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Lecture	Objectives
• Introduce the concept of the Orientation Distribution (OD) as the 

quantitative description of “preferred crystallographic orientation” 
a.k.a. “texture”.

• Explain the motivation for using the OD as something that enables 
calculation of anisotropic properties, such as elastic compliance, yield 
strength, permeability, conductivity, etc.

• Illustrate discrete ODs and contrast them with mathematical 
functions that represent the OD, a.k.a. “Orientation Distribution 
Function (ODF)”.

• Explain the connection between the location of components in the 
OD, their Euler angles and pole figure representation.

• Present an example of an OD for a rolled fcc metal.
• Offer preliminary (qualitative) explanation of the effect of symmetry 

on the OD.

Concept Params.	Euler		Normalize		Vol.Frac.		Cartesian		Polar	Components	



In	Class	Questions:	1
1. Why does an orientation distribution (OD) 

require three parameters?
2. What are the similarities and differences 

between an OD and a probability density 
function?

3. What is the practical value of an OD (as 
compared to pole figures, e.g.)?

4. Does an OD have to be parameterized with Euler 
angles?

5. Against which Euler angles are ODs typically 
sectioned?
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In	Class	Questions:	2

1. What distribution of intensity do we expect to 
see for a rolled fcc metal?

2. What is meant by the “beta fiber”?
3. Where are standard texture components of 

rolled fcc metals located in the space?
4. What are some differences between discrete 

forms of ODs and series expansion forms?
5. What is the size of the volume element in 

orientation space?
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In	Class	Questions:	3
1. Explain how projecting on the first Euler angle 

yields an inverse pole figure (for the sample Z 
direction) and projecting on the 3rd Euler angle 
yields a pole figure (for the crystal Z direction).

2. What are generalized spherical harmonic 
(functions)?

3. How do pole figures relate to the OD?
4. How do volume fractions (of texture 

components) relate to intensity values in the 
OD?
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Orientation	Distribution	(OD)
• The Orientation Distribution (OD) is a central concept in texture analysis and 

anisotropy.
• Normalized probability* distribution, is typically denoted by “f” in whatever 

space is used to parameterize orientation, g, i.e. as a function, f(g), of three 
variables.  Typically 3 (Bunge) Euler angles are used, hence we write the OD as 
f(f1,F,f2).  The OD is closely related to the frequency of occurrence of any 
given texture component, which means that f ³ 0 (very important!).

• Probability density (normalized to have units of multiples of a random density, 
or MRD) of finding a given orientation (specified by all 3 parameters) is given 
by the value of the OD function, f. Multiples of a uniform density, or MUD, is 
another exactly equivalent unit.

• ODs can be defined mathematically in any space appropriate to a continuous 
description of rotations (Euler angles, axis-angle, Rodrigues vectors, unit 
quaternions).  The Euler angle space is generally used because the series 
expansion representation depends on the generalized spherical harmonics.

• Remember that the space used to describe the OD is always periodic, 
although this is not always obvious (e.g. in Rodrigues vector space).

Concept Params.	Euler		Normalize		Vol.Frac.		Cartesian		Polar	Components	
*A typical OD(f) has a different normalization than a standard probability distribution; see later slides
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Meaning	of	an	OD
• Each point in the orientation distribution represents a 

single specific orientation or texture component.  
• Most properties depend on the complete orientation (all 

3 Euler angles matter), therefore must have the OD to 
predict properties.  Pole figures, for example, are not 
enough.

• Can use the OD information to determine 
presence/absence of components, volume fractions, 
predict anisotropic properties of polycrystals.

• Note that we also need the microstructure in order to 
predict anisotropic properties.

Concept Params.	Euler		Normalize		Vol.Frac.		Cartesian		Polar	Components	
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Orientation	Distribution	Function	(ODF)
• A mathematical function is always available to describe the (continuous) 

orientation density; this is known as an “orientation distribution function” 
(ODF).  Properly speaking, any texture can be described by an OD but “ODF” 
should only be used if a functional form has been fitted to the data.

• From probability theory, however, remember that, strictly speaking, the term 
“distribution function” is reserved for the cumulative frequency curve (only used 
for volume fractions in this context) whereas the ODF that we shall use is 
actually a probability density but normalized in a different way so that a 
randomly (uniformly) oriented material exhibits a level (intensity) of unity.  Such 
a normalization is different than that for a true probability density (i.e. such that 
the area under the curve is equal to one - to be discussed later).

