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Objectives
• How to convert Euler angles to an orientation matrix, and back.
• How to convert an orientation matrix to Miller indices, and back.
• Review of symmetry for both crystals and materials processing.
• Explain symmetry operators, their matrix representation, and how to use them to 

find all the symmetrically equivalent descriptions of a given texture component.
• To illustrate the effect of crystal and sample symmetry on the Euler space required 

for unique representation of orientations.
• To point out that sample symmetry is statistical rather than physical.  Also that 

orientations related by sample symmetry are, in general, physically distinct.
• To explain why Euler space is generally represented with each angle in the range 0-

90°, instead of the most general case of 0-360° for f1 and f2, and 0-180° for F.
• To point out the special circumstance of cubic crystal symmetry, combined with 

orthorhombic sample symmetry, and the presence of 3 equivalent points in the 
90x90x90° “box” or “reduced space”.

• To explain the concept of “fundamental zone”.
• Part 1 of the lecture deals with orientation matrices, Euler angles and Miller indices.
• Part 2 provides a qualitative description of symmetry and its effects.  
• Part 3 provides the quantitative description of how to express symmetry operations 

as rotation matrices and apply them to orientations.



In	Class	Questions:	1
1. What is a fundamental zone?
2. What is the difference between “crystal 

symmetry” and “sample symmetry”?
3. Which kind of symmetry is physical in nature, 

and which one is statistical?
4. Which point group is applicable to cubic metals?  

Hexagonal metals? Tetragonal tin?
5. List the common types of sample symmetry.
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In	Class	Questions:	2
1. What limits on the Euler angles are appropriate to cubic-

monoclinic symmetry?
2. Give an example of a symmetry operator in the 

hexagonal group 622.
3. Explain how to start with a set of Euler angles, apply 

symmetry and obtain a new set of Euler angles for the 
symmetrically equivalent orientation.

4. If we apply the symmetry of a given point group, by what 
factor is the volume of the resulting sub-space 
decreased, compared to the original orientation 
volume?

5. Based on a matrix representation of orientations, do we 
left-multiply or right-multiply to apply a sample 
symmetry operator?
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In	Class	Questions:	3
1. How can we test our scheme to calculate symmetry-

related orientations to make sure that we apply crystal 
and sample symmetry correctly?

2. If we change the sample symmetry to monoclinic, how 
large a space should we use in Euler angle space?

3. If we change the crystal symmetry to hexagonal, how 
does this change the range of Euler angles required?  Can 
you explain why the 3rd Euler angle only needs to have 
the range 0-60°?

4. Draw a stereographic projection and add ovals to 
represent diads, triangles to represent triads and squares 
to represent tetrads until you have a diagram of the 
O(432) point group.
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Part	1:	Miller	indices	↔Matrix↔Euler	angles

• In this sec`on, we find out how to convert 
from one representa`on of orienta`on 
(texture component) to another.
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Form	matrix	from	Miller	Indices

ˆ b = (u, v, w)
u2 + v2 + w2ˆ n = (h, k, l)

h2 + k2 + l2

ˆ t =
ˆ n × ˆ b 
ˆ n × ˆ b aij =Crystal

Sample

b1 t1 n1
b2 t2 n2
b3 t3 n3

!
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Obj/notation	 AxisTransformation Matrix EulerAngles Components

Basic idea: we can construct the complete rotation matrix from two known, 
easy to determine columns of the matrix.  Knowing that we have columns 
rather than rows is a consequence of the sense of rotation, which is 
equivalent to the direction in which the axis transformation is carried out.



8

Bunge	Euler	angles	to	Matrix

Rotation	1	(f1):		rotate axes (an`clockwise) 
about the (sample) 3 [ND] axis; Z1.

Obj/notation	 AxisTransformation Matrix EulerAngles Components

Rotation	2	(F):		rotate axes (anticlockwise) 
about the (rotated) 1 axis [100] axis; X.

Rotation	3	(f2):		rotate axes (anticlockwise) 
about the (crystal) 3 [001] axis; Z2.

Basic idea: construct the complete orienta`on matrix from individual, easy to 
understand rota`ons that are based on the three different Euler angles.  
Demonstrate the equivalence between the rota`on matrix constructed from 
these rota`ons, and the matrix derived from direc`on cosines.  “Rota`on” in 
this context means “transforma`on of axes”.
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Bunge	Euler	angles	to	Matrix,	contd.

€ 

Z1 =

cosφ1 sinφ1 0
−sinφ1 cosφ1 0
0 0 1
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A=Z2XZ1
Obj/notation	 AxisTransformation Matrix EulerAngles Components

€ 

X =

1 0 0
0 cosΦ sinΦ
0 −sinΦ cosΦ
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Z2 =

cosφ2 sinφ2 0
−sinφ2 cosφ2 0
0 0 1

$ 

% 

& 
& & 

' 

( 

) 
) ) 

Combine the 3 rotations via 
matrix multiplication; 1st on the 
right, last on the left:

Each individual rotation is a 
2-D rotation about X or Z
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Matrix	with	Bunge	Angles

cosϕ1 cosϕ2
− sinϕ1sinϕ2 cosΦ

sinϕ1 cosϕ2
+cosϕ1sinϕ2 cosΦ

sinϕ2 sinΦ

−cosϕ1sinϕ2
− sinϕ1cosϕ2 cosΦ

− sinϕ1sinϕ2
+cosϕ1cosϕ2 cosΦ

cosϕ2 sinΦ

sinϕ1 sinΦ −cosϕ1sinΦ cosΦ
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A	=	Z2XZ1	= (hkl)[uvw]

Obj/notation	 AxisTransformation Matrix EulerAngles Components

When you multiply everything out …
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Compare	Matrices

aij = Crystal

Sample
b1 t1 n1
b2 t2 n2
b3 t3 n3

! 
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cosϕ1 cosϕ2
− sinϕ1sinϕ2 cosΦ

sinϕ1 cosϕ2
+cosϕ1sinϕ2 cosΦ

sinϕ2 sinΦ

−cosϕ1sinϕ2
− sinϕ1cosϕ2 cosΦ

− sinϕ1sinϕ2
+cosϕ1cosϕ2 cosΦ

cosϕ2 sinΦ

sinϕ1 sinΦ −cosϕ1sinΦ cosΦ
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[uvw] [uvw] (hkl)(hkl)

Obj/notation	 AxisTransformation Matrix EulerAngles Components

Basic idea: the complete orientation matrix that describes an orientation must be 
numerically the same, coefficient by coefficient, regardless of whether it is 
constructed from the Euler angles, or from the Miller indices.  Therefore we can 
equate the two matrix descriptions, entry by entry.

