or	Compression	
(where	“m”	is	the	slip	tensor):

P is a unit vector in the 
loading direc4on

The	(dislocation)	slip	is	given	by	
(where	“m”	is	the	Schmid	factor):

γ=
ε

cosλ cosφ
=
ε
m

Minimum Work, Single Slip (Sachs)

This slide, and the next one, are a re-cap of the lecture on single slip

= b,
or, s

= n
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Applying the Minimum Work Principle, it follows that

€ 

σ
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=
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˙ ε 

=
1
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= 1
m

σ = τ(γ)
m

= τ (ε m)
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Note: t(g) describes the dependence of the cribcal resolved shear stress (crss) on 
strain (or slip curve), based on the idea that the crss increases with increasing 
strain.  The Schmid factor, m, has a maximum value of 0.5 (both angles = 45°).

If finite strain is imposed, the shear strain (slip) increment is given by the 
macroscopic strain divided by the Schmid factor, 
dg = de ÷m. Aher each increment, the Schmid factor must be recalculated 
because the laice orientabon has changed (in relabon to the tensile stress axis)

Minimum Work, Single Slip



Calculating Schmid Factors

! In the most general approach, assume a uniaxial 
tensile stress and project it onto each slip system 
in turn, which gives the resolved shear stress 
(RSS). The Schmid factor is equal to the RSS 
divided by the (magnitude of the) tensile stress. 
The convention is that we use the von Mises 
equivalent stress (svM) to represent the 
magnitude of the stress applied. For a pure 
tensile stress, svM = stensile (by design).

28

⌧ = bg�gTn; m = ⌧/�vM
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Calculating Schmid Factors: 2
! For single crystals, problems sometimes assume that we know 

where the uniaxial tensile stress lies in the crystal frame so 
that its direction can be represented by a set of Miller indices. 
Then it is simple to compute the Schmid factor by taking a dot 
product between the slip plane normal and the tensile axis 
(TA) and also between the Burgers vector (direction) and the 
TA, all reduced to unit vectors. These two results are then 
exactly the two direction cosines whose product equals the 
Schmid factor. 

! If the tensile axis is known in the sample frame, then 
transform it to the crystal frame, as in:

29

m = (b̂ · ~̂TA)(n̂ · ~̂TA)

<latexit sha1_base64="VlF5C/cuVTI6UpVh6/2ZYE10hcE=">AAACPnicdVA9SwNBFNzzM8avqKXNYhC0CXcS0EaI2lgqmETIhbC3eWcW9/aO3XfBcNwvs/E32FnaWChia+nmo9CoAwvDzDzevgkSKQy67pMzMzs3v7BYWCour6yurZc2NhsmTjWHOo9lrK8DZkAKBXUUKOE60cCiQEIzuD0b+s0+aCNidYWDBNoRu1EiFJyhlTqlOo3oMd3zewwzH+EOgzAL8pz6vBsjHct94NnVSZ7vT+XUv7lOqexW3BHob+JNSJlMcNEpPfrdmKcRKOSSGdPy3ATbGdMouIS86KcGEsZv2Q20LFUsAtPORufndNcqXRrG2j6FdKR+n8hYZMwgCmwyYtgz095Q/MtrpRgetTOhkhRB8fGiMJUUYzrsknaFBo5yYAnjWti/Ut5jmnG0jRdtCd70yb9J46DiVSvVy2q5djqpo0C2yQ7ZIx45JDVyTi5InXByT57JK3lzHpwX5935GEdnnMnMFvkB5/ML7suvoA==</latexit>

~TA0
crystal = g ~TAsample

<latexit sha1_base64="x1MLJz/9UKS7Nqu8q0e+hf5ap/c=">AAACFHicbVDLSsNAFJ3UV62vqEs3g0UUhJJIQTdC1Y3LCn1BE8JkOmmHziRhZlIIIR/hxl9x40IRty7c+TdO2yy09cCFwzn3ztx7/JhRqSzr2yitrK6tb5Q3K1vbO7t75v5BR0aJwKSNIxaJno8kYTQkbUUVI71YEMR9Rrr++G7qdydESBqFLZXGxOVoGNKAYqS05JnnzoTgrHVzmnsZFqlUiOXwGg6hAwtHGxLxmJHcM6tWzZoBLhO7IFVQoOmZX84gwgknocIMSdm3rVi5GRKKYv1exUkkiREeoyHpaxoiTqSbzY7K4YlWBjCIhK5QwZn6eyJDXMqU+7qTIzWSi95U/M/rJyq4cjMaxokiIZ5/FCQMqghOE4IDKghWLNUEYUH1rhCPkEBY6RwrOgR78eRl0rmo2fVa/aFebdwWcZTBETgGZ8AGl6AB7kETtAEGj+AZvII348l4Md6Nj3lryShmDsEfGJ8/jTqehw==</latexit>



Schmid factors: 3

! Given a question such as “which system do you 
expect to be active”, the correct approach is to 
compute all possible Schmid factors (e.g., 12 for 
the standard {111}<110> fcc slip systems): the 
active slip system is the one that provides the 
largest Schmid factor.

! This also applies to mechanical twinning. The 
caution here is that twinning operates in one 
direction only (hence the distinction between 
‘tensile’ and ‘compressive’ twins in hexagonal 
metals).

30
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Elastic vs. Plastic Deformation
Selection	of	Slip	Systems	for	Rigid-Plastic	Models

Assumption	– For	fully	plastic	deformation,	the	elastic	
deformation	rate	is	usually	small	when	compared	to	the	
plastic	deformation	rate	and	thus	it	can	be	neglected.