• Historically, ODF was associated with the series expansion method for fitting 
coefficients of generalized spherical harmonics [functions] to pole figure data*.  
The set of harmonics+coefficients constitute a mathematical function describing 
the texture.  Fourier transforms represent an analogous operation for 1D data.

Concept Params.	Euler		Normalize		Vol.Frac.		Cartesian		Polar	Components	

*H. J. Bunge: Z. Metall. 56, (1965), p. 872.
*R. J. Roe: J. Appl. Phys. 36, (1965), p. 2024.
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Orientation	Space:	Why	Euler	Angles?
• Why use Euler angles, when many other variables could 

be used for orientations?
• The solution of the problem of calculating ODs from 

pole figure data was solved by Bunge and Roe by 
exploiting the mathematically convenient features of 
the generalized spherical harmonics, which were 
developed with Euler angles.  Finding the values of 
coefficients of the harmonic functions made it into a 
linear programming problem, solvable on the 
computers of the time.

• Generalized spherical harmonics are the same functions 
used to describe electron orbitals in quantum physics.

• If you are interested in a challenging mathematical 
problem, find a set of orthogonal functions that can be 
used with any of the other parameterizations 
(Rodrigues, quaternion etc.).  See e.g. Mason, J. K. and 
C. A. Schuh (2008). "Hyperspherical harmonics for the 
representation of crystallographic texture." Acta
materialia 56 6141-6155.

Concept		Params.	Euler		Normalize		Vol.Frac.		Cartesian		Polar	Components	

Another website:
http://www-
udc.ig.utexas.edu/external/becke
r/teaching-sh.html

Look for visualization as: 
spherical_harmonics.mpeg
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Euler	Angles,	Ship	Analogy
• Analogy: position and the 

heading of a boat with respect 
to the globe.  Latitude or co-
latitude (Q) and longitude (y) 
describe the position of the 
boat; third angle describes the 
heading (f) of the boat 
relative to the line of 
longitude that connects the 
boat to the North Pole.

• Note the sphere always has 
unit radius.

Concept		Params.	Euler Normalize		Vol.Frac.		Cartesian		Polar	Components	

[Kocks, Tomé, Wenk]
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Area	Element,	Volume	Element
• Spherical coordinates result 

in an area element whose 
magnitude depends on the 
declination (co-latitude):
dA =	sinQ dQ dy
Volume element = 
dV =	
dA df = 
sinQ dQ dy df . 
(Kocks angles)

Q

dA

Concept		Params.	Euler Normalize		Vol.Frac.		Cartesian		Polar	Components	

Bunge Euler angles:
Volume element = 
dV =	
dA df2 = 
sinF dF df1 df2.

[Kocks, Tomé, Wenk]
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Description	of	Probability
• Note the difference between probability density function (pdf), f(x), 

and the cumulative probability function (cdf), F(x).  The example 
below is that of a simple (1D) misorientation distribution in the angle.
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13 Normalization	of	OD
• If the texture is random then the OD is defined such that it has 

the same value of unity everywhere, i.e. 1.
• Any ODF is normalized by integrating over the space of the 3 

parameters (as for pole figures).
• Sin(F) corrects for volume of the element (previous slide).  The 

integral of Sin(F) on [0,π) is 2.
• Factor of 2π*2*2π	=	8π2 accounts for the volume of the 

space, based on using radian measure f1 = 0 - 2π, F = 0 - π, 
f2 = 0 - 2π. For degrees and the equivalent ranges (360, 180, 
360°), the factor is 360°*2*360° =	259,200	(°2).

1
8π2

f ϕ1,Φ,ϕ2( )∫∫∫ sinΦdϕ1dΦdϕ2 =1
Concept		Params.	Euler		Normalize		Vol.Frac.		Cartesian		Polar	Components	



14 Example	of	
random	

orientation	
distribution	in	
Euler	space

Note the smaller densities of points (arbitrary scale) near F = 0°.  
When converted to intensities, however, then the result is a 
uniform, constant value of the OD (because of the effect of the 
volume element size, sinFdFdf1df2).  If a material had randomly 
oriented grains all of the same size then this is how they would 
appear, as individual points in orientation space.  We will 
investigate how to convert numbers of grains in a given region (cell) 
of orientation space to an intensity in a later lecture (Volume 
Fractions).

