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In-­‐Class	
  Questions	
  
•  What is “texture”?  Texture quantifies any bias in crystal orientations 

with respect to a reference frame associated with the specimen shape, 
or equivalent.  This is extended to grain boundary (GB) texture or 
preference for one type of GB over another.  GB texture can be present 
even when the orientation texture is random. 

•  Why do we have to work with general 3D rotations in order to quantify 
texture?  General 3D rotations are required because crystals have a 3D 
basis set for their crystal structure and three parameters are required to 
relate the (three) associated axes with the reference frame (however 
that is chosen). 

•  How does a rotation specified by a combination of axis and angle 
correspond to a set of three Euler angles (flippant answer: not very 
easily!)?  The most straightforward correspondence is via the 3x3 
rotation matrix; conversions between Euler angles and matrix can be 
found e.g. in Bunge’s book, similarly for axis+angle. 

•  How does texture apply to CdTe? The most relevant aspect is grain 
boundary texture, although some deposits also have a very strong 
orientation texture. 
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In-­‐Class	
  Questions:	
  2	
  
•  How does misorientation apply to CdTe (or any other polycrystalline 

material)? Misorientation is the term used to describe the difference in 
orientation, generally across a grain boundary (but between any pair of 
orientations in general). 

•  How is crystal symmetry taken into account in texture and grain 
boundary analysis? The symmetry of a crystal defines a point group; that 
point group must be used to calculate the minimum set of orientations or 
misorientations that are physically possible.  

•  What is the procedure that one can follow to use Matlab+MTex to 
construct an orientation distribution from pole figure data? This 
procedure is described in these lecture notes.  

•  What is the procedure that one can follow to use Matlab+MTex to 
construct an orientation distribution from EBSD data? As with pole 
figures, this is described in the notes. In general, it is reasonable to use 
the procedure provided by the MTEX package. 

•  What else can one obtain from a Matlab+MTex analysis? In principle, 
one can perform any analysis although some degree of exploration may 
be required to implement any given type of analysis.  
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Objectives	
  

1.  Introduce students to texture i.e. 
crystallographic preferred orientation, also 
known as fabric in geology. 

2.  Explain briefly two standard types of data, 
namely pole figures and orientation maps 
from e.g. electron back-scatter diffraction 
(EBSD). 

3.  Demonstrate how to use the MTEX package 
within Matlab to perform analyses on 
relevant data. 
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Grain	
  DeCinitions	
  

Examples	
  of	
  varying	
  the	
  misorienta4on	
  threshold:	
  

3 degrees 15 degrees 
Note	
  that	
  each	
  color	
  represents	
  1	
  grain	
  

•  Given an orientation map with continuously varying orientations from one 
point to the next, one imposes a grain structure by aggregating points 
with similar orientation.  This requires choice of a threshold in 
misorientation, below which two adjacent points belong to the same 
grain. From percolation, the procedure is known as the “burn algorithm”. 



Variation	
  in	
  Boundary	
  Properties	
  
•  Rhetorical question: do grain boundaries have variable properties?  

Answer: yes, even GB energy is highly variable. 
•  GB energy depends primarily on the two surfaces that are joined at the 

boundary.  Low energy surfaces result in low energy GBs.  In fcc metals, 
for example, {111} is the close packed (highest atomic density) surface 
and therefore lowest energy.  GBs with {111} surface(s) are 
demonstrably low energy.  Thus the coherent twin has the lowest energy 
of all, and {111} twist GBs are generally lower than most other GB types. 

•  GB energy correlates (positively) with excess free volume (per atom).   
•  Other properties also correlate with excess free volume such as 

diffusion. 
•  In grain growth, high energy GBs disappear faster than low energy GBs; 

therefore populations of GBs are anti-correlated with energy. 
•  GB mobility is poorly understood: some GBs exhibit anti-Arrhenius 

behavior (mobility decreases with increasing temperature). 
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Installation	
  of	
  MTex	
  
•  Find MTEX by searching on “mtex google code”; the author of MTEX, Ralf 

Hielscher, now hosts the code on his own website, 
http://mtex-toolbox.github.io/.  As of Jan. 19th 2016, this is still valid. 