Reasons:

The	elastic		strain	
is	limited	to	the	
ratio	of	stress	to	
elastic	modulus

Perfect	plastic	materials		-
equivalent	stress	=	initial	
yield	stress		

For	most	metals,	the	initial	
yield	stress	is	2	to	4	orders	
of	magnitude	less	than	the	
elastic	modulus	–
ratio	is	<<	1
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Macro Strain – Micro Slip
Selection	of	Slip	Systems	for	Rigid-Plastic	Models

Once	the	elastic	deformation	rate	is	considered,	it	is	
reasonable	to	model	the	material	behavior	using	the	rigid-
plastic	model.	The	plastic	strain	rate	is	given	by	the	sum	of	
the	slipping	rates	multiplied	by	their	Schmid	tensors:

€ 

D = Dp = mα
α=1

n

∑ ˙ γ α
where

n is	≤	to	12	systems	(or	24	systems	– )forward	and	reverse	
considered	independent

Note: D has	six	independent	components	(i.e.,	it	is	a	symmetric	
tensor).	Because	of	the	incompressibility	condition	–
tr(D)	=	Dii=	0,	only	five	out	of	the	six	components	are	
independent.
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Von Mises criterion
Selection	of	Slip	Systems	for	Rigid	Plasticity	Models

As	a	consequence	of	the	condition	

the	number	of	possible	active	slip	systems	(in	cubic	metals)	is	greater	than	
the	number	of	independent	components	of	the	tensor	strain	rate	Dp,	from	the	
mathematical	point	of	view	(under-determined	system),	so	any	combination	
of	five	slip	systems	that	satisfy	the	incompressibility	condition	can	allow	the	
prescribed	deformation	to	take	place.		The	requirement	that	at	least	five	
independent	systems	are	required	for	plastic	deformation is	known	as	the	von	
Mises	Criterion.		If	less	than	5	independent	slip	systems	are	available,	the	
ductility	is	predicted	to	be	low	in	the	material.		The	reason	is	that	each	grain	
will	not	be	able	to	deform	with	the	body	and	gaps	will	open	up,	i.e.,	it	will	
crack.		Caution:	even	if	a	material	has	5	or	more	independent	systems,	it	may	
still	be	brittle	(e.g.,	Iridium).

   0D=tr(D) ii =
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Selection of Active Slip Systems:
Taylor’s Minimum Work Principle
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Minimum Work Principle

v Proposed by Taylor in (1938).
v The objecbve is to determine the combinabon of shears or slips that will 
occur when a prescribed strain is produced.
v States that, of all possible combinabons of the 12 shears that can produce 
the assigned strain, only that combinabon for which the energy dissipabon is 
the least is operabve.
vThe defect in the approach is that it says nothing about the acbvity or 
resolved stress on other, non-acbve systems (This last point was addressed 
by Bishop and Hill in 1951).

Mathematical	
statement:
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τ c
α=1

n

∑ ˙ γ α  ≤  τα
*

α=1

n

∑ ˙ γ α
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Bishop	J	and	Hill	R	(1951)	Phil.	Mag.	42	414;	ibid.	1298
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Here,

- are the actually activated slips that produce D.

- is any set of slips that satisfy tr(D)=Dii=	0, but are operated by 
the corresponding stress satisfying the loading/unloading criteria.

- is the (current) critical resolved shear stress (crss) for the material 
(applies on any of the ath activated slip systems).

- is the current shear strength of (= resolved shear stress on) the 
ath geometrically possible slip system that may not be compatible with 
the externally applied stress.

€ 

˙ γ α

€ 

˙ γ α
*

Minimum Work Principle

€ 

τ c

€ 

τα
*
€ 

τ c
α=1

n

∑ ˙ γ α  ≤  τα
*

α=1

n

∑ ˙ γ α
*

Minimum Work Principle
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Recall that in the Taylor model all the slip systems are assumed 
to harden at the same rate, which means that

€ 

τ c = τα
*

and  then,

Note that we now have only 12 operative slip systems once
the forward and reverse shear strengths (crss) are considered to 

have the same absolute value.

Minimum Work Principle

€ 

˙ γ α
α=1

n

∑  ≤  ˙ γ α
*   

α=1

n

∑  
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Thus Taylor’s minimum work criterion can be summarized as in 
the following: Of the possible 12 slip systems, only that 
combination for which the sum of the absolute values of 
shears is the least is the combination that is actually 
operative. 
The uniformity of the crss (same on all systems) means that the 
minimum work principle is equivalent to a minimum 
microscopic shear principle.

€ 

˙ γ α
α=1

n

∑  ≤  ˙ γ α
*   

α=1

n

∑  

Minimum Work Principle
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Stress > CRSS?

! The obvious question is, if we can find a set of 
microscopic shear rates that satisfy the imposed 
strain, how can we be sure that the shear stress on 
the other, inactive systems is not greater than the 
critical resolved shear stress?

! This is not the same question as that of 
equivalence between the minimum (microscopic) 
work principle and the maximum (macroscopic) 
work approach described later in this lecture.
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Stress > CRSS?
! The work increment is the (inner) product of the stress 

and strain tensors, and must be the same, regardless of 
whether it is calculated from the macroscopic quantities 
or the microscopic quantities:

For the actual set of shears in the material, we can write 
(omitting the “*”),

where the crss is outside the sum because it is constant. 

[Reid: pp 154-156; also Bishop & Hill 1951]
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Stress > CRSS?
! Now we know that the shear stresses on the 

hypothetical (denoted by “*”) set of systems 
must be less than or equal to the crss, tc, for all 
systems, so:

This means that we can write:
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Stress > CRSS?

! However, the LHS of this equaSon is equal to 
the work increment for any possible 
combinaSon of slips, dw=sijdeij which is equal 
to tcSadga, leaving us with:

Thus dividing both sides by tc allows us to 
write:

€ 

δγ
α

∑ ≤ δγ*

α

∑ Q.E.D.
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Multiple Slip

! This secSon analyzes the geometry of mulSple 
slip, all in the crystal frame.  This sets the scene 
for the treatment of the problem in terms of 
simultaneous equaSons.
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General	case	– D
Ø Only five independent (deviatoric)	
components

Ø Deformation	rate	is	multi-axial

Crystal	- FCC

Slip	rates	- ,									,									....,	
on	the	slip	systems	a1,	a2,	a3 ...,	
respectively.