[Bunge]

Concept		Params.	Euler		Normalize Vol.Frac.		Cartesian		Polar	Components	
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PDF	versus	ODF
• So, what is the difference between an ODF and a pdf (probability density function, as 

used in statistics)?
• First, remember that any orientation function is defined over a finite range of the 

orientation parameters (because of the periodic nature of the space).
• Note the difference in the normalization based on integrals over the whole space, 

where the upper limit of W signifies integration over the whole range of orientation 
space: integrating the PDF produces unity, regardless of the choice of 
parameterization, whereas the result of integrating the ODF depends on both the 
choice of parameters and the range used (i.e. the symmetries that are assumed) but is 
always equal to the volume of the space.

• Why do we use different normalization from that of a PDF?  The answer is mainly one 
of convenience: it is much easier to compare ODFs in relation to a uniform/random 
material and to avoid the dependence on the choice of parameters and their range.

• Note that the periodic nature of orientation space means that definite integrals can 
always be performed, in contrast to many probability density functions that extend to 
infinity (in the independent variable).

€ 

f (x) ≥ 0, ∀ x

f (g)dg =1
0

Ω

∫

€ 

f (x) ≥ 0, ∀ x

f (g)dg = dg
0

Ω

∫0

Ω

∫
Statistics:

pdf→
Texture:
ODF→



16 Discrete	versus	Continuous	
Orientation	Distributions

• As with any distribution, an OD can be described either as 
a continuous function (such as generalized spherical 
harmonics) or in a discrete form.

• Continuous form: Pro: for weak to moderate textures, 
harmonics are efficient (few numbers) and convenient for 
calculation of properties, automatic smoothing of 
experimental data; Con: unsuitable for strong (single 
crystal) textures, only available (effectively) for Euler 
angles.

• Discrete form: Pro: effective for all texture strengths, 
appropriate to annealed microstructures (discrete grains), 
available for all parameters; Con: less efficient for weak 
textures.

Concept		Params.	Euler		Normalize		Vol.Frac.		Cartesian		Polar	Components	



17 Standard	5x5x5°
Discretization

• The standard discretization (in the popLA
package, for example) is a regular 5° grid 
(uniformly spaced in all 3 angles) in Euler 
space.

• Illustrated for the texture in “demo” 
which is a rolled and partially 
recrystallized copper. {x,y,z} are the 
three Bunge Euler angles.  The lower 
view shows individual points to make it 
clearer that, in a discrete OD, an 
intensity is defined at each point on the 
grid.

• 3D views with Paraview using demo.vtk
as input (available on the 27-750 
website). Try thresholding the image for 
yourself.

Concept		Params.	Euler		Normalize		Vol.Frac.		Cartesian		Polar	Components	
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Discrete	OD
• Real data is available in discrete form e.g. from 

EBSD.
• Normalization also required for discrete OD, just 

as it was for pole figures.
• Define a cell size (typically ∆[angle]= 5°) in each 

angle.
• Sum the intensities over all the cells in order to 

normalize and obtain an intensity (similar to a 
probability density, but with a different 
normalization in order to get units of MRD).

1 =
1
8π2
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Concept		Params.	Euler		Normalize		Vol.Frac.		Cartesian		Polar	Components	
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PFs	⇄ OD
• A pole figure is a projection of the 

information in the orientation 
distribution, i.e. many points in an 
ODF map onto a single point in a PF.

• Equivalently, can integrate along a 
line in the OD to obtain the intensity 
in a PF.

• The path in orientation space 
(defined by variable rotation about a 
fixed axis) is, in general, a curve in 
Euler space.  In Rodrigues space, 
however, it is always a straight line 
(which was exploited by Dawson -
see N. R. Barton, D. E. Boyce, P. R. Dawson: 
Textures and Microstructures Vol. 35, (2002), 
p. 113.).

Pole Figure

Orientation
Distribution

(χ,φ) (ψ,Θ,φ)

(ψ,Θ,φ)

(ψ,Θ,φ)

(ψ,Θ,φ)

(ψ,Θ,φ) 1

2

3

4

5

Concept		Params.	Euler		Normalize		Vol.Frac.		Cartesian		Polar	Components	

€ 

P(hkl )(α,β) =
1
2π

f (g)dΓ∫

Kocks Ch. 3, fig. 1



20 Distribution	Functions	and	
Volume	Fractions

• Recall the difference between probability density functions and 
probability distribution functions, where the latter is the cumulative 
form. 