≡
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Miller	indices	from	Euler	angle	
matrix

Compare the 
matrix formed 
from the Miller 
indices with the 
Euler angle 
matrix.  Extract 
indices from the 
1st and 3rd

columns

h = nsinΦsinϕ2
k = nsinΦcosϕ2

l = ncosΦ
u = # n cosϕ1cosϕ2 − sinϕ1sinϕ2 cosΦ( )

v = # n −cosϕ1sinϕ2 − sinϕ1 cosϕ2 cosΦ( )
w = # n sinΦ sinϕ1

n,	n’ =	arbitrary factors to make integers from real numbers

Obj/notation	 AxisTransformation Matrix		EulerAngles Components
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Euler	angles	from	Orientation	Matrix

Also, if the second Euler angle is too close 
to zero, or 180°, then the standard 
formulae fail because sine(F) approaches 
zero (see next slide).  The formulae to the 
right deal with this special case, where the 
1st and 3rd angles are linearly dependent; 
distributing the rotation between them is 
arbitrary.

if a33 ≈1, Φ = 0,  ϕ1 = ATAN2 a12, a11( ) / 2, and ϕ2 =ϕ1

Corrected -a32 in formula for f1 18th Feb. 05; corrected a33=1 case 13th

Jan08; added a33~-1 13iv14; corrected F=π 7 ii 17

€ 

ϕ1 = tan−1 a31 sinΦ
−a32 sinΦ
% 

& 
' 

( 

) 
* = ATAN2 a31 sinΦ,−a32 sinΦ( )

Φ = cos−1 a33( )

ϕ2 = tan−1 a13 sinΦ
a23 sinΦ
% 

& 
' 

( 

) 
* = ATAN2 a13 sinΦ,a23 sinΦ( )

Notes:  the range of inverse cosine (ACOS) is 0-π, which is sufficient for F;
from this, sin(F) can be obtained. The range of inverse tangent is 0-2π, so numerically one must 
use the ATAN2(y,x) func`on) to calculate f1 and f2.  Cau`on: in Excel, one has ATAN2(x,y), which 
is the reverse order of arguments compared to the usual ATAN2(y,x) in Fortran, C (use ‘double 
atan2 ( double y, double x ); ‘) etc.!

if a33 ≈ −1, Φ = π,  ϕ1 = ATAN2 a12, a11( ) / 2, and ϕ2 = −ϕ1
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Special	Case:	F =	0

cosϕ1 cosϕ2
−sinϕ1 sinϕ2

sinϕ1 cosϕ2
+cosϕ1 sinϕ2

0

−cosϕ1 sinϕ2
−sinϕ1 cosϕ2

−sinϕ1 sinϕ2
+cosϕ1 cosϕ2

0

0 0 1
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cos2ϕ1 sin2ϕ1 0
−sin2ϕ1 −cos2ϕ1 0
0 0 1
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A	=	Z2IZ1	=

Obj/notation	 AxisTransformation Matrix EulerAngles Components

Set f1 = f2

I	is	the	Identity	matrix
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Special	Case:	F =	180°,	cosF=-1

cosϕ1 cosϕ2
+sinϕ1 sinϕ2

sinϕ1 cosϕ2
−cosϕ1 sinϕ2

0

−cosϕ1 sinϕ2
+sinϕ1 cosϕ2

−sinϕ1 sinϕ2
−cosϕ1 cosϕ2

0

0 0 1
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cos2ϕ1 sin2ϕ1 0
sin2ϕ1 −cos2ϕ1 0
0 0 1
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A	=	Z2XZ1	=

Obj/notation	 AxisTransformation Matrix EulerAngles Components

Set f1 = -f2

X =
1 0 0
0 −1 0
0 0 −1
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Part	2:	Crystal	and	Sample	Symmetry
16

This section provides a qualitative 
description of symmetry and its effects
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Crystal	vs.	Sample	Symmetry
• An understanding of the role of symmetry is essential in 

texture.
• Two separate and distinct forms of symmetry are 

relevant:
– CRYSTAL symmetry
– SAMPLE symmetry

• Crystal symmetry is always present (even if, in principle, 
heavily defected crystals may exhibit lower symmetry) 
and must always be accounted for.  Sample symmetry is 
only present on a statistical basis, i.e. only a polycrystal 
can exhibit sample symmetry for the texture as a whole.  

• Typical usage lists the combination crystal-sample 
symmetry in that order, e.g. cubic-orthorhombic.
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Take-Home	Message
The essen`al points of this lecture are:
1. Crystal symmetry means that a crystal can be rotated in various ways that 

leave it unchanged (physically indis`nguishable).  In orienta`on space, the 
equivalent result is that any given orienta`on is related to exactly as many 
other orienta`ons as there are symmetry operators (understandable in 
terms of group theory).  

2. Because there are mul`ple equivalent points, we usually divide up the full 
orienta`on space (e.g. 360°x180°x360° in Euler space) and use only a small 
por`on of it (e.g. 90°x90°x90°).