γa1 γa2 γa3

Multiple Slip

€ 

101[ ]

Note correcRon to system b2 Khan	&	Huang
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Using

the	following	set	of	relations	can	be	obtained

2 6Dxy = 2 6ex ⋅D ⋅ey=- γa1 + γa2 − γb1 + γb2 + γc1 − γc2 + γd1 − γd2   
                                                                                                 

2 6Dyz = 2 6ey ⋅D ⋅ez  =- γa2 + γa3 + γb2 − γb3 − γc2 + γc3 + γd2 − γd3  
                                                                                        

2 6Dzx = 2 6ez ⋅D ⋅ey=- γa3 + γa1 + γb3 − γb1 + γc3 − γc1 − γd3 + γd1

                                                                                             
Note:	ex,	ey, ez are	unit	vectors	parallel	to	the	axes

Multiple Slip

D = Dp = mα
α=1

n

∑ γα
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Multiple Slip
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To	verify	these	relations,	consider	the	contribution	of	
shear	on	system	c3 as	an	example:

Given	:		

Slip	system	- c3;	 c3γ

Unit	vector	in	the	slip	direction	–

€ 

n =
1
3

(-1,1,1)  Unit	normal	vector	to	the	slip	plane	–

(1,1,0)
2
1

=b

The	contribution	of	the	c3	system	is	given	by:

    
011
120
102

62
)(

2
1 c3

c3

!
!
!

"

#

$
$
$

%

&−

=+
γ

γ


nbbn

Multiple Slip

Khan	&	Huang
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From the set of equations, one can obtain 6 relations between 
the components of D and the 12 shear rates on the 12 slip 
systems. By taking account of the incompressibility condition, 
this reduces to only 5 independent relations that can be 
obtained from the equations. 

So, the main task is to determine which combination of 5 
independent  shear rates, out of 12 possible rates, should be 
chosen as the solution of a prescribed deformation rate D.

This set of shear rates must satisfy Taylor’s minimum shear 
principle.
Note : There are 792 sets or 12C5 combinations, of 5 shears, but only 384 are 
independent. Taylor’s minimum shear principle does not ensure that there is a 
unique solution (a unique set of 5 shears).

Multiple Slip
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Multiple Slip: Strain

! Suppose that we have 5 slip systems that are 
providing the external slip, D.

! Let’s make a vector, Di, of the (external) strain 
tensor components and write down a set of 
equations for the components in terms of the 
microscopic shear rates, dga.

! Set D2 = de22, D3 = de33, D6 = de12, 
D5 = de13, and D4 = de23. 

D_2&  =  [m_{22}^{(1) } & m_{22}^{(2)} & m_{22}^{(3)} & m_{22}^{(4)} & m_{22}^{(5)} ] \cdot [ d\gamma_1& \\ d\gamma_2& \\ d\gamma_3& \\ d\gamma_4& \\ d\gamma_5& ]
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Multiple Slip: Strain
! This notation can obviously be simplified and all five 

components included by writing it in tabular or matrix 
form (where the slip system indices are preserved as 
superscripts in the 5x5 matrix).  This is similar to the 
"basis", bp, described by Van Houtte (1988).

\begin{bmatrix} D_2& \\ D_3& \\ D_4& \\ D_5& \\ D_6& \end{bmatrix} = \begin{bmatrix} m_{22}^{(1) } & m_{22}^{(2)} & m_{22}^{(3)} & m_{22}^{(4)} & m_{22}^{(5)} \\ m_{33}^{(1)} & m_{33}^{(2)} & m_{33}^{(3)} & m_{33}^{(4)} & 
m_{33}^{(5)} \\ (m_{23}^{(1)}+m_{32}^{(1)}) & (m_{23}^{(2)}+m_{32}^{(2)}) & (m_{23}^{(3)}+m_{32}^{(3)}) & (m_{23}^{(4)}+m_{32}^{(4)}) & (m_{23}^{(5)}+m_{32}^{(5)}) \\ (m_{13}^{(1)}+m_{31}^{(1)}) & (m_{13}^{(2)}+m_{31}^{(2)}) & 
(m_{13}^{(3)}+m_{31}^{(3)}) & (m_{13}^{(4)}+m_{31}^{(4)}) & (m_{13}^{(5)}+m_{31}^{(5)}) \\ (m_{12}^{(1)}+m_{21}^{(1)}) & (m_{12}^{(2)}+m_{21}^{(2)}) & (m_{12}^{(3)}+m_{21}^{(3)}) & (m_{12}^{(4)}+m_{21}^{(4)}) & (m_{12}^{(5)} 
+m_{21}^{(5)})\end{bmatrix}  \begin{bmatrix} d\gamma_1& \\ d\gamma_2& \\ d\gamma_3& \\ d\gamma_4& \\ d\gamma_5& \end{bmatrix}

or, D = ET dg
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Multiple Slip: Stress
! We can perform the equivalent analysis for stress: 

just as we can form an external strain component 
as the sum over the contribuSons from the 
individual slip rates, so too we can form the 
resolved shear stress as the sum over all the 
contribuSons from the external stress components 
(note the inversion of the relaSonship):

Or,
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Multiple Slip: Stress
! Pujng into 5x6 matrix form, as for the strain 

components, yields:

or, t = E s



53 Definitions of Stress states, 
slip systems

Kocks: UQ -UK UP -PK  -PQ   PU    -QU  -QP  -QK  -KP  -KU  KQ

! Now define a set of six deviatoric stress terms, since we 
know that the hydrostatic component is irrelevant, of which 
we will actually use only 5:
A:= (s22 - s33) F:= s23
B:= (s33 - s11) G:= s13
C:= (s11 - s22) H:= s12

! Slip systems (as before):

Note: these systems have the negatives 
of the slip directions compared to those 
shown in the lecture on Single Slip (taken 
from Khan’s book), except for b2.

[Reid]
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Multiple Slip: Stress

! Note that it is feasible to invert the matrix, 
provided that its determinant is non-zero, which it 
will only be true if the 5 slip systems chosen are 
linearly independent.