• For ODs, which are like probability densities, integration over a range 
of the parameters (Euler angles, for example) gives us a volume 
fraction (equivalent to the cumulative probability function).

• Note that the typical 1-parameter Misorientation Distribution, based 
on just the misorientation angle, is a true  probability density 
function, perhaps because it was originally put in this form by 
Mackenzie (Mackenzie, J. K. (1958). "Second paper on statistics 
associated with the random orientation of cubes." Biometrica 45: 
229-240).  This is the only type of texture plot that is a true 
probability density function (as in statistics).  We will discuss 
misorientations in later lectures.

Concept Params.	Euler		Normalize		Vol.Frac.		Cartesian		Polar	Components	



21 Grains,	Orientations,	
and	the	OD

• Given a knowledge of orientations of 
discrete points in a body with volume V, OD 
given by:

Given the orientations and volumes of the 
N (discrete) grains in a body, OD given by:

dV g( )
V

= f g( )dg

€ 

dN g( )
N

= f g( )dg

Concept		Params.	Euler		Normalize		Vol.Frac. Cartesian		Polar	Components	



22 Volume	Fractions	from	Intensity	
in	the	[continuous]	OD

Vf ϕ1,Φ,ϕ2( ) = f ϕ1,Φ,ϕ2( )dg
ϕ2 −Δϕ2

ϕ2 +Δϕ2

∫
Φ−ΔΦ

Φ+ΔΦ

∫
ϕ1−Δϕ1

ϕ1+Δϕ1

∫

Vf ϕ1,Φ,ϕ2( ) = f ϕ1,Φ,ϕ2( )sinΦd∫∫∫ ϕ1dΦdϕ2

€ 

Vf g( ) =
ΔV g( )
Vtotal

=
f g( )dg

dΩ∫
f g( )dg

Ω
∫

Concept		Params.	Euler		Normalize		Vol.Frac. Cartesian		Polar	Components	

,where W denotes the entire orientation space, and dW denotes the region around 
the texture component of interest.  For specific ranges of Euler angles:
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Intensity	from	Volume	Fractions
Objective: given information on volume fractions (e.g. 
numbers of grains of a given orientation), how do we 
calculate the intensity in the OD?  Answer: just as we 
differentiate a cumulative probability distribution to obtain a 
probability density, so we differentiate the volume fraction 
information:
•  General relationships, where f and g have their usual 
meanings, W is volume in orientation space, V is volume and 
Vf is volume fraction:

€ 

Vf (g) = f (g)dg∫

f (g) =
1
V
dV (g)
dg

=
ΔVf

Δg g

Concept		Params.	Euler		Normalize		Vol.Frac. Cartesian		Polar	Components	
€ 

For a PDF, one would use :

1
V
dV g( )
dg

=
f g( )
dg

Ω
∫
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Intensity	from	Vf,	contd.
• For 5°x5°x5° discretization within a 90°x90°x90°

volume, we can particularize to:

Vf (g) = 18100 °2 f (g)sinΦdΦdϕ1dϕ2∫

f (g) = dV(g)
dg

=
ΔVf
Δg g

= 8100°2
ΔVf

25°2 cos Φ − 2.5°[ ]− cos Φ + 2.5°[ ]( )

Concept		Params.	Euler		Normalize		Vol.Frac. Cartesian		Polar	Components	
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Representation	of	the	OD
• Challenging issue!  
• Typical representation: Cartesian plot (orthogonal 

axes) of the intensity in Euler [angle] space.
• Standard but unfortunate choice: Euler angles, 

which are inherently spherical (globe analogy).
• Recall the Area/Volume element: points near the 

origin are distorted (too large area).
• Mathematically, as the second angle approaches 

zero (or 180°), the 1st and 3rd angles become 
linearly dependent.  
At F=0, only f1+f2 (or f1-f2) is significant.