•  MTEX has its own installation procedure.  As detailed in the instructions 
found on-line, the steps include  
a) download the package (from the “downloads” page) 
b) set the Matlab “path” to the folder/directory where the MTex package is 
located (see next slide for screenshots); I put mine in /Users/Shared (on a 
Mac). 
c) in the Matlab command window, type “startup_mtex”. 

•  Then click on “Install MTEX for future sessions” (no longer required) 
•  Fortunately, this takes care of replacing any previous, older installations of 

MTex. 
•  The Matlab documentation now includes documentation on MTex. 
•  Caution: if you manually add the MTEX folder to your MATLAB path then 

there is a significant risk that MTEX will give errors (e.g. when you try to 
read in EBSD data). What you should do instead to get it to work is to put 
MTEX in a different folder and run startup_mtex from that directory.  
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Change	
  Folder	
  
8	
  

Hold the mouse 
arrow over this 
icon and you will 
see “Browse for 
folder” 

Or this: “Set Path” 



What	
  can	
  MTex	
  do?	
  

•  We will explore two things:  
a) analysis of pole figure data;  
b) analysis of EBSD data. 

•  Useful links: 
This one describes ways to plot individual 
orientations. 
http://merkel.zoneo.net/RDX/index.php?n=Texture.PlotIndividualOrientationsInMTex 

This one has useful hints (although be careful that many 
details have changed from v3 to v4):  
http://mtex-toolbox.github.io/files/doc/BoundaryPlots.html 
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Navigating	
  the	
  Cile	
  structure	
  

>> pwd 
will tell you which directory you are in, 
       probably “~/Documents/MATLAB” 
>> cd /directory-of-your-choice 
will place you in whatever folder/directory you like, i.e. 
where you have your data. Note, on a Mac, you can 
Copy a highlighted folder, Paste in Terminal, highlight 
and copy the full path that you see, and then Paste that 
after the “cd “ entry in the Matlab window. 
You can then click on  “Import pole figure data” or 
“Import EBSD data”, for example, to set up the script to 
read in your data. Or (next slide) you can type 
“import_wizard”. 
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Part	
  1:	
  PF	
  analysis	
  
•  Look in the “Mtex Toolbox” for “Short Pole Figure Analysis 

Tutorial”. Do not use this! 
•  Instead, type import_wizard or click on that in the list of links.  

Note, if you have just started MatLab (after installing MTEX in a 
previous session), you need to navigate (Change Folder) to the 
MTEX folder and type “startup_mtex” before doing anything 
else. 

•  A new, small window will open.  It  
should be set to the “Pole Figures”  
tab by default (but if not, click on  
that tab). 
Click on the “+” and navigate to  
where you have “alr.epf” stored. 
You should see the window below. 
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PF	
  analysis	
  –	
  p2	
  
•  Click on “Next >>” in the same window.  You can enter the 

lattice parameter as 4.05 if you wish (although it should not 
make any difference because this is cubic). 
The wizard is quite clever: if you enter “Fe” or “Iron” as the 
mineral name, it will recognize this material and make the 
appropriate entries for you. 
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PF	
  analysis	
  –	
  p3	
  
•  I prefer to set the plotting axes so that “x” 

points to the right (East), as for normal plots.  
For now re-set the “specimen symmetry” to 
“orthorhombic”. 
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There is now a 
control to enforce 
plotting with X to 
the right (east): 

plotx2east 



PF	
  analysis	
  –	
  p4	
  

•  After clicking “Next >>”, you should see this 
window. 
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PF	
  analysis	
  –	
  p5	
  
15	
  

•  After clicking “Next >>”, you should see this 
window (but with “orthorhombic” for the 
sample symmetry). Now click “Finish” to be 
done. 



Plot	
  experimental	
  PFs 
•  Plot(pf)	
  should	
  show	
  you	
  discrete	
  pole	
  figures	
  in	
  which	
  the	
  

color	
  is	
  red	
  for	
  high	
  intensity	
  and	
  blue	
  for	
  low;	
  “pf”	
  was	
  
the	
  default	
  name	
  of	
  the	
  PF	
  data	
  that	
  you	
  read	
  in. 
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ODF	
  analysis	
  