! Equivalent 5x5 matrix form for the stresses:

s = ET t
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Multiple Slip: Stress/Strain Comparison
! The last matrix equation is in the same form as for the strain components.
! We can test for the availability of a solution by calculating the determinant of the “E” 

matrix, as in:
t = E s

or, D = ET dg
! A non-zero determinant of E means that a solution is available.
! Even more important, the direct form of the stress equation means that, if we assume 

a fixed critical resolved shear stress, then we can compute all the possible multislip
stress states, based on the set of linearly independent combinations of slip:

s = E-1 t
! It must be the case that, of the 96 sets of 5 independent slip systems, the stress states 

computed from them collapse down to only the 28 (+ and -) found by Bishop & Hill. 
! The Taylor approach can be used to find a solution for a set of active slip systems that 

satisfies the minimum (microscopic) work criterion.  The most effective approach is to 
use the simplex method because the multiple possible solutions mean that the 
problem is mathematically underdetermined.  A complete description is found in the 
1988 review paper by Van Houtte [Textures and Microstructures 8 & 9 313-350].

! The simplex method is also useful for analyzing geometrically necessary dislocation 
(GND) content, see El-Dasher et al. [Scripta mater. 48 141 (2003)].



Bishop and Hill model

! This section describes the alternate approach of 
Bishop and Hill.  This enumerates the corners 
(vertices) of the single crystal yield surface that 
permit multiple slip with 6 or 8 systems.  

! This approach is very convenient because 
determining the correct multiple-slip stress state 
only requires 28 different possibilities to be 
evaluated. In effect, one searches for the multi-
slip stress that is closest to the actual stress state 
(in the crystal frame).

56
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Maximum Work Principle
! Bishop and Hill introduced a maximum work principle, which in turn was based 

on Hill's work on plasticity*. The papers are available as 1951-PhilMag-
Bishop_Hill-paper1.pdf and 1951-PhilMag-Bishop_Hill-paper2.pdf.

! This states that, among the available (multiaxial) stress states that activate a 
minimum of 5 slip systems, the operative stress state is that which maximizes 
the work done.

! In equation form, dw = sijdeij ≥s*ijdeij , where the operative stress state is 
unprimed.

! For cubic materials, it turns out that the list of discrete multiaxial stress states 
is short (only 28 entries).  Therefore, the Bishop-Hill approach is much more 
convenient from a numerical perspective.

! The algebra is non-trivial, but the maximum work principle is equivalent to 
Taylor’s minimum shear (microscopic work) principle.

! In geometrical terms, the maximum work principle is equivalent to seeking the 
stress state that is most nearly parallel (in direction) to the strain rate direction.

*Hill, R. (1950). The Mathematical Theory of Plasticity, Clarendon Press, Oxford.
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Yield surfaces: introduction
! Before discussing the B-H approach, it is helpful 

to understand the concept of a yield surface.
! The best way to learn about yield surfaces is 

think of them as a graphical construction.
! A yield surface is the boundary between elastic 

and plastic flow.

Example: tensile stress
s=0 selastic plastic

s= syield
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2D yield surfaces
! Yield surfaces can be defined in two dimensions.
! Consider a combination of (independent) yield 

on two different axes.

The material
is elastic if
s1 < s1y
and
s2 < s2y

0 s1

s2

elastic

plastic

plastic

s= s1y

s= s2y
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Crystallographic slip: a single system

! Now that we understand the concept of a yield 
surface we can apply it to crystallographic slip.

! The result of slip
on a single system
is strain in a single
direction, which
appears as a straight
line on the Y.S.

! The strain direction that
results from this system
is necessarily perpendicular to the yield surface

[Kocks]
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A single slip system
! Yield criterion for single slip:

bisijnj ³ tcrss

! In 2D this becomes (s1ºs11:
b1s1n1+ b2s2n2³ tcrss

The second
equation defines
a straight line
connecting the
intercepts

0 s1

s2

tcrss/b1n1

tcrss/b2n2

elastic

plastic
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Single crystal Y.S.

! When we examine yield 
surfaces for specific 
orientations, we find 
that multiple slip 
systems meet at 
vertices.

! Cube component: 
(001)[100]

8-fold vertex

The 8-fold vertex identified is 
one of the 28 Bishop & Hill 
stress states (next slides)

Backofen Deformation Processing



63 Definitions of Stress states, 
slip systems (repeat)

Kocks: UQ -UK UP -PK  -PQ   PU    -QU  -QP  -QK  -KP  -KU  KQ

! A set of six deviatoric stress terms can be defined. As previously 
remarked we know that the hydrostaTc component is irrelevant 
because dislocaTon glide does not result in any volume change.  
Therefore we will use only 5 out of the 6:
A:= (s22 - s33) F:= s23
B:= (s33 - s11) G:= s13
C:= (s11 - s22) H:= s12

! Slip systems (as before):

Note: these systems have the negatives 
of the slip directions compared to those 
shown in the lecture on Single Slip (taken 
from Khan’s book), except for b2.

[Reid]
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Multi-slip stress 
states

Example:
the 18th multi-
slip stress state:
A=F=   0
B=G= -0.5
C=H=  0.5

Each entry is in multiples 
of √6 multiplied by the 
critical resolved shear 
stress, √6tcrss

[Reid]
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Work Increment
! The work increment is easily expanded as:

Simplifying by noting the symmetric property of stress and 
strain:

Then we apply the fact that the hydrostaTc component of the 
strain is zero (incompressibility) and apply our notaTon for 
the deviatoric components of the stress tensor (next slide).
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Applying Maximum Work

! For each of 56 (with positive and negative 
copies of each stress state), find the one that 
maximizes dW:

€ 

dW = −Bdε11 + Adε22 +

2Fdε23 + 2Gdε13 + 2Hdε12
Reminder: the strain (increment) tensor must be in grain 
(crystallographic) coordinates (see next page); also make sure 
that its von Mises equivalent strain = 1.
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Sample vs. Crystal Axes
! For a general orientation, one must pay attention to the product of the 

axis transformation that puts the strain increment in crystal coordinates.  
Although one should, in general, symmetrize the new strain tensor 
expressed in crystal axes, it is sensible to leave the new components as is 
and form the work increment as follows (using the tensor transformation 
rule):

Note that the shear terms (with F, G & H) do not have the factor of two.  
Many worked examples choose symmetric orientabons in order to 
avoid this issue!