3. Sample symmetry has the same sort of effect as crystal symmetry, even 
though it is a sta`s`cal symmetry (and orienta`ons related by a sample 
symmetry element are physically dis`nguishable and do have a 
misorienta`on between them.  Sample symmetry is evident in pole figures
whereas crystal symmetry is evident in inverse pole figures.

4. Unfortunately, Euler space (spherical angles) means that the dividing planes 
have odd shapes and so for the common cubic-orthorhombic combina`on, 
we have 3 copies of the fundamental zone in the range 0-90° for each angle.  
Rodrigues space is far simpler in this respect because symmetry operators 
always lead to flat dividing planes.



Deformation	vs.	Sample	Symmetry
• Note that the texture of a material is a consequence of 

its thermomechanical history (and therefore offers 
clues about that history).

• The (statistical) sample symmetry is directly related to 
the symmetry of the preceding deformation.

• In general, the sample symmetry reflects the lowest 
symmetry deformation that was imposed on the 
material.

• Rolling is a plane strain deformation, with orthorhombic 
symmetry.  We call it “plane strain” because (in the 
ideal case) all the strain occurs in one plane, the RD-ND 
plane with zero strain in the TD (parallel to the axes of 
the rolls).  Torsion is a simple shear, with monoclinic 
symmetry. Wire drawing is an axi-symmetric 
deformation with cylindrical symmetry.  Upsetting or 
uniaxial compression is also an axi-symmetric 
deformation with cylindrical symmetry.

19

Rolling:	
anvilVire.com

torsion:	
ejsong.com
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Pole	Figure	for	Wire	Texture
• (111) pole figure showing a 

maximum intensity at a specific 
angle from a par`cular direc`on 
in the sample and showing an 
infinite rota`onal symmetry 
(C¥).

• F.A.=Fiber Axis (parallel to the 
length of the wire)

• A par`cular crystal direc`on in 
all crystals is aligned with this 
fiber axis (i.e. a par`cular 
sample direc`on).

• For a cubic material, this 
combina`on would be classed 
as cubic-cylindrical.

In this case, <100> // F.A.

{111}forth-armoury.com
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Effect	of	Symmetry

The essential point about 
applying a symmetry operation is 
that, once it has been done, you 
cannot tell that anything has 
changed.  In other words, the 
rotated or reflected object is 
physically indistinguishable from 
what you started with.

• Illustra`on of 3-fold, 4-fold, 6-fold rota`onal 
symmetry

Note the symbols used to denote 
the different rota`onal symmetry 
elements.



Effect	of	Symmetry:	Example

• Note how one can re-label the axes but leave the physical 
object (crystal) unchanged.

• Which symmetry operator was applied (from O(432))?
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[100]

[100][010] [010][001]

[001]
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Stereographic projections
of symmetry elements 
and general poles in the
cubic point groups
with Hermann-Mauguin
and Schoenflies
designations.

Note the presence of 
four triad symmetry 
elements in all these 
groups on <111>.

Cubic metals mostly
fall under      . Groups: 

mathema`cal 
concept, very 
useful for 
symmetry

m3m
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Sample	Symmetry

Torsion, shear:
Monoclinic, 2.

Rolling, plane strain
compression, mmm.

Axisymmetric:	C¥
Otherwise,
triclinic.
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Fundamental	Zone
• The fundamental zone (or asymmetric unit) is the portion or subset of 

orientation space within which each orientation (or misorientation, 
when we later discuss grain boundaries) is described by a single, 
unique point.

• The fundamental zone is the minimum amount of orientation space 
required to describe all orientations. 

• Example: the standard stereographic triangle (SST) for directions in 
cubic crystals.

• The size of the fundamental zone depends on the amount of 
symmetry present in both crystal and sample space.  More symmetry 
Þ smaller fundamental zone.

• Note that in Euler space, the 90x90x90° region typically used for cubic 
[crystal]+orthorhombic [sample] symmetry is not a fundamental zone 
because it contains 3 copies of the actual zone!
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Symmetry	Issues
• Crystal symmetry operates in a frame a}ached to 

the crystal axes.
• Based on the defini`on of Euler angles, crystal 

symmetry elements produce rela`ons between 
the second & third angles.

• Sample symmetry operates in a frame a}ached to 
the sample axes.

• Sample symmetry produces rela`ons between 
the first & second angles.

• The combina`on of crystal and sample symmetry 
is wri}en as crystal-sample, e.g. cubic-
orthorhombic, or hexagonal-triclinic.
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Choice	of	Section	Size
• Quad, Diad symmetry elements are easy to 

incorporate, but Triads are inconvenient.
• Four-fold rotation elements (and mirrors in the 

orthorhombic group) are used to limit the third, 
f2, (first, f1) angle range to 0-90°.

• Second angle, F, has range 0-90° (diffraction adds 
a center of symmetry).



28 Section	Sizes
Crystal	- Sample

• Cubic-Orthorhombic:
0£f1 £90°, 0£F£90°, 0£f2 £90°

• Cubic-Monoclinic:
0£f1 £180°, 0£F£90°, 0£f2 £90°

• Cubic-Triclinic:
0£f1 £360°, 0£F£90°, 0£f2 £90°

• But, these limits do not delineate a 
fundamental zone.
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F

f1

Take a point, e.g. “B”; operate on it with 
the 3-fold rotation axis (blue triad); the set 
of points related by the triad are B, B’, B’’, 
with B’’’ being the same point as B.  The 
point is, that as you operate on a point 
(orientation) with a symmetry operation, in 
general all the Euler angles change.

Points	related	by	triad	
symmetry
element	on	
<111>
(triclinic

sample	symmetry)

[Bunge]
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Effect	of	3-fold	axis

section
in	f1 cuts
through
more	than
one	subspace

[Bunge]

Regions I, II and III are
related by the triad 
crystal symmetry 
element,
i.e. 120° about <111>, 
combined with 
sample symmetry.