Concept		Params.	Euler		Normalize		Vol.Frac.		Cartesian		Polar	Components	
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OD	Example
• Example of texture in rolled fcc metals is presented.
• Symmetry of the fcc crystal and the sample (i.e. cubic-

orthorhombic) allows us to limit the space to a 90x90x90°
region (see the discussion in the lecture on symmetry).

• Intensity is limited, approximately to lines in the space, 
called [partial] fibers.

• Since we dealing with intensities in a 3-parameter space, it 
is convenient to take sections through the space and make 
contour maps.

• Example has sections with constant f2.
• For bcc metals, it is more typical to plot sections with 

constant f1.

Concept		Params.	Euler		Normalize		Vol.Frac.		Cartesian		Polar	Components	
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3D	Animation	in	Euler	Space
• Rolled commercial purity Al

f2

f1

F

Animation shows a slice progressing up in f2; each slice is drawn at a 5° interval (slice number 18 = 90°)

Animation made with DX - see www.opendx.org



28 Cartesian	Euler	Space

f1

F

f2

Concept		Params.	Euler		Normalize		Vol.Frac.		Cartesian		Polar	Components	

[Humphreys	&	Hatherley]

Line diagram shows a schematic of the beta-fiber typically found in an fcc rolling texture with major 
components labeled (see legend below).  The fibers labeled “alpha” and “gamma” correspond to 
lines of high intensity typically found in rolled bcc metals.

G: Goss
B: Brass
C: Copper
D: Dillamore
S: “S” component
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OD	Sections
f2 =	0°

f2 =	5° f2 =	15°
f2 =	10°

f1F

f2

Concept		Params.	Euler		Normalize		Vol.Frac.		Cartesian		Polar	Components	

Sections are drawn as contour maps, one 
per value of f2 (0, 5, 10 … 90°).

Example of copper rolled to 90% reduction 
in thickness (e ~ 2.5)

B

S

CD

G

[Humphreys	&	Hatherley]

[Bunge]



30 Example	of	OD	in	Bunge	Euler	Space

•  OD is represented by a
series of sections, i.e. one
(square) box per section.
•  Each section shows the
variation of the OD intensity
for a fixed value of the third
angle.
•  Contour plots interpolate
between discrete points.
•  High intensities mean that the 
corresponding orientation is 
common (occurs frequently).

f1

F

Section	at	15°

Concept		Params.	Euler		Normalize		Vol.Frac.		Cartesian		Polar	Components	

[Bunge]



31 Example	of	
OD	in	Bunge	
Euler	Space,	
contd.

This	OD	shows	the	texture
of	a	cold	rolled	copper	sheet.
Most	of	the	intensity	is
concentrated	along	a	fiber.
Think	of	“connect	the	dots!”

The	technical	name	for	this	
is	the	beta	fiber.

Concept		Params.	Euler		Normalize		Vol.Frac.		Cartesian		Polar	Components	

[Bunge]
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Numerical	
⇄

Graphical
CUR80-2 6/13/88            COMPUTED BY WIMV  6-MAR-89
 CODK  5.0 90.0  5.0 90.0 1 1 1 2 3  100      phi= 45.0
    3   3   3   3   4   9  14  43  82  99  82  43  14   9   4   3   3   3   3
    2   3   3   4   7  11  15  32  56  58  51  47  29  13   6   5   4   3   4
    3   3   3   3   4   5  10  33  43  63  82  73  50  32  18  13   9   9  12
    3   4   7   7   9   6  18  15  51  99 143 161 128 102  77  59  52  42  42
    4   4   5   6   3   9   6  14  23  39  72 117 159 167 149 158 166 177 191
    2   1   2   3   4   4   7   7  10  20  51 108 156 191 258 387 567 760760 835
    1   1   2   2   2   3   3   3   3   8  22  48 104 184 299 551 9991526   1765   
    1   1   1   1   2   1   1   2   4   6  15  26  49  87 148 248 505 837 930
    1   1   2   1   1   1   2   1   2   4   7  13  23  34  42  56  80  89  82
    1   1   1   2   2   2   3   3   3   4   9  12  15  19  28  29  33  38  36
    1   2   2   1   1   1   1   1   1   2   2   2   2   2   2   3   3   3   4
    2   2   2   2   1   1   1   1   1   2   2   2   2   2   2   2   1   1   1
    5   4   4   4   4   3   3   3   3   2   2   2   1   1   2   1   1   1   1
    9  11   9  10  13  15   9   9   9   6   6   6   6   4   4   4   3   3   3
    9  12  13  13  18  18  14  16  15  15  16  11   8   7   7   5   4   3   2
   25  28  33  31  33  35  34  37  43  52  63  74  55  22  10  14  10   7   7
   14  13  15  16  17  18  20  24  36  57  88 113 102  66  36  28  23  21  18
    5   7   9   9  14  24  31  46  94 200 342 418 377 285 205 158 148 138 138
   13  13  13  14  20  31  50  99 201 505 980132013781155 835 646 480 382 346