€ 

deij
crystal = gikg jldεkl

sample

Be careful with the indices and the fact that the above formula does not correspond to matrix 
multiplication (but one can use the particular formula for 2nd rank tensors, i.e., T’ = g T gT



Taylor Factor

! This section explains what the Taylor is and 
how to obtain it, with a worked example.

68
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Taylor factor
! From this analysis emerges the fact that the same ratio couples the magnitudes 

of the (sum of the) microscopic shear rates and the macroscopic strain, and the 
macroscopic stress and the critical resolved shear stress.  This ratio is known as 
the Taylor factor, in honor of the discoverer.  For simple uniaxial tests with only 
one non-zero component of the external stress/strain, we can write the Taylor 
factor as a ratio of stresses of of strains.  If the strain state is multiaxial, 
however, a decision must be made about how to measure the magnitude of 
the strain, and we follow the practice of Canova, Kocks et al. by choosing the 
von Mises equivalent strain (defined in the next two slides).

! In the general case, the crss values can vary from one system to another.  
Therefore, it is easier to use the definition based on the strain increment.

€ 

M =
σ
τ crss

=

dγ (α )
α

∑
dε

=
dW

τ crssdεvM
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Taylor factor,  multiaxial stress
! For multiaxial stress states, one may use the effective 

stress, e.g. the von Mises stress (defined in terms of the 
stress deviator tensor, S = s - (sii / 3 ), and also known as 
effective stress). Note that the equation below provides the 
most self-consistent approach for calculating the Taylor 
factor for multi-axial deformation.

σvonMises ≡ σvM =
3
2
S : S

€ 

M =
σ vM

τ
=

Δγ (s)

s
∑
dεvM

=
dW

τ c dεvM
=
σ : dε
τ c dεvM
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Taylor factor,  multiaxial strain
! Similarly for the strain increment (where dep is the 

plastic strain increment which has zero trace, 
i.e. deii=0).

€ 

dεvonMises ≡ dεvM =
2
3
dεp : dεp =

2
3

1
2 dεij : dεij =

2
9
$ 

% 
& 
' 

( 
) dε11 − dε22( )2 + dε22 − dε33( )2 + dε33 − dε11( )2{ } +

1
3
dε23

2 + dε31
2 + dε12

2{ }

Compare with single slip: Schmid factor = cosfcosl = t/s

€ 

M =
σ vM

τ
=

Δγ (s)

s
∑
dεvM

=
dW

τ c dεvM
=
σ : dε
τ c dεvM

***

*** This version of the formula applies only to the symmetric form of de
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Polycrystals

! Given a set of grains (orientations) comprising a 
polycrystal, one can calculate the Taylor factor, M, for 
each one as a function of its orientation, g, weighted 
by its volume fraction, v, and make a volume-weighted 
average, <M>.

! Note that exactly the same average can be made for the lower-
bound or Sachs model by averaging the 
inverse Schmid factors (1/m).
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Multi-slip: 
Worked Example

[Reid]

ObjecRve is to find the mul'slip stress 
state and slip distribu'on for a crystal 
undergoing plane strain compression.
QuanRRes in the sample frame have 
primes (‘) whereas quanRRes in the 
crystal frame are unprimed; the “a” 
coefficients form an orienta'on matrix 
(“g”).
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! This worked example for a bcc 
multislip case shows you how to 
apply the maximum work 
principle to a practical problem.

! Important note: Reid chooses to 
divide the work increment by the 
value of de11. This gives a 
different answer than that 
obtained with the von Mises
equivalent strain (e.g. in LApp).  
Instead of 2√6 as given here, 
the answer is √3√6 = √18.

Multi-slip: 
Worked Example

In this example from Reid, “orientaRon factor” = Taylor factor = M
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Bishop-Hill Method: pseudo-code
! How to calculate the Taylor factor using the Bishop-Hill 

model?
1. Identify the orientation of the crystal, g;
2. Transform the strain into crystal coordinates;
3. Calculate the work increment (product of one of the discrete 

multislip stress states with the transformed strain tensor) for 
each one of the 28 discrete stress states that allow multiple 
slip;

4. The operative stress state is the one that is associated with the 
largest magnitude (absolute value) of work increment, dW;

5. The Taylor factor is then equal to the maximum work 
increment divided by the von Mises equivalent strain.

€ 

M =
σ : dε
τ c dεvM

Note: given that the magnitude (in the sense of the von Mises equivalent) is 
constant for both the strain increment and each of the mulH-axial stress states, 
why does the Taylor factor vary with orientaHon?!  The answer is that it is the 
dot product of the stress and strain that maLers, and that, as you vary the 
orientaHon, so the geometric relaHonship between the strain direcHon and the 
set of mulHslip stress states varies.
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Multiple Slip - Slip System Selection
! So, now you have figured out what the stress state is in a grain that will 

allow it to deform.  What about the slip rates on each slip system?!
! The problem is that neither Taylor nor Bishop & Hill say anything about 

which of the many possible solutions is the correct one!
! For any given orientation and required strain, there is a range of possible 

solutions: in effect, different combinations of 5 out of 6 or 8 slip systems 
that are loaded to the critical resolved shear stress can be active and used to 
solve the equations that relate microscopic slip to macroscopic strain.

! Modern approaches use the physically realistic strain rate sensitivity on each 
system to “round the corners” of the single crystal yield surface.  This will be 
discussed in later slides in the section on Grain Reorientation.

! Even in the rate-insensitive limit discussed here, it is possible to make a 
random choice out of the available solutions.

! The review of Taylor’s work that follows shows the “ambiguity problem” as 
this is known, through the variation in possible re-orientation of an fcc
crystal undergoing tensile deformation (shown on a later slide).

Bishop	J	and	Hill	R	(1951)	Phil.	Mag.	42 414;	ibid.	1298
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• This was the first model to describe, successfully, the stress-
strain relation as well as the texture development of 
polycrystalline metals in terms of the single crystal constitutive  
behavior, for the case of uniaxial tension. 