Angles measured in radians
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Example	of	3-fold	symmetry
The “S” component,
{123}<634>
has angles {59, 37, 63}
also {27,58,18},{53,74,34}
and occurs in three
related locations
in Euler space. 10° scatter
shown about component; shape 
is not spherical because the 
volume element size varies as 
sin(F).

Regions I, II and III are
related by the triad crystal 
symmetry element,
i.e. 120° about <111>, combined 
with sample symmetry. [Randle & Engler, fig. 5.7]
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S	
component	

in	f2
sections

Regions I, II and III are
related by the triad 
symmetry element,
i.e. 120° about <111>. 
10° scatter
shown about the S component, 
so that each of the 3 equivalent 
positions is cross-sectioned in 
multiple sections.

[Randle & Engler, fig. 5.7]
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Orthorhombic	Sample	Symmetry	
(mmm)	Relationships	in	Euler	

Space
f1=0° 180° 270° 360°90°

F

diad

‘mirror’‘mirror’

2-fold	screw	axis	changes	f2by	π	F= 180°

Note:  this slide illustrates how the set of 3 diads (+ identity) in sample space operate 
on a given point.  The relationship labeled as ‘mirror’ is really a diad that acts like a 2-
fold screw axis in Euler space.
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Sample	symmetry,	detail

Tables for Texture Analysis of Cubic Crystals, Springer Verlag, 1978



35 Crystal	Symmetry	Relationships	
(432)	in	Euler	Space

f2=0° 180° 270° 360°90°

F

4-fold	axis

3-fold	axis

Note:	points	related	by	triad	(3-fold)	have	different	f1 values

Other	4-fold,	2-fold	axis:
act	on	f1 also

F= 180°
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Crystal	symmetry:	detail

Tables for Texture Analysis of Cubic Crystals, Springer Verlag, 1978
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How	many	equivalent	points?
• For cubic-orthorhombic crystal+sample symmetry, we use a 

range 90°x90°x90° for the three angles, giving a volume of 
90°2 (or π2/4 in radians).

• In the (reduced) space there are 3 equivalent points for each 
orientaQon (texture component). Both sample and crystal 
symmetries must be combined together to find these sets.

• If we look within the full orientaQon space then there are as 
many equivalent points as there are symmetry elements.  
Thus for cubic crystal symmetry there are 24 equivalent 
points; for hexagonal 12 etc.

• Fewer (e.g. Copper) or more (e.g. cube) equivalent points for 
each component are found in the reduced space if the the 
component coincides with one of the symmetry elements.
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Volume	of	Orientation	Space
• O(432) has 24 operators (i.e. order=24); O(222) has 4 

operators (i.e. order=4): why not divide the volume of 
Euler space (8π2, or, 360°x180°x360°) by 24x4=96 to get 
π2/12 (or, 90°x30°x90°)?  

• Answer: we leave out a triad axis (because of the awkward 
shapes that it would give us), so we divide by 8x4=32 to 
get π2/4 (90°x90°x90°).

• This is an illustration of group theory in action.  Each set of 
symmetry operators divides up the orientation space by a 
factor equal to the number of elements in the group.

• The reason is, essentially, a question of counting: each 
point in one zone has exactly one point in another zone 
related by a given operator.  
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Group	theory	approach
• Again, this is an illustration of group theory in action.  Each 

set of symmetry operators divides up the orientation space 
by a factor equal to the number of elements in the group.

• Crystal symmetry:
a combination of 4- and 2-fold crystal axes (2x4=8 elements) 
reduce the range of F from π to π/2, and f2 from 2π to π/2.

• Sample symmetry:
the 2-fold sample axes (4 elements in the group) reduce the 
range of f1 from 2π to π/2.

• Volume of {0 £ f1, F, f2 £ π/2} is π2/4.
• The reason is, essentially, a question of counting: each point 

in one zone has exactly one point in another zone related by 
a given operator.  
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Special	Points,	Partial	Fibers

Copper: 2
Brass: 3
S: 3
Goss:3
Cube:8
Dillamore:2

Humphreys & Hatherly

No. of points in the 90x90x90° space

Why this varia`on?
Points that fall on the 
edge may appear more, 
or fewer `mes than the 
standard count of 3.
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Sample	Symmetry	Relationships	
in	Euler	Space:	special	points

f1=0° 180° 270° 360°90°

F

diad

diaddiad

Cube	lies	on	the	corners

Copper,	Brass,	Goss	lie	on	an	edge,	so	that	they	coincide	
with	a	symmetry	element

F= 90°
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3D	Views
a)	Brass					b)	Copper					c)	S							d)	
Goss					e)	Cube			
f)	combined	texture	
1: {35, 45,	90},	Brass,							
2: {55, 90, 45},	Brass
3: {90, 35, 45},	Copper,				
4: {39, 66, 27},	Copper
5: {59, 37, 63},	S,					
6: {27, 58, 18},	S,									
7: {53, 75, 34},	S
8: {90, 90, 45},	Goss
9:	{0, 0, 0},	cube* 10:
{45, 0, 0},	rotated	cube
* Note that the cube exists as a line between 
(0,0,90) and (90,0,0) because of the linear 
dependence of the 1st and 3rd angles when the 
2nd angle = 0.

Figure	courtesy	of	Jae-hyung Cho
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Special	Points:	Explanations
• Points coincident with symmetry axes may also have 

equivalent points, often on the edge. Cube: should be a single 
point, but each corner is equivalent and visible.

• Goss, Brass: a single point becomes 3 because it is on the f2=0
plane.

• Copper: 2 points because one point remains in the interior but 
another occurs on a face; also the Dillamore orientation.