f1

F

f2 =	45°

Example	of	a
single	section

Concept		Params.	Euler		Normalize		Vol.Frac.		Cartesian		Polar	Components	

[Bunge]



33 (Partial)	Fibers	in	
fcc	Rolling	Textures

f1

F f2

C	=	Copper

B	=	Brass

Concept		Params.	Euler		Normalize		Vol.Frac.		Cartesian		Polar	Components	

[Bunge]

[Humphreys	&	Hatherley]
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OD	⇄ Pole	Figure

f1

F

B	=	Brass C	=	Copper

f2 =	45°

Note	that	any	given	component	that	is	represented	as	a	point	in	
orientation	space	occurs	in	multiple	locations	in	each	pole	figure.

Concept		Params.	Euler		Normalize		Vol.Frac.		Cartesian		Polar	Components	

[Kocks, Tomé, Wenk]
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{001}

<100>

{011}

35

Crystal Axes

Sample Axes

RD

TD

ND

Rotation 1 (φ1): rotate sample axes about ND

Rotation 2 (Φ): rotate sample axes about rotated RD

Rotation 3 (φ2): rotate sample axes about rotated ND

a

Euler Angles represent a crystal orientation with 
respect to sample axes

Component RD ND

Cube <100> {001}

Goss <100> {011}

Brass <112> {110}

Copper <111> {112}

100

010

001

Euler	Angles:	recap

Slide from Lin Hu [2011]
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{001}

<100>

{011}

36

Rotation 1 (φ1): rotate sample axes about ND

Rotation 2 (Φ): rotate sample axes about rotated RD

Rotation 3 (φ2): rotate sample axes about rotated ND

aComponent Euler Angles (°)

Cube (0, 0, 0)

Goss (0, 45, 0)

Brass (35, 45, 0)

Copper (90, 45, 45)

010

001

Texture	Components	
versus	Orientation	Space

Φ φ1

φ2

Cube {100}<001> (0, 0, 0)
Goss 
{110}<001> 
(0, 45, 0)

Brass 
{110}<-112> 
(35, 45, 0)

Orientation Space

Slide from Lin Hu [2011]
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Φ φ1

φ2

Cube {100}<001> (0, 0, 0)
Goss 
{110}<001> 
(0, 45, 0)

Brass 
{110}<-112> 
(35, 45, 0)

ODF gives the density of grains having 
a particular orientation.

ODF:	3D	vs.	sections

ODF
Orientation Distribution Function f (g)

g = {φ1, Φ, φ2}  
Slide from Lin Hu [2011]
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Texture	Components
• Many components have names to aid the 

memory.
• Specific components in Miller index notation have 

corresponding points in Euler space, i.e. fixed 
values of the three angles.

• Lists of components: the Rosetta Stone of 
texture!

• Very important: each component occurs in more 
than one location because of the combined 
effects of crystal and sample symmetry!!

Concept		Params.	Euler		Normalize		Vol.Frac.		Cartesian		Polar	Components	



Texture	Component	Table
• In the following slide, there are four 

columns.  
• Each component is given in Bunge and in 

Kocks angles.
• In addition, the values of the angles are 

given for two different relationships 
between Materials axes and Instrument 
axes.

• Instrument axes means the Cartesian axes 
to which the Euler angles are referred to.  In 
terms of Miller indices, (hkl)//3, and 
[uvw]//1.

• The difference between these two settings is 
not always obvious in a set of pole figures 
but can cause considerable confusion with 
Euler angle values.
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40 Table 4.F.2.  fcc Rolling Texture Components: Euler Angles and Indices

Name Indices Bunge
(ϕ1,Φ,ϕ2)
RD= 1

Kocks
(ψ,Θ,φ)
RD= 1

Bunge
(ϕ1,Φ,ϕ2)
RD= 2

Kocks
(ψ,Θ,φ)
RD= 2

copper/
1st var.