•  At this point you can run the ODF analysis: 
odf = calcODF(pf) 
------ MTEX -- PDF to ODF inversion ------------------ 
Call c-routine 
initialize solver 
start iteration 
error: 7.1530E-01 4.2632E-01 2.1810E-01 1.3615E-01 9.8065E-02 7.7246E-02 7.1090E-02 6.7171E-02 6.4644E-02 
6.2644E-02 6.0870E-02  
Finished PDF-ODF inversion. 
error: 6.0870E-02 
alpha: 1.0518E+00 1.0678E+00 1.1113E+00  
required time: 6s 
  
odf = ODF (show methods, plot) 
  comment: ODF recalculated from /Users/rollett/Word/teaching/Micro14/MatLab_Casper/Al-PFs/alr.epf 
  crystal symmetry: aluminum (m-3m) 
  sample symmetry : orthorhombic 
  
  Radially symmetric portion: 
    kernel: de la Vallee Poussin, hw = 5° 
    center: 1232 orientations, resolution: 5° 
    weight: 1 
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Recalculated	
  PFs 
•  Type “plotPDF(odf,h,'antipodal')” to plot the same set 

of pole figures but based on the ODF. Note that these 
are quadrant PFs because of the assumed 
orthorhombic sample symmetry. 
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Adjust	
  sample	
  symmetry 
•  Now go into the script that you had generated 

for the PF import, and change (by editing it) 
the sample symmetry from orthorhombic to 
triclinic. 
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Re-­‐analyze 
•  Re-run the calcODF and plotpdf commands. 
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Inverse	
  PFs 
•  To	
  get	
  a	
  complete	
  set	
  of	
  3	
  inverse	
  pole	
  figures,	
  type	
  

“plotIPDF(odf,[xvector,yvector,zvector],'an4podal')”.	
  	
  The	
  
3	
  sample	
  direc4ons	
  (X,	
  Y	
  &	
  Z)	
  are	
  specified	
  by	
  the	
  built-­‐in	
  
“xvector”,	
  “yvector”	
  and	
  “zvector”.	
  You	
  may	
  need	
  to	
  use	
  
Annotate	
  to	
  label	
  the	
  corners. 
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Sections	
  through	
  ODF 
•  plot(odf,’PHI2’,'sec4ons')	
  will	
  give	
  you	
  plots	
  of	
  
sec4ons	
  through	
  the	
  ODF.	
  	
  These	
  go	
  to	
  360°	
  in	
  
phi1,	
  because	
  of	
  the	
  triclinic	
  sample	
  symmetry. 
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3D	
  view 
•  “plot(odf,'PHI2','surf3')” – gives rotatable view. 
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Misc. 
>> textureindex(odf) 
ans = 
   10.6263 
>> entropy(odf) 
ans = 
   -1.6371 
•  These values suggest a moderately strong 

texture. 
 

•  The section on “Characterizing ODFs” 
provides a few other techniques. 
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Misc.,	
  tricks	
  

•  Inside a script (*.m file), you can run a portion 
of it by positioning the cursor at the end of the 
line where you want to go to, and hit “Control-
Enter” to run the script to that position. 
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Errors 
%Error analysis:  
%For a more quantitative description of the reconstruction quality one can 
use the function calcError to compute the fit between the reconstructed 
ODF and the measured pole figure intensities. The following measured are 
available:  
           RP - error ;   L1 – error;    L2 – error  
calcError(pf,odf,'RP',1) 
ans = 
    0.1540    0.1631    0.1319    0.1033    0.1163    0.1763    0.1734 

%In order to recognize bad pole figure intensities it is often useful to plot 
difference pole figures between the normalized measured intensities and 
the recalculated ODF. This can be done with the command PlotDiff.  
plotDiff(pf,odf) 
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Volume	
  fraction 

First we specify an texture component using 
“orientation”:  
ori = orientation('Euler',phi1,Phi,phi2,cs,ss) 
e.g. center = orientation('Euler’,0,55,45,CS,SS) 
The function 'volume' returns the ratio of an 
orientation that is close to an orientation 
(center) by a misorientation tolerance (radius) to 
the volume of the entire odf.  
Syntax:  
v = volume(odf,center,radius,<options>) 
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Part	
  2:	
  EBSD	
  input	
  
•  Navigate with “cd” to wherever your data is; in this case, we will 

work with one or more of the CdTe datasets provided by Prof. 
Zaefferer’s group.  You are recommended to place it in a folder/
directory by itself so that you can store the images from running 
Matlab+MTEX.  On the Macs, “Grab” is v handy for screen/window 
captures. 

