
Texture	
 Analysis	
 with	
 	

MTEX	
 inside	
 Matlab	

For 27-750
Texture, Microstructure and Anisotropy

A.D. Rollett

Last revised: 31st Jan. 2016

In-­‐Class	
 Questions	

•  What is “texture”? Texture quantifies any bias in crystal orientations

with respect to a reference frame associated with the specimen shape,
or equivalent. This is extended to grain boundary (GB) texture or
preference for one type of GB over another. GB texture can be present
even when the orientation texture is random.

•  Why do we have to work with general 3D rotations in order to quantify
texture? General 3D rotations are required because crystals have a 3D
basis set for their crystal structure and three parameters are required to
relate the (three) associated axes with the reference frame (however
that is chosen).

•  How does a rotation specified by a combination of axis and angle
correspond to a set of three Euler angles (flippant answer: not very
easily!)? The most straightforward correspondence is via the 3x3
rotation matrix; conversions between Euler angles and matrix can be
found e.g. in Bunge’s book, similarly for axis+angle.

•  How does texture apply to CdTe? The most relevant aspect is grain
boundary texture, although some deposits also have a very strong
orientation texture.

2	

In-­‐Class	
 Questions:	
 2	

•  How does misorientation apply to CdTe (or any other polycrystalline

material)? Misorientation is the term used to describe the difference in
orientation, generally across a grain boundary (but between any pair of
orientations in general).

•  How is crystal symmetry taken into account in texture and grain
boundary analysis? The symmetry of a crystal defines a point group; that
point group must be used to calculate the minimum set of orientations or
misorientations that are physically possible.

•  What is the procedure that one can follow to use Matlab+MTex to
construct an orientation distribution from pole figure data? This
procedure is described in these lecture notes.

•  What is the procedure that one can follow to use Matlab+MTex to
construct an orientation distribution from EBSD data? As with pole
figures, this is described in the notes. In general, it is reasonable to use
the procedure provided by the MTEX package.

•  What else can one obtain from a Matlab+MTex analysis? In principle,
one can perform any analysis although some degree of exploration may
be required to implement any given type of analysis.

3	

Objectives	

1.  Introduce students to texture i.e.
crystallographic preferred orientation, also
known as fabric in geology.

2.  Explain briefly two standard types of data,
namely pole figures and orientation maps
from e.g. electron back-scatter diffraction
(EBSD).

3.  Demonstrate how to use the MTEX package
within Matlab to perform analyses on
relevant data.

4	

Grain	
 DeCinitions	

Examples	
 of	
 varying	
 the	
 misorienta4on	
 threshold:	

3 degrees 15 degrees
Note	
 that	
 each	
 color	
 represents	
 1	
 grain	

•  Given an orientation map with continuously varying orientations from one
point to the next, one imposes a grain structure by aggregating points
with similar orientation. This requires choice of a threshold in
misorientation, below which two adjacent points belong to the same
grain. From percolation, the procedure is known as the “burn algorithm”.

Variation	
 in	
 Boundary	
 Properties	

•  Rhetorical question: do grain boundaries have variable properties?

Answer: yes, even GB energy is highly variable.
•  GB energy depends primarily on the two surfaces that are joined at the

boundary. Low energy surfaces result in low energy GBs. In fcc metals,
for example, {111} is the close packed (highest atomic density) surface
and therefore lowest energy. GBs with {111} surface(s) are
demonstrably low energy. Thus the coherent twin has the lowest energy
of all, and {111} twist GBs are generally lower than most other GB types.

•  GB energy correlates (positively) with excess free volume (per atom).
•  Other properties also correlate with excess free volume such as

diffusion.
•  In grain growth, high energy GBs disappear faster than low energy GBs;

therefore populations of GBs are anti-correlated with energy.
•  GB mobility is poorly understood: some GBs exhibit anti-Arrhenius

behavior (mobility decreases with increasing temperature).

6	

Installation	
 of	
 MTex	

•  Find MTEX by searching on “mtex google code”; the author of MTEX, Ralf

Hielscher, now hosts the code on his own website,
http://mtex-toolbox.github.io/. As of Jan. 19th 2016, this is still valid.