• Taylor used this model to solve the problem of a 
polycrystalline  FCC material, under uniaxial, axisymmetric 
tension and show that the polycrystal hardening behavior 
could be understood in terms of the hardening of a single type 
of slip system.  In other words, the hardening rule (a.k.a. 
constitutive description) applies at the level of the individual 
slip system.

Taylor’s Rigid Plastic Model for Polycrystals: 
Hardening and Reorientation of the Lattice
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Taylor model basis
! If large plastic strains are accumulated in a body then it is 

unlikely that any single grain (volume element) will have 
deformed much differently from the average (as 
previously discussed).  The reason for this is that any 
accumulated differences lead to either a gap or an overlap 
between adjacent grains.  Overlaps are exceedingly 
unlikely because most plastic solids are essentially 
incompressible.  Gaps are simply not observed in ductile 
materials, though they are admittedly common in 
marginally ductile materials.  This then is the 
"compatibility-first" justification, i.e., that the elastic 
energy cost for large deviations in strain between a given 
grain and its matrix are very large.



79 Uniform strain assumption, or,
“Full Constraints”

dElocal = dEglobal,

where the global strain is simply the average strain and 
the local strain is simply that of the grain or other 
subvolume under consideration.  This model means that 
stress equilibrium cannot be satisfied at grain boundaries 
because the stress state in each grain is generally not the 
same as in its neighbors.  It is assumed that reaction 
stresses are set up near the boundaries of each grain to 
account for the variation in stress state from grain to 
grain.
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In this model, it is assumed that:

vThe elasTc deformaTon is small when compared to the plasTc 
strain.

vEach grain of the single crystal is subjected to the same 
homogeneous deformaTon imposed on the aggregate, 

deformation

Infinitesimal -

Large -

€ 

εgrain = ε ,    ˙ ε grain = ˙ ε 

€ 

Lgrain = L ,   Dgrain = D

Taylor Model for Polycrystals



Taylor Model: Hardening Alternatives

! The simplest assumption of all (rarely used in 
polycrystal plasticity) is that all slip systems in all grains 
harden at the same rate, h.

81

€ 

dτ = h dγ polyxtal

! The most common assumpTon (ooen used in polycrystal 
plasTcity) is that all slip systems in each grain harden at the 
same rate. In this case, each grain hardens at a different rate: 
the higher the Taylor factor, the higher the hardening rate 
(because the larger amount of microscopic slip).  The sum i is 
over all the acTve slip systems.

d⌧ = h
X

i

d�(i)



Taylor Model: Hardening 
Alternatives, contd.

! The next level of complexity is to allow each slip 
system to harden as a function of the slip on all the slip 
systems, where the hardening coefficient may be 
different for each system.  This allows for different 
hardening rates as a function of how each slip system 
interacts with each other system (e.g., co-planar, non-
co-planar etc.).  Note that, to obtain the crss for the jth
system (in the ith grain) one must sum up over all the 
slip system activities.

82

€ 

dτ j
(i) = h jkdγ k

(i)

k
∑



Taylor Model: Work Increment

! Regardless of the hardening model, the work done 
in each strain increment is the same, whether 
evaluated externally, or from the shear strains. 
The average over the stresses in each grain is 
equivalent to making an average of the Taylor 
factors (and multiplying by the CRSS).

83

dW = σ
polycrystal

dε = τ k (γ )
k
∑ dγ k

polycrystal
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Note:
Circles - computed data
Crosses – experimental 
data

Taylor Model: Comparison to Polycrystal

The stress-strain curve 
obtained for the aggregate 
by Taylor in his work is 
shown in the figure.  
Although a comparison of 
single crystal (under 
multislip conditions) and a 
polycrystal is shown, it is 
generally considered that 
the good agreement 
indicated by the lines was 
somewhat fortuitous!

The ratio between the two curves is the average Taylor factor, which in this case is ~3.1
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Taylor’s Rigid Plastic Model for Polycrystals

Another important conclusion based on this calculation, is 
that the overall stress-strain curve of the polycrystal is given 
by  the expression

€ 

σ = M τ(γ)   

By Taylor’s calculation, for FCC polycrystal metals, 

Where, 
t(g) is the cribcal resolved shear stress (CRSS as a funcbon of the shear 
strain) for a single crystal, assumed to have a single value;
<M> is an average value of the Taylor factor of all the grains (which changes 
with strain). 

€ 

M =   3.1 



Updating the Lattice Orientation

! This section analyzes one approach to computing 
the change in lattice orientation that results from 
slip.  The number of slip systems is not restricted 
to any particular value.

86
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Reminder – Notation: 3

! Plastic spin: W (sometimes W)
! measures the rotation rate; more than one kind of 

spin is used:
! “Rigid body” spin of the whole polycrystal: W
! “grain spin” of the grain axes (e.g., in torsion): Wg

! Rotation of the crystal axes in the sample frame: W*

! “lattice spin” from slip/twinning of the crystal (skew 
symmetric part of the strain): Wc.

! Rotation (small): w
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For texture development it is necessary to obtain the total spin for the 
aggregate. Note that the since all the grains are assumed to be subjected 
to the same displacement (or velocity field) as the aggregate, the total 
rotabon experienced by each grain will be the same as that of the 
aggregate. The q introduced here can be thought of as the skew-
symmetric counterpart to the Schmid tensor. 