•  Click on “Import EBSD data”, just as you did for the pole figure 
data and follow the steps to specify the material etc.  Make sure 
that you have CdTe.cif in the mtex-4.0.5/data/cif/ folder so that 
mtex knows about CdTe as a material.  It will very likely ask you 
about both the CdTe phase and about an unindexed phase.  This 
latter is not a problem. 

•  This generates a dataset called “ebsd”. You can change this name 
in the script that was generated in the above step. 

•  Note that the mtex folder will have a version number (e.g. the 4.0.5 
above) in the name but this version number may vary depending 
on when you downloaded the package. 
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EBSD:	
  determine,	
  plot	
  grains	
  
•  We take input from: monomodGrainSize+Twins.ang 
•  Type “import_wizard” to get the interactive window for importing data. 
•  Click on the “EBSD” tab 
•  Navigate to the “monomodGrainSize+Twins.ang” file.  The data will then be imported. 
•  Click “Next” several times to see the program recognize the phase(s) automatically until only “Finish” is available. 
•  You will then have a MatLab script in its own window.  Save it under whatever name you prefer (you will see something 

like “myname.m” appear, in whichever folder/directory you choose). 
•  Click on “Run” (green arrow, pointing right).  This will execute the script and import the dataset as an entity called “ebsd”. 
•  Check the contents of the data by just typing the name “ebsd”.  If you do not see the phase “Cadmium Telluride” appear in 

the list (just a blank list) then edit the script to remove “not indexed” as a phase. In other words, 
% crystal symmetry 
CS = {...  
  crystalSymmetry('432', [6.41 6.41 6.41], 'mineral', 'Cadmium Telluride', 'color', 'light blue'),… 
  'not indexed'}; 
should become: 
% crystal symmetry 
CS = {...  
 crystalSymmetry('432', [6.41 6.41 6.41], 'mineral', 'Cadmium Telluride', 'color', 'light blue’)}; 

•  Then repeat the importation by clicking on Run again, and again type “ebsd”. You should see this: 
>> ebsd 
ebsd = EBSD (show methods, plot) 
 Phase   Orientations            Mineral       Color  Symmetry  Crystal reference frame 
     0  290700 (100%)  Cadmium Telluride  light blue       432 
 Properties: ci, iq, sem_signal, x, y 
 Scan unit : um 

•  This slightly odd procedure is required in order to account for the fact that MTEX gets confused if you tell it to look for both 
a real phase and non-indexed points when, in this particular dataset, every single point is indexed and belongs to the 
Cadmium Telluride phase.  As of version 4.0.5, this problem appears to be fixed. 
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EBSD:	
  determine,	
  plot	
  grains	
  
•  Type “grains_FMC = calcGrains(ebsd('Cadmium Telluride'),'FMC',…

3.5)” (takes a while to compute) 
•  Then compute inverse pole figure coloring with: 

oM = ipdfHSVOrientationMapping(ebsd('Cadmium Telluride')) 
•  Then plot the ipdfHKL map with 

plot(ebsd('Cadmium Telluride'),oM.orientation2color(ebsd('Cadmium… 
Telluride').orientations)) 
and compute  
grain boundaries: 
gB=grains_FMC.boundary… 
('Cadmium Telluride') 
hold on 
plot(gB,'linewidth',2.) 

•  This will provide a map  
with the GBs delineated  
(and “linewidth” controls  
the thickness). 
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ODF	
  from	
  EBSD	
  
First, do this:   
plot(ebsd) 
This should be “boring” i.e. it should show only 1 phase. 
odf = calcODF(ebsd('Cadmium Telluride').orientations)   
.OR. 
odf = calcODF(ebsd('Cadmium 
Telluride').orientations,'halfwidth',5*degree) 
The second should show a few lines of output with details 
about the calculation. 
The third is the calculation of the ODF (in v4, using “psi” as 
the 3rd argument does not work, hence the numerical 
value). 
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Plot	
  ODF 
32	
  

h = [Miller(1,0,0,CS{1}),Miller(1,1,0,CS{1}),…
Miller(1,1,1,CS{1})] 
This defines a set of pole figure indices.  
CAUTION: the above assumes you specified 
two phases in the input script, so check your 
input script as to which phase is the one that 
you want.  For example, you may need to 
replace “{1}“ by “{2}“ if the phase of interest is 
the second one. 
plotODF(odf,h,'antipodal') 
This shows a set of sections based on the 
calculated ODF. 