• Note for later about volume fractions: although the volumes 
enclosed by the 12° capture (misorientation) distance shown in 
the figure vary with the 2nd euler angle, to first order it is the 
symmetry planes that control the volume fractions.  So S, for 
example, has 3 complete “blobs” whereas Goss has only 3 x ¼ 
and so will contain only ~1/4 of the volume fraction of S, based 
on a random (uniform) texture.
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Table 4.F.2.  fcc Rolling Texture Components: Euler Angles and Indices

Name Indices Bunge
(ϕ1,Φ,ϕ2)
RD= 1

Kocks
(ψ,Θ,φ)
RD= 1

Bunge
(ϕ1,Φ,ϕ2)
RD= 2

Kocks
(ψ,Θ,φ)
RD= 2

copper/
1st var.

{112}〈111̄〉 40, 65, 26 50, 65, 26 50, 65, 64 39, 66, 63

copper/
2nd var.

{112}〈111̄〉 90, 35, 45 0, 35, 45 0, 35, 45 90, 35, 45

S3* {123}〈634̄〉 59, 37, 27 31, 37, 27 31, 37, 63 59, 37, 63
S/ 1st var. (312)<0 2 1> 32, 58, 18 58, 58, 18 26, 37, 27 64, 37, 27
S/ 2nd var. (312)<0 2 1> 48, 75, 34 42, 75,34 42, 75, 56 48, 75, 56
S/ 3rd var. (312)<0 2 1> 64, 37, 63 26, 37, 63 58, 58, 72 32, 58, 72
brass/
1st var.

{110}〈1̄12〉 35, 45, 0 55, 45, 0 55, 45, 0 35, 45, 0

brass/
2nd var.

{110}〈1̄12〉 55, 90, 45 35, 90, 45 35, 90, 45 55, 90, 45

brass/
3rd var.

{110}〈1̄12〉 35, 45, 90 55, 45, 90 55, 45, 90 35, 45, 90

Taylor {4 4 11}〈11 11 8̄〉 42, 71, 20 48, 71, 20 48, 71, 70 42, 71, 70
Taylor/
2nd var.

{4 4 11}〈11 11 8̄〉 90, 27, 45 0, 27, 45 0, 27, 45 90, 27, 45

Goss/
1st var.

{110}〈001〉 0, 45, 0 90, 45, 0 90, 45, 0 0, 45, 0

Goss/
2nd var.

{110}〈001〉 90, 90, 45 0, 90, 45 0, 90, 45 90, 90, 45

Goss/
3rd var.

{110}〈001〉 0, 45, 90 90, 45, 90 90, 45, 90 0, 45, 90

[Kocks, 
Tomé, 
Wenk]
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Meaning	of	“Variants”
• The existence of variants of a given texture component is a 

consequence of (sta`s`cal) sample symmetry.
• If one permutes the Miller indices for a given component 

(for cubics, one can change the sign and order, but not the 
set of digits), then different values of the Euler angles are 
found for each permuta`on.

• If a pole figure is plo}ed of all the variants, one observes a 
number of physically dis`nct orienta`ons, which are related 
to each other by symmetry operators (diads, typically) fixed 
in the sample frame of reference.

• Each physically dis`nct orienta`on is a “variant”.  The 
number of variants listed depends on the choice of size of 
Euler space (typically 90x90x90°) and the alignment of the 
component with respect to the sample symmetry.
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Part	3:	Quantitative	Treatment	of	Symmetry

• In section, we describe the methods for 
describing symmetry operations as rotation 
matrices and how to apply them to texture 
components, also expressed as matrices.

• Notation:
orientation: g
(crystal) symmetry operator: OC
(sample) symmetry operator: OS
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Rotations:	deVinitions
• Rotational symmetry elements exist whenever you can 

rotate a physical object and result is indistinguishable from 
what you started out with.

• Rotations can be expressed in a simple mathematical form 
as unimodular matrices (or, orthogonal matrices), often 
with elements that are usually either one or zero (but not 
always!). Each row and each column has unit length.

• When represented as matrices, the inverse of a rotation is 
equal to the transpose of the matrix.

• Rotations are transformations of the first kind; determinant 
= +1.

• Reflections (not needed here) are transformations of the 
second kind; determinant = -1.

• Crystal symmetry also can involve translations but these are 
not included in this treatment.
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Rotation	Matrix	
from	Axis-Angle	Pair

€ 

gij = δij cosθ + rirj 1− cosθ( )
+ εijkrk sinθ

k=1,3
∑

=

cosθ + u2 1− cosθ( ) uv 1− cosθ( ) + w sinθ uw 1− cosθ( ) − v sinθ
uv 1− cosθ( ) − w sinθ cosθ + v 2 1− cosθ( ) vw 1− cosθ( ) + usinθ
uw 1− cosθ( ) + v sinθ vw 1− cosθ( ) − usinθ cosθ + w2 1− cosθ( )

' 

( 

) 
) 
) 

* 

+ 

, 
, 
, 

Wri}en out as a complete 3x3 matrix:
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Symmetry	Operator	examples
• Diad on z: [uvw] = [001], q = 180° -

substitute the values of uvw and angle into 
the formula

• 4-fold on x:
[uvw] = [100]
q = 90°

€ 

gij =

cos180 + 02 1− cos180( ) 0*0 1− cos180( ) +1*sin180 0*1 1− cos180( ) − 0sin180
0*0 1− cos180( ) − w sin180 cos180 + 02 1− cos180( ) 0*1 1− cos180( ) + 0sin180
0*1 1− cos180( ) + 0sin180 0*1 1− cos180( ) − 0sin180 cos180 +12 1− cos180( )

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

=

−1 0 0
0 −1 0
0 0 1

# 

$ 

% 
% % 

& 

' 

( 
( ( 

€ 

gij =

cos90 +12 1− cos90( ) 1*0 1− cos90( ) + w sin90 0*1 1− cos90( ) − 0sin90
0*1 1− cos90( ) − 0sin90 cos90 + 02 1− cos90( ) 1*0 1− cos90( ) +1sin90
0*1 1− cos90( ) + 0sin90 0*0 1− cos90( ) −1sin90 cos90 + 02 1− cos90( )

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

=

1 0 0
0 0 1
0 −1 0

# 

$ 

% 
% % 

& 

' 

( 
( ( 
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-

Matrix
representation	
of	the	
rotation	point	
groups

What is a group?  A group is a set of 
objects that form a closed set: if you 
combine any two of them together, the 
result is simply a different member of 
that same group of objects.  Rota`ons in 
a given point group form closed sets - try 
it for yourself!