For uniaxial tension    0=W*=W
Then,

€ 

dWe = −dWC = q(α )dγ (α )       
α=1
∑

Note: 

€ 

W e =W −W C  

Taylor Model: Grain Reorienta5on

€ 

qij
(α ) =

1
2

ˆ b i
(α ) ˆ n j

(α ) − ˆ b j
(α ) ˆ n i

(α )( )

Note: “W” denotes 
spin here, not 

work done
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Taylor model: Reorientation: 1

! Review of effect of slip system acSvity:
! Symmetric part of the distorSon tensor 

resulSng from slip:

! AnS-symmetric part of DeformaSon Strain Rate 
Tensor (used for calculaSng lajce rotaSons, 
sum over all the acSve slip systems): 

mij
(s) =

1
2

ˆ b i
(s) ˆ n j

(s) + ˆ b j
(s) ˆ n i

(s)( )

qij
(s) =

1
2

ˆ b i
(s) ˆ n j

(s) − ˆ b j
(s ) ˆ n i

(s)( )
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Taylor model: Reorientation: 2

! Strain rate from slip (add up contributions from 
all active slip systems):

! Rotation rate from slip, WC, (add up 
contributions from all active slip systems):

DC = ˙ γ (s)m(s)

s
∑

€ 

W C = ˙ γ (s)q(s)

s
∑
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Taylor model: Reorientation: 3

! Rotation rate of crystal axes (W*), where we 
account for the rotation rate of the grain itself, 
Wg:

! Rate sensitive formulation for slip rate in each 
crystal (solve as implicit equation for stress): 

W* =Wg −WC

€ 

DC = ˙ ε 0
m(s) :σ c

τ (s)

n ( s )

m(s) sgn m(s) :σ c( )
s
∑

= t(s)

Crystal axes            grain               slip
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Taylor model: Reorientation: 4

€ 

˙ γ (s) = ˙ ε 0
m(s) :σ c

τ (s)

n ( s )

sgn m(s) :σ c( )
 

= t(s)= t(s)

! The shear strain rate on 
each system is also 
given by the power-law 
relation (once the stress 
is determined):
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Iteration to determine stress 
state in each grain

! An iteraTve procedure is required to find the soluTon for 
the stress state, sc, in each grain (at each step). Note that 
the strain rate (as a tensor) is imposed on each grain, i.e., 
boundary condiGons based on strain.  Once a soluTon is 
found, then individual slipping rates (shear rates) can be 
calculated for each of the s slip systems.  The use of a rate 
sensiTve formulaTon for yield avoids the necessity of ad 
hoc assumpTons to resolve the ambiguity of slip system 
selecTon.

! Within the LApp code, the relevant subrouTnes are SSS 
and NEWTON
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Update orientation: 1

! General formula for rotation matrix:

! In the small angle limit (cosq ~ 1, sinq ~ q):

€ 

aij = δij cosθ + eijk nk sinθ
+ (1− cosθ)nin j

€ 

aij = δij + eijk nk θ
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Update orientation: 2

! In tensor form (small rotation approx.):
R = I + W*

! General relations: 
w = 1/2 curl u = 1/2 curl{x-X}  

- u := displacement

€ 

ω i =
1
2
eijk∂uk /∂X j

Ω jk = −eijkω i

ω i = −eijkΩ jk

W:= infinitesimal
rotation tensor
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Update orientation: 3

! To rotate an orientation:
gnew = R·gold

= (I + W*)·gold,

or, if no “rigid body” spin (Wg = 0),

Note: more complex algorithm required for relaxed 
constraints.

gnew = I + ˙ γ sqs
s
∑

# 

$ 
% 

& 

' 
( ⋅gold
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Combining small rotations

! It is useful to demonstrate that a set of small 
rotations can be combined through addition of 
the skew-symmetric parts, given that rotations 
combine by (e.g.) matrix multiplication.

! This consideration reinforces the importance of 
using small strain increments in simulation of 
texture development.
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Small Rotation Approximation
R3 = R2R1

⇔ R3 = I + ˙ γ 2q2( ) I + ˙ γ 1q1( )
⇔ Rik

(3) = δij + ˙ γ (2)qij
(2)( ) δ jk + ˙ γ (1)qjk

(1)( )
⇔ Rik

(3) = δijδ jk + δij ˙ γ (1)qjk
(1) + δ jk ˙ γ (2)qij

(2) + ˙ γ (2 )qij
(2) ˙ γ (1)qjk

(1)

≈ Rik(3) = δ ik + ˙ γ (1)qik(1) + ˙ γ (2)qik(2)

⇔ R3 = I + ˙ γ ( i )q ( i)

i
∑

Q.E.D.

Neglect this second
order term for
small rotations
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Taylor Model: Reorientation in Tension

Initial configuration

Final configuraFon, aGer 
2.37% of extension

Texture development = mix of
<111> and <100> fibers

Note that these results have been tested in considerable experimental detail by Winther et al. at 
Risø; although Taylor’s results are correct in general terms, significant deviations are also observed*.

*Winther G., 2008, Slip systems, lattice rotations and dislocation boundaries, Materials Sci Eng. A 483, 40-6

Each  area within the 
triangle represents a 
different operaHve 
vertex on  the single 
crystal yield surface



Final Texture

! It is not particularly clear from the previous figure but the 
Taylor theory (iso-strain) for uniaxial tension in fcc materials 
predicts that the tensile axis will move towards either the 
111 or 100 corner.  This means that the final texture is 
predicted to be a mix of <111> and <100> fibers.  This is, in 
fact, what is observed experimentally.

! Contrast this result for the Taylor theory (iso-strain) with 
that of the single slip situation (previous lecture, iso-stress) 
in which the tensile axis ends up parallel to 112. Note that 
this requires two slip systems to be active, the primary and 
the conjugate.  Thus the predicted iso-stress texture is a 
<112> fiber, which is not what is observed.

100



101 Taylor factor: 
multi-axial stress and strain states

! The development given so far needs to be generalized for 
arbitrary stress and strain states.

! Write the deviatoric stress as the product of a tensor with unit 
magnitude (in terms of von Mises equivalent stress) and the 
(scalar) critical resolved shear stress, tcrss, where the tensor 
defines the multiaxial stress state associated with a particular 
strain direction, D.

S = M(D) tcrss.
! Then we can find the (scalar) Taylor factor, M, by taking the inner 

product of the stress deviator and the strain rate tensor:
S:D = M(D):D tcrss = M tcrss.