ODF	
  plot	
  
33	
  

plotODF(odf) shows the same 
sections but in tableau style. 



Try	
  this	
  first:	
  plotPDF(odf,h,'an4podal’)	
  
This	
  longer	
  version	
  should	
  equalize	
  the	
  contour	
  levels:	
  
plotPDF(odf,h,'an4podal','minmax',	
  'off',	
  'contour',	
  0:0.5:4)	
  
colorbar	
  
set(gcf,'PaperPosi4onMode','auto');	
  
print(w1,'-­‐dpng’,'filename');	
  
This	
  shows	
  a	
  set	
  of	
  PFs	
  based	
  on	
  the	
  calculated	
  ODF.	
  	
  As	
  you	
  can	
  see,	
  the	
  
texture	
  is	
  nearly	
  random.	
  	
  Make	
  sure	
  that	
  MatLab	
  is	
  pointed	
  to	
  your	
  local	
  
directory/folder	
  with	
  the	
  data.	
  

Pole	
  Cigures	
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Discrete	
  PFs	
  
•  This command will show discrete pole figure plots, 

where the argument “500” controls how many 
individual orientations are included in the plot: 
plotPDF(ebsd(’Cadmium… 
Telluride').orientations,h,'points',500,'antipodal') 
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Inverse	
  Pole	
  Figures	
  (IVPs) 
plotIPDF(odf,[xvector,yvector,zvector],'antipodal','minmax', 'off',… 
'contour', 0:0.25:2) 
>> hold on 
>> colorbar 
Note how the 001 inverse pole figure shows a maximum at the <111> 
position.  Annotate can be used to label the corners. 
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Grain	
  Boundaries	
  
To compute the grain  
boundaries: 
gB = grains_FMC( 
'Cadmium Telluride') 
.boundary 
Then to get a map of  
just the GBs: 
plot(gB)  
To map GBs by misor  
angle [note that in v4.0.4, 
 one has to add a  
double phase specification]: 
plot(gB('Cadmium Telluride’, 'Cadmium Telluride'),gB('Cadmium 
Telluride’, 'Cadmium Telluride').misorientation.angle/degree,'linewidth',
1.5) 
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Note that you restrict the GBs examined to a particular phase by specifying the two phases in the command 
about GBs that you are using, just as you see here. 



Grain	
  Boundaries:	
  2	
  
You	
  can	
  make	
  a	
  basic	
  analysis	
  of	
  	
  
the	
  grain	
  boundaries	
  in	
  your	
  map	
  	
  
by	
  making	
  a	
  histogram	
  of	
  the	
  	
  
misorienta4on	
  angles.	
  
plotAngleDistribu4on(gB	
  
('Cadmium	
  Telluride’	
  
,'Cadmium	
  Telluride'));	
  
To	
  export	
  the	
  figure	
  directly,	
  	
  
here’s	
  a	
  new	
  trick.	
  	
  You	
  can	
  save	
  	
  
the	
  figure	
  as	
  a	
  MatLab	
  object:	
  
w1	
  =	
  figure(1);	
  
Then	
  you	
  export	
  it	
  in,	
  say,	
  	
  
PNG	
  format	
  thus:	
  
set(gcf,'PaperPosi4onMode','auto')	
  
print(w1,'-­‐dpng',	
  	
  
’path_to_your_directory’);	
  
The	
  clumsy	
  thing	
  here	
  is	
  the	
  need	
  	
  
for	
  the	
  complete	
  pathname.	
  	
  This	
  can	
  be	
  structured	
  by	
  saving	
  the	
  path	
  to	
  the	
  
relevant	
  directory	
  in	
  a	
  MatLab	
  variable	
  and	
  then	
  concatena4ng	
  with	
  an	
  actual	
  
(local)	
  filename.	
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Kernel	
  Ave.	
  Misorientation	
  