Note: the 3rd matrix in the 1st 
column (x-diad) is missing a “-” on 
the 33 element; this is corrected in 
this slide. Also, in the 2nd from the 
bo}om, last column: the 33 
element should be +1, not -1. In 
some versions of the book, in the 
last matrix (bo}om right corner) the 
33 element is incorrectly given as -
1; here the +1 is correct.

Kocks,	Tomé,	Wenk:
Ch.	1	Table	II

The 4 operators 
enclosed in orange 
boxes are also the 222 
point group, appropriate 
to orthorhombic 
symmetry



51 Nomenclature	for	rotation	
elements

• In general, the notation identifies the axis about 
which the rotation is performed.  

• Thus a 2-fold axis (180° rotation) about the z-axis 
is known as a z-diad, or C2z, or L001

2

• Triad (120° rotation) about [111] as a 111-triad, 
or, 
120°-<111>, or, L111

3 etc.
• A point group is written as O(432),

for example, where the entry 
in the parentheses indicates 
the symmetry.
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How	to	use	a	symmetry	operator?
1. Convert Miller indices that represent an orienta`on or texture 

component to a (orienta`on) matrix.
2. Perform matrix mul`plica`on with the symmetry operator, Oc, 

and the orienta`on matrix, g, to obtain the new orienta`on 
(matrix), g’.  Be careful to get the order correct!  For the 
standard coordinate/axis transforma`on used here, the crystal 
symmetry operator always le�-mul`plies (pre-mul`plies) the 
orienta`on.  Since the orienta`on matrix converts from sample 
to crystal axes, you can think of applying crystal symmetry aVer
transforming a quan`ty into the crystal frame.

g’	=	OC g
3. Convert the matrix back to Miller indices.
4. The two sets of indices represent (for crystal symmetry) 

indis`nguishable objects.
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Example

Goss: (011)[100]:

=

1 0 0
0 1

2
1
2

0 − 1
2

1
2

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'

−1 0 0
0 −1 0
0 0 1

"

#

$
$
$

%

&

'
'
'

−1 0 0
0 − 1

2
− 1

2
0 − 1

2
1
2

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'

Sample symmetry: right mul`ply (post-mul`ply) the matrix.

g

g’

gOC

g’	=	OC g

which is (0-11)[-100]

Pre-multiply by z-diad: 1 0 0
0 1

2
1
2

0 − 1
2

1
2

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'
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Crystal	
symmetry	
O(432)	

acting	on	the	
(231)[3-46]	S	
component

0

40

80

120

160

0 50 100 150 200 250 300 350

S_xtal_symm

52

232 232

52

121

152

52

301

332

52

232 232

301

121

152

332

152

301

121

152

301

332332

121

Φ

φ
2

φ
1
 values noted

Note that all 24 
variants are 
present

Homework exercise: you can make this same plot by using, e.g., Matlab to compute the matrix of each symmetrically 
equivalent orienta`on and then conver`ng each new matrix to Euler angles; then use “sca}er3” to plot in 3D.

Euler angles: (52.9, 74.5, 33.7)
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Order	of	Matrices
• Assume that we are using the standard axis 

transformation (passive rotation) definition of 
orientation (as found, e.g. in Bunge’s book).

• Order depends on whether crystal or sample
symmetry elements are applied.

• For an operator in the crystal system, Oxtal, the 
operator pre-multiplies the orientation matrix.

• Think of the sequence as first transform into crystal 
coordinates, then apply crystal symmetry once you 
are in crystal coordinates.

• For a sample operator, Osample, post-multiply the 
orientation matrix.



56

Symmetry	Relationships
• Note that the result of applying any available operator is equivalent to 

(physically indistinguishable in the case of crystal symmetry) from the 
starting configuration (not mathematically equal to!).

• Also, if you apply a sample symmetry operator, the result is generally 
physically different from the starting position.  Why?!  Because the 
sample symmetry is only a statistical symmetry, not an exact, physical 
symmetry.  Two orientations related via a sample symmetry are 
physically distinct (by contrast to crystal symmetry).

• Do not confuse this with the standard expression for the 
transformation of a second rank tensor: T’	=	OTOT

€ 

" g = OcrystalgOsample
=← → % g

NB: if one writes an orienta`on as an acQve rotaQon (as in con`nuum mechanics), 
then the order of applica`on of symmetry operators is reversed: premul`ply by 
sample, and postmul`ply by crystal symmetry!
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Symmetry:	How-to
• How to find all the symmetrically equivalent points?
• Convert the component of interest to matrix notation.
• Make a list of all the symmetry operators in matrix form (24 for cubic crystal 

symmetry or 12 for hexagonal crystal symmetry, and 4 for orthorhombic 
sample symmetry).  This is the same list of operators shown as 3x3 matrices 
in the Table quoted from the Kocks book, slide 35 in this set.

• Crystal symmetry: identity (1), plus 90/180/270° about <100> (9), plus 180°
about <110> (6), plus 120/240° about <111> (8).

• Sample symmetry: identity, plus 180° about RD/TD/ND (4).
• Loop through each symmetry operator in turn, with separate loops for 

sample and crystal symmetry.
• For each result, convert the matrix to Euler angles.
• How can you be sure that you have applied the operators correctly?  Answer: 

make a pole figure of the set of symmetrically related orientations.  Crystal 
symmetry related points must plot on top of one another  whereas sample 
symmetry related points give rise to (in general) multiple sets of points, 
related by the sample symmetry that should be evident in the pole figure.