{112}〈111̄〉 40, 65, 26 50, 65, 26 50, 65, 64 39, 66, 63

copper/
2nd var.

{112}〈111̄〉 90, 35, 45 0, 35, 45 0, 35, 45 90, 35, 45

S3* {123}〈634̄〉 59, 37, 27 31, 37, 27 31, 37, 63 59, 37, 63
S/ 1st var. (312)<0 2 1> 32, 58, 18 58, 58, 18 26, 37, 27 64, 37, 27
S/ 2nd var. (312)<0 2 1> 48, 75, 34 42, 75,34 42, 75, 56 48, 75, 56
S/ 3rd var. (312)<0 2 1> 64, 37, 63 26, 37, 63 58, 58, 72 32, 58, 72
brass/
1st var.

{110}〈1̄12〉 35, 45, 0 55, 45, 0 55, 45, 0 35, 45, 0

brass/
2nd var.

{110}〈1̄12〉 55, 90, 45 35, 90, 45 35, 90, 45 55, 90, 45

brass/
3rd var.

{110}〈1̄12〉 35, 45, 90 55, 45, 90 55, 45, 90 35, 45, 90

Taylor {4 4 11}〈11 11 8̄〉 42, 71, 20 48, 71, 20 48, 71, 70 42, 71, 70
Taylor/
2nd var.

{4 4 11}〈11 11 8̄〉 90, 27, 45 0, 27, 45 0, 27, 45 90, 27, 45

Goss/
1st var.

{110}〈001〉 0, 45, 0 90, 45, 0 90, 45, 0 0, 45, 0

Goss/
2nd var.

{110}〈001〉 90, 90, 45 0, 90, 45 0, 90, 45 90, 90, 45

Goss/
3rd var.

{110}〈001〉 0, 45, 90 90, 45, 90 90, 45, 90 0, 45, 90
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Wenk]
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Miller	
Index	
Map	in	
Euler	
Space

Bunge,	p.23	et	seq.
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f2 =	45°
section,
Bunge
angles

Goss

Copper

Brass
Concept		Params.	Euler		Normalize		Vol.Frac.		Cartesian		Polar	Components	

Gamma fiber

Al
ph

a 
fib

er



43

3D	Views
a)	Brass					b)	Copper					c)	S							
d)	Goss					e)	Cube			
f)	combined	texture	
1: {35, 45,	90},	brass,							
2: {55, 90, 45},	brass
3: {90, 35, 45},	copper,				
4: {39, 66, 27},	copper
5: {59, 37, 63},	S,					
6: {27, 58, 18},	S,									
7: {53, 75, 34},	S
8: {90, 90, 45},	Goss
9:	{0, 0, 0},	cube
10: {45, 0, 0},	rotated	cube
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• One could section or slice Euler space on any of the 3 axes.  By convention, 
only sections on the 1st or 3rd angle are used.  If f1 is constant in a section, 
then we call it a Sample Orientation Distribution, because it displays the 
positions of sample directions relative to the crystal axes.  Conversely, 
sections with f2 constant we call it a Crystal Orientation Distribution, because 
it displays the positions of crystal directions relative to the sample axes. 

SOD	versus	COD
• An average of the SOD made by averaging 

over the 1st Euler angle, 
f1, gives the inverse pole figure for the 
sample-Z (ND) direction.

• An average of the COD made by 
averaging over the 3rd Euler angle, f2, 
gives the pole figure for the crystal-Z 
(001) direction.
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Section	Conventions

Crystallite Orientation
Distribution

Sample Orientation
Distribution

COD SOD
fixed third angle in each section fixed first angle in each section

sections in (φ1,Φ)/(Ψ,Θ) sections in (φ2,Φ)/(φ,Θ)
φ2/φ = constant φ1/Ψ = constant

Reference = Sample Frame Reference = Crystal Frame
Average of sections->

(001) Pole Figure
Average of sections-> ND

Inverse Pole Figure
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Tomé, 
Wenk]
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Summary
• The concept of the orientation distribution has been 

explained.
• The discretization of orientation space has been explained.
• Cartesian plots have been contrasted with polar plots.
• An example of rolled fcc metals has been used to illustrate 

the location of components and the characteristics of an 
orientation distribution described as a set of intensities on a 
regular grid in Euler [angle] space.