To see gradients in orientation, one can calculate and then map 
thus: 
kamvalues = KAM(ebsdmonotwins,'threshold',5*degree); 
plot(ebsd,ebsd.KAM./degree); 
to control the color range 
setColorRange([0,1]) ; 
And include a color bar (legend): 
colorbar 
And then capture the figure thus: 
w2=figure(1); 
this ensures that the framing of  
the figure is correct (tends to cut  
off large  
aspect ratio figures unless you do this): 
set(gcf,'PaperPositionMode','auto') 
print(w2,'-dpng',  
’path_to_your_directory’); 
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KAM	
  Misorientation	
  with	
  GBs	
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Grain	
  Boundary	
  types	
  
As an example, let’s emphasize sigma-3 boundaries; first we have to 
specify the boundary type as an axis-angle pair. 
rot = rotation('axis',vector3d(1,1,1),'angle',60*degree); 
gB = grains_FMC.boundary('Cadmium Telluride','Cadmium Telluride') 
ind = angle(gB.misorientation,rot)<10*degree; 
Then to make the map: 
close all  
plot(gB)  
hold on  
plot(gB(ind),'linewidth',1.5,… 
'linecolor','r')  
Plot shows general GBs in  
black and twin boundaries  
in red selected as Σ3 
 [Works as of 5-Nov-14 in  
v 4.0.5] 
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Misc.	
  

•  These notes from the workshop in Belo 
Horizonte, Brasil, Sept. 2015. 

•  Look for a folder called workshops-
BeloHorizonte-2015.1 with “15-brasil” inside, 
with “matlab” inside that. 

•  There are example scripts in the folder, each 
of which contains many procedures to do 
various things. 
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Extra	
  for	
  Grain	
  Boundaries	
  
•  Note	
  that	
  you	
  restrict	
  the	
  GBs	
  examined	
  to	
  a	
  par4cular	
  phase	
  by	
  specifying	
  the	
  two	
  phases	
  in	
  the	
  

command	
  about	
  GBs	
  that	
  you	
  are	
  using,	
  just	
  as	
  you	
  see	
  here.	
  
•  The	
  general	
  Matlab	
  command	
  “struct”	
  will	
  show	
  you	
  what’s	
  inside	
  a	
  variable/container.	
  
•  To	
  smooth	
  grain	
  boundaries	
  (and	
  you	
  can	
  use	
  a	
  different	
  name	
  to	
  avoid	
  over-­‐wri4ng	
  the	
  previous,	
  

unsmoothed	
  dataset):	
  
grains	
  =	
  smooth(grains)	
  

•  To	
  get	
  the	
  list	
  of	
  boundaries	
  in	
  the	
  different	
  phases:	
  
grains.boundary	
  [I	
  think	
  …]	
  

•  (Note	
  that	
  “grains”	
  is	
  the	
  name	
  of	
  your	
  current	
  set	
  of	
  grains	
  and	
  boundaries)	
  The	
  coordinates	
  of	
  the	
  
segments	
  (F	
  for	
  segment)	
  are	
  in	
  a	
  list	
  like	
  this	
  where	
  the	
  1st	
  column	
  is	
  the	
  1st	
  vertex	
  and	
  2nd	
  column	
  is	
  
the	
  2nd	
  vertex	
  (at	
  the	
  end	
  vertex);	
  the	
  list	
  is	
  as	
  long	
  as	
  the	
  number	
  of	
  segments:	
  
grains.boundary.F	
  

•  The	
  actual	
  coordinates	
  of	
  each	
  vertex	
  (V	
  for	
  vertex)	
  is	
  given	
  by	
  	
  
grains.boundary.V	
  

•  If	
  you	
  type	
  the	
  following,	
  you	
  get	
  the	
  two	
  IDs	
  on	
  either	
  side	
  of	
  the	
  boundary	
  segment:	
  
grains.boundary.grainID	
  

•  The	
  index	
  into	
  the	
  orienta4ons	
  of	
  the	
  adjacent	
  pixels	
  can	
  be	
  found	
  thus:	
  
grains.boundary.edsdID	
  

•  The	
  list	
  of	
  point/pixel	
  orienta4ons:	
  
Edbsd.rota4ons	
  (grains.boundary.edsbID)	
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Homework	
  

•  The homework is simple to state but will 
require thought, in addition to processing the 
datasets with MTEX: 
Four datasets are provided.  Investigate the 
differences between them and report on what 
you (or your group) believe those differences 
are. 
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Summary	
  

•  The sequence provided up to this point illustrates how 
to read in and perform standard analysis on pole 
figures and EBSD maps. 