Crystal	Symmetry	Correctly	Applied
• If you start with the Goss orienta`on and apply crystal 

symmetry by le�-mul`plying, you should obtain pole 
figures like this.  The applica`on of crystal symmetry did 
not produce any new orienta`ons as far as the pole figure 
is concerned.  Note that x (//RD) points right in this 
example.
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Plots courtesy of Vahid Tari, 2011



Crystal	Symmetry	Incorrectly	Applied
• If you start with the Goss orienta`on and apply crystal 

symmetry by right-mul`plying, you should obtain pole 
figures like this.  The applica`on of crystal symmetry does 
produce new orienta`ons in the pole figures but this 
incorrect.  The result of applying crystal symmetry must be 
indis`nguishable from the ini`al state.  Note that x points 
right in this example.
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Plots courtesy of Vahid Tari, 2011



Texture	Component	Variants
• Variants of a given texture component share Miller indices that are the same 

except for whatever varia`ons are allowed by crystal symmetry. This results in 
orienta`ons that are usually, but not invariably, different i.e. have finite 
misorienta`ons between them.

• To obtain a set of variants, one applies the appropriate set of sample symmetry 
operators to a single orienta`on that defines the component, e.g. from a pair 
of Miller indices for hkl//ND, uvw//RD.  For orthorhombic sample symmetry, 
for example, {Osample} = O(222) which has four operators, so there are a 
maximum of four variants.

• As a consequence of the way that each component aligns with the sample 
symmetry operators, the cube and Goss components have only one variant, 
the copper and brass have two, whereas the S component has all four variants.

60

g{ }variants = g Osample{ }
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Summary
• Symmetry operators have been explained in terms 

of rota`on matrices, with examples of how to 
construct them from the axis-angle descrip`ons.

• The effect of symmetry on the range of Euler 
angles needed, and the shape of the plo�ng 
region.

• The par`cular effect of symmetry on certain 
named texture components found in rolled fcc 
metals has been described.

• In later lectures, we will see how to perform the 
same opera`ons but with or on Rodrigues vectors 
and quaternions.
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Supplemental	Slides
• The following slides provide:
• Details of the range of Euler angles, and the 

shape of the plotting space required for CODs 
(crystallite orientation distributions) or SODs 
(sample orientation distributions) as a function of 
the crystal symmetry;

• Additional information about the details of how 
symmetry elements relate different locations in 
Euler space.
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• Since crystal symmetry operators are closely linked to low index 
directions, it is helpful to convert axis-angle descriptions to 
matrices and vice versa.
• The rotation can be converted to a matrix, g, (passive rotation) 
by the following expression, where d is the Kronecker delta, q is 
the rotation angle, r is the rotation axis, and e is the permutation 
tensor.

€ 

gij = δij cosθ + rirj 1− cosθ( )
+ εijkrk sinθ

k=1,3
∑

Axis	Transformation	from	
Axis-Angle	Pair

Compare	with	
active	rotation	
matrix!24

A rotation is commonly written as (  ,θ) or 
as (n,ω).  The figure illustrates the effect 
of a rotation about an arbitrary axis, 
OQ (equivalent to   and n) through an 
angle α (equivalent to θ and ω).

ˆ r 

ˆ r 

gij = δ ij cosθ − eijknk sinθ

+ (1− cosθ)ninj
(This is an active rotation: a
passive rotation ≡ axis
transformation)

Rotations (Active): Axis- Angle Pair
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Geometry	of	{hkl}<uvw>

e1	//	[uvw]
^

e’1
^

e2	//	t
^

e’2
^

e3	//	(hkl)
^e’3

^

^

[001]
[010]

[100]

Miller index
notation of
texture component
specifies direction
cosines of crystal
directions // to
sample axes.  Form the 
second axis from the 
cross-product of the 3rd

and 1st axes.

Sample	to	Crystal	(primed)

t =	hkl x uvw
Obj/notation	 AxisTransformation Matrix		EulerAngles Components
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Matrix,	Miller	Indices

• The general Rota`on Matrix, a, can be represented as in 
the following:

• Here the Rows are the direc`on cosines for the 3 crystal 
axes, [100], [010], and [001] expressed in the sample 
coordinate  system (pole figure).

[100]xtal direction

[010]xtal direction

[001]xtal direction

€ 

a11 a12 a13
a21 a22 a23
a31 a32 a33

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

Obj/notation	 AxisTransformation Matrix EulerAngles Components
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Matrix,	Miller	Indices

• The columns represent components of three other unit vectors:

[uvw]ºRD TD NDº(hkl)

€ 

a11 a12 a13
a21 a22 a23
a31 a32 a33

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

Obj/notation	 AxisTransformation Matrix EulerAngles Components

• Here the Columns are the direc`on cosines (i.e. hkl or uvw) for the 
sample axes, RD, TD and Normal direc`ons expressed in the crystal 
coordinate system.  Compare to inverse pole figures.  
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Crystal	Symmetry	Element
e.g.	rotation	on	[001]
(associated	with	f2)

Sample	Symmetry	Element
e.g.	diad	on	ND

(associated	with	f1)

[Bunge]
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Table of Effect of Symmetry Elements on Euler Angles

Symmetry Element Bunge Symm
-etric

(Kocks)

2-fold axis on Sample X π-φ1 π-Φ φ2±π −Ψ π-Θ φ±π
2-fold axis on Sample Y -φ1 π-Φ φ2±π π-Ψ π-Θ φ±π
2-fold axis on Sample Z φ1-π Φ φ2 Ψ±π Θ φ

2-fold axis on Crystal x φ1±π π-Φ π-φ2 Ψ±π π-Θ -φ
2-fold axis on Crystal y φ1±π π-Φ −φ2 Ψ±π π-Θ π-φ
2-fold axis on Crystal z φ1 Φ φ2±π Ψ Θ φ±π
3-fold axis on Crystal z φ1 Φ φ2±2π/3 Ψ Θ φ±2π/3
4-fold axis on Crystal z φ1 Φ φ2±π/2 Ψ Θ φ±π/2
6-fold axis on Crystal z φ1 Φ φ2±π/3 Ψ Θ φ±π/3

[Kocks]

These are simple cases: see detailed charts at the end of this set of slides
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Other	symmetry	operators
• Symmetry operators of the second kind:  these 

operators include the inversion center and 
mirrors; determinant = -1.  