• For correct interpretation of texture results in rolled 
materials, you must align the RD with the X direction 
(sample-1)!

• Remember that each deformation type (rolling vs. drawing 
vs. shear) and each crystal lattice has its own set of typical 
texture components.
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Supplemental	Slides
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Need	for	3	Parameters
• Another way to think about orientation: 

rotation through q about an arbitrary axis, 
n; this is called the axis-angle description.

• Two numbers required to define the axis, 
which is a unit vector.

• One more number required to define the 
magnitude of the rotation.

• Reminder!  Positive rotations are 
anticlockwise = counterclockwise!
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Sets	of	Randomly	Chosen	
Orientations

• A reasonable question to ask, or something that one needs from time to 
time, is how best to generate a randomly chosen set of orientations, that, 
when converted into an OD, yields a uniform distribution?

• We assume that the reader is familiar with how to invoke a “random 
number generator” on a computer (e.g. “RAND”), and that such functions 
are pseudo-random in the sense that they produce a sequence of values 
between 0 and 1 with uniform density over that interval in a sequence 
that has minimal regularity.

• The safest procedure is to generate random values of the Euler angles 
over the full range (no symmetry included).  Thus: { 2π*RAND , 
acos(2*RAND-1) , 2π*RAND }.

• Note that very large numbers of points are required in order to obtain an 
OD with intensities close to 1, especially near F=0 where the data 
becomes sparse.
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Polar	OD	Plots

• As an alternative to the (conventional) Cartesian 
plots, Kocks & Wenk developed polar plots of 
ODs.

• Polar plots reflect the spherical nature of the 
Euler angles, and are similar to pole figures (and 
inverse pole figures).

• Caution: they are best used with angular 
parameters similar to Euler angles, but with sums 
and differences of the 1st and 3rd Euler angles.
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Diagram showing the relationship between coordinates in
square (Cartesian) sections, polar sections with Bunge
angles, and polar sections with Kocks angles.

Polar	versus	Cartesian	Plots
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Tomé, 
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52 Continuous	Intensity	Polar	
Plots

COD sections (fixed third angle, f) for copper cold 
rolled to 58% reduction in thickness.  Note that 
the maximum intensity in each section is well aligned 
with the beta fiber (denoted by a "+" symbol in each section). 

BrassCopper S Goss
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Euler	Angle	Conventions

Bunge	and	Canova	are	inverse	to	one	another
Kocks and	Roe	differ	by	sign	of	third	angle
Bunge	and	Canova	rotate	about	x’,	Kocks,	Roe,	Matthis
about	y’ (2nd	angle).

Specimen	Axes
“COD”

Crystal	Axes
“SOD”
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Where	is	the	RD?	(TD,	ND…)

In	spherical	COD	plots,	the	rolling	direction	is	typically	assigned	to	
Sample-1	=	X.		Thus	a	point	in	orientation	space	represents	the	
position	of	[001]	in	sample	coordinates	(and	the	value	of	the	third	
angle	in	the	section	defines	the	rotation	about	that	point).	Care	is	
needed	with	what	“parallel”	means:	a	point	that	lies	between	ND	and	
RD	(Y=0°)	can	be	thought	of	as	being	“parallel”	to	the	RD	in	that	its	
projection	on	the	plane	points	towards	the	RD.

Kocks Roe												Bunge												Canova

RD

TD TD TD TD

RD RD
RD
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Where	is	the	RD?	(TD,	ND…)

RD

In	Cartesian	COD	plots	(f2 constant	in	each	section),	the	rolling	
direction	is	typically	assigned	to	Sample-1	=	X,	as	before.		Just	as	in	the	
spherical	plots,	a	point	in	orientation	space	represents	the	position	of	
[001]	in	sample	coordinates	(and	the	value	of	the	third	angle	in	the	
section	defines	the	rotation	about	that	point).		The	vertical	lines	in	the	
figure	show	where	orientations	“parallel”	to	the	RD	and	to	the	TD	
occur.		The	(distorted)	shape	of	the	Cartesian	plots	means,	however,	
that	the	two	lines	are	parallel	to	one	another,	despite	being	orthogonal	
in	real	space.

TD
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Miller	Index	
Map,	contd.
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