! See p 336 of [Kocks] and the lecture on the Relaxed Constraints 
Model.
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Summary
! Multiple slip is very different from single slip.
! Multiaxial stress states are required to activate 

multiple slip.
! For cubic metals, there is a finite list of such 

multiaxial stress states (56).
! Minimum (microscopic) slip (Taylor) is equivalent to 

maximum work (Bishop-Hill).
! Solution of stress state still leaves the “ambiguity 

problem” associated with the distribution of 
(microscopic) slips; this is generally solved by using a 
rate-sensitive solution.
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Supplemental Slides
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Equations
Slide 31:  \tau =  m_{11} \sigma_{11}  + m_{22} \sigma_{22} + m_{33} \sigma_{33}  + ( m_{12}  + m_{21}) \sigma_{12}  \\+  (m_{13}  + m_{31})   
\sigma_{13}    +(m_{23}  + m_{32})  \sigma_{23} 

\begin{bmatrix} -C \\ B \\ F \\ G \\ H \end{bmatrix} = \begin{bmatrix} m_{22}^{(1) } & m_{22}^{(2)} & m_{22}^{(3)} & m_{22}^{(4)} & m_{22}^{(5)} \\ m_{33}^{(1)} & m_{33}^{(2)} & m_{33}^{(3)} 
& m_{33}^{(4)} & m_{33}^{(5)} \\ (m_{23}^{(1)}+m_{32}^{(1)}) & (m_{23}^{(2)}+m_{32}^{(2)}) & (m_{23}^{(3)}+m_{32}^{(3)}) & (m_{23}^{(4)}+m_{32}^{(4)}) & (m_{23}^{(5)}+m_{32}^{(5)}) \\
(m_{13}^{(1)}+m_{31}^{(1)}) & (m_{13}^{(2)}+m_{31}^{(2)}) & (m_{13}^{(3)}+m_{31}^{(3)}) & (m_{13}^{(4)}+m_{31}^{(4)}) & (m_{13}^{(5)}+m_{31}^{(5)}) \\ (m_{12}^{(1)}+m_{21}^{(1)}) & 
(m_{12}^{(2)}+m_{21}^{(2)}) & (m_{12}^{(3)}+m_{21}^{(3)}) & (m_{12}^{(4)}+m_{21}^{(4)}) & (m_{12}^{(5)} +m_{21}^{(5)})\end{bmatrix} \begin{bmatrix} \tau_1& \\ \tau_2& \\ \tau_3& \\
\tau_4& \\ \tau_5& \end{bmatrix}

SLIDE 34:
\begin{bmatrix} \tau_1& \\ \tau_2& \\ \tau_3& \\ \tau_4& \\ \tau_5& \end{bmatrix}= \begin{bmatrix} m_{11}^{(1) } & m_{22}^{(1) } & m_{33}^{(1)} & (m_{23}^{(1)}+m_{32}^{(1)}) & 
(m_{13}^{(1)}+m_{31}^{(1)})  & (m_{12}^{(1)}+m_{21}^{(1)}) 
\\ m_{11}^{(2)} &  m_{22}^{(2)} & m_{33}^{(2)} & (m_{23}^{(2)}+m_{32}^{(2)}) & (m_{13}^{(2)}+m_{31}^{(2)}) & (m_{12}^{(2)}+m_{21}^{(2)})  \\ m_{11}^{(3)} & m_{22}^{(3)} & m_{33}^{(3)} & 
(m_{23}^{(3)}+m_{32}^{(3)}) & (m_{13}^{(3)}+m_{31}^{(3)}) & (m_{12}^{(3)}+m_{21}^{(3)}) \\
m_{11}^{(4)} & m_{22}^{(4)} & m_{33}^{(4)} & (m_{23}^{(4)}+m_{32}^{(4)})  & (m_{13}^{(4)}+m_{31}^{(4)}) & (m_{12}^{(4)}+m_{21}^{(4)}) \\
m_{11}^{(5)} & m_{22}^{(5)} & m_{33}^{(5)}  & (m_{23}^{(5)}+m_{32}^{(5)}) & (m_{13}^{(5)}+m_{31}^{(5)})  & (m_{12}^{(5)}+m_{21}^{(5)}) \end{bmatrix} 
\begin{bmatrix} \sigma_{11}  \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23}  \\ \sigma_{13} \\ \sigma_{12}  \end{bmatrix} 
\begin{bmatrix} \tau_1& \\ \tau_2& \\ \tau_3& \\ \tau_4& \\ \tau_5& \end{bmatrix}= \begin{bmatrix} m_{22}^{(1) } & m_{33}^{(1)} & (m_{23}^{(1)}+m_{32}^{(1)}) & (m_{13}^{(1)}+m_{31}^{(1)})  & 
(m_{12}^{(1)}+m_{21}^{(1)})  \\ m_{22}^{(2)} & m_{33}^{(2)} & (m_{23}^{(2)}+m_{32}^{(2)}) & (m_{13}^{(2)}+m_{31}^{(2)}) & (m_{12}^{(2)}+m_{21}^{(2)})  \\ m_{22}^{(3)} & m_{33}^{(3)} & 
(m_{23}^{(1)}+m_{32}^{(3)}) & (m_{13}^{(3)}+m_{31}^{(3)}) & (m_{12}^{(3)}+m_{21}^{(3)}) \\
m_{22}^{(5)} & m_{33}^{(4)} & (m_{23}^{(1)}+m_{32}^{(4)})  & (m_{13}^{(4)}+m_{31}^{(4)}) & (m_{12}^{(4)}+m_{21}^{(4)}) \\
m_{22}^{(5)} & m_{33}^{(5)}  & (m_{23}^{(5)}+m_{32}^{(5)}) & (m_{13}^{(5)}+m_{31}^{(5)})  & (m_{12}^{(5)}+m_{21}^{(5)}) \end{bmatrix} 
\begin{bmatrix} -C \\ B \\ F \\ G \\ H \end{bmatrix} 

SLIDE 37
\delta w = \sigma_{11} d\epsilon_{11}  + \sigma_{22} d\epsilon_{22} +\sigma_{33} d\epsilon_{33} + 2 \sigma_{12} d\epsilon_{12}  + 2 \sigma_{13} d\epsilon_{13}  +
2 \sigma_{23} d\epsilon_{23} 

SLIDE 53:   \Omega_{ij}^{(\alpha)} = \frac{1}{2} (b_i&^{(\alpha)} n_j&^{(\alpha)} - b_j&^{(\alpha)} n_i&^{(\alpha)}  )