• The inversion (= center of symmetry) simply 
reverses any vector so that (x,y,z)->(-x,-y,-z).  

• Mirrors operate through a mirror axis.  Thus an x-
mirror is a mirror in the plane x=0 and has the 
effect (x,y,z)->(-x,y,z). 



70 Examples	of	symmetry	
operators

• Diad on z:
(1st kind)

• Mirror on x:
(2nd kind)

−1 0 0
0 1 0
0 0 1

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

−1 0 0
0 −1 0
0 0 1

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

−1 0 0
0 −1 0
0 0 −1

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

Inversion 
Center:
(2nd kind)
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How	many	equivalent	points?
• Each symmetry operator relates a pair of points in 

orientation (Euler) space.
• Therefore each operator divides the available 

space by a factor of the order of the rotation axis.  
In fact, the order of group is significant.  If there 
are four symmetry operators in the group, then 
the size of orientation space is decreased by four.

• This suggests that the orientation space is smaller 
than the general space by a factor equal to the 
number of general poles.



72

Crystallite	
Orientation	
Distribution

Sections	at	constant
values	of	the	third	angle

Kocks, Tomé, Wenk: 
Ch. 2 fig. 36
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Sample	
Orientation	
Distribution

Sections	at	constant
values	of	the	
first	angle	

Kocks, Tomé, Wenk: 
Ch. 2 fig. 37
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Tables for Texture 
Analysis of Cubic 
Crystals, Springer 

Verlag, 1978
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Tables for Texture 
Analysis of Cubic 
Crystals, Springer 
Verlag, 1978
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Determinant	of	a	matrix
• Multiply each set of three coefficients taken along a 

diagonal: top left to bottom right are positive, bottom left 
to top right negative.

• |a|	=	a11a22a33+a12a23a31+a13a21a32- a13a22a31-a12a21a33-
a11a32a23
=ei1i2…inai11ai22…aiNN

a11 a12 a13
a21 a22 a23
a31 a32 a33

! 

" 

# 
# 
# 

$ 

% 

& 
& 
& 

+ -
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Symmetry	and	Properties
• For later:  when you use a material property (of a single 

crystal, for example) to connect two physical quan``es, 
then applying symmetry means that the result is 
unchanged.  In this case there is an equality.  This equality 
allows us to decrease the number of independent 
coefficients required to describe an anisotropic property 
(Nye).
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Anisotropy
• Given an orientation distribution, f(g), one can write the 

following for any tensor property or quantity, t, where the 
range of integration is over the fundamental zone of 
physically distinguishable orientations, SO(3)/G.

• “SO(3)” means all possible proper rotations in 3D space 
(but not reflections); “G” means the set (group) of 
symmetry operators, e.g. (432) for the proper rotations in 
the cubic system; SO(3)/G means the space of rotations 
divided by the symmetry group.

t = t g( ) f g( )dg
SO 3( ) / G
∫
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Homework
• This describes the part of the homework that deals with learning how to apply symmetry 

operators to components and find all the symmetrically related positions in Euler space.
– A. Write the symmetry operators for the cubic crystal symmetry (point group 432) as matrices into a file (or as an array in a 

python/Matlab script).  It is sensible to put three numbers on a line, so that the appearance of the numbers is similar to the 
way in which a 3x3 matrix is written in a book.  You can simply copy what was given in the slides (taken from the Kocks 
book). Python/ Matlab examples, with the ID of the operator written as the 3rd index:  e(:,:,1)=[1 0 0; 0 1 0; 0 0 1]; 
e(:,:,2)=[1 0 0;0 -1 0;0 0 -1]; etc.

– [Alternatively, you can work out what each matrix is based on the actual symmetry operator.  This is more work but will 
show you more of what is behind them.]

– B. Write the symmetry operators for the orthorhombic sample symmetry (point group 222) as matrices into a separate file 
(or as an array in a python/Matlab script).

– C.  Write a computer code that reads in the two sets of symmetry operators (cubic crystal, asks for an orientation specified 
as (six) Miller indices, (h,k,l)[u,v,w], and calculates each new orientation, which should be written out as Euler angles 
(meaning, convert the result, which is a matrix, back to Euler angles).  Note that the identity operator is always include as
the first symmetry operator.  So, even if you apply no symmetry, in terms of loops in your program, you go at least once 
through each loop where the first time through is applying the identity operator (ones on the diagonal, zeros elsewhere).

– D.  List all the equivalent points for {123}<63-4> for triclinic (meaning, no sample symmetry). In each listing, identify the 
points that fall into the 90x90x90 region typically used for plotting.

– E.  List all the equivalent points for {123}<63-4> for monoclinic  (use only the ND-diad operator, i.e. 180° about the sample 
z-axis). In each listing, identify the points that fall into the 90x90x90 region typically used for plotting.

– F.  List all the equivalent points for {123}<63-4> for orthorhombic sample symmetries  (use all 3 diads in addition to the 
identity).  In each listing, identify the points that fall into the 90x90x90 region typically used for plotting.

– G.  Repeat F) above for the Copper component, (112)[11-1].
– H.  How many different points do you find for each of the three sample symmetries?  
– I.  How many points fall within the 90x90x90 region that we typically use for plotting orientation distributions?

• Students may code the problem in any convenient language (Excel, C++, Pascal….) but are 
strongly encouraged to do the exercises in python (or Matlab): be very careful of the 
order in which you apply the symmetry operators!