•  MTEX has its own installation procedure. As detailed in the instructions
found on-line, the steps include
a) download the package (from the “downloads” page)
b) set the Matlab “path” to the folder/directory where the MTex package is
located (see next slide for screenshots); I put mine in /Users/Shared (on a
Mac).
c) in the Matlab command window, type “startup_mtex”.

•  Then click on “Install MTEX for future sessions” (no longer required)
•  Fortunately, this takes care of replacing any previous, older installations of

MTex.
•  The Matlab documentation now includes documentation on MTex.
•  Caution: if you manually add the MTEX folder to your MATLAB path then

there is a significant risk that MTEX will give errors (e.g. when you try to
read in EBSD data). What you should do instead to get it to work is to put
MTEX in a different folder and run startup_mtex from that directory.

7	

Change	
 Folder	

8	

Hold the mouse
arrow over this
icon and you will
see “Browse for
folder”

Or this: “Set Path”

What	
 can	
 MTex	
 do?	

•  We will explore two things:
a) analysis of pole figure data;
b) analysis of EBSD data.

•  Useful links:
This one describes ways to plot individual
orientations.
http://merkel.zoneo.net/RDX/index.php?n=Texture.PlotIndividualOrientationsInMTex

This one has useful hints (although be careful that many
details have changed from v3 to v4):
http://mtex-toolbox.github.io/files/doc/BoundaryPlots.html

9	

Navigating	
 the	
 Cile	
 structure	

>> pwd
will tell you which directory you are in,
 probably “~/Documents/MATLAB”
>> cd /directory-of-your-choice
will place you in whatever folder/directory you like, i.e.
where you have your data. Note, on a Mac, you can
Copy a highlighted folder, Paste in Terminal, highlight
and copy the full path that you see, and then Paste that
after the “cd “ entry in the Matlab window.
You can then click on “Import pole figure data” or
“Import EBSD data”, for example, to set up the script to
read in your data. Or (next slide) you can type
“import_wizard”.

10	

Part	
 1:	
 PF	
 analysis	

•  Look in the “Mtex Toolbox” for “Short Pole Figure Analysis

Tutorial”. Do not use this!
•  Instead, type import_wizard or click on that in the list of links.

Note, if you have just started MatLab (after installing MTEX in a
previous session), you need to navigate (Change Folder) to the
MTEX folder and type “startup_mtex” before doing anything
else.

•  A new, small window will open. It
should be set to the “Pole Figures”
tab by default (but if not, click on
that tab).
Click on the “+” and navigate to
where you have “alr.epf” stored.
You should see the window below.

11	

PF	
 analysis	
 –	
 p2	

•  Click on “Next >>” in the same window. You can enter the

lattice parameter as 4.05 if you wish (although it should not
make any difference because this is cubic).
The wizard is quite clever: if you enter “Fe” or “Iron” as the
mineral name, it will recognize this material and make the
appropriate entries for you.

12	

PF	
 analysis	
 –	
 p3	

•  I prefer to set the plotting axes so that “x”

points to the right (East), as for normal plots.
For now re-set the “specimen symmetry” to
“orthorhombic”.

13	

There is now a
control to enforce
plotting with X to
the right (east):

plotx2east

PF	
 analysis	
 –	
 p4	

•  After clicking “Next >>”, you should see this
window.

14	

PF	
 analysis	
 –	
 p5	

15	

•  After clicking “Next >>”, you should see this
window (but with “orthorhombic” for the
sample symmetry). Now click “Finish” to be
done.

Plot	
 experimental	
 PFs
•  Plot(pf)	
 should	
 show	
 you	
 discrete	
 pole	
 figures	
 in	
 which	
 the	

color	
 is	
 red	
 for	
 high	
 intensity	
 and	
 blue	
 for	
 low;	
 “pf”	
 was	

the	
 default	
 name	
 of	
 the	
 PF	
 data	
 that	
 you	
 read	
 in.

16	

ODF	
 analysis	

•  At this point you can run the ODF analysis:
odf = calcODF(pf)
------ MTEX -- PDF to ODF inversion ------------------
Call c-routine
initialize solver
start iteration
error: 7.1530E-01 4.2632E-01 2.1810E-01 1.3615E-01 9.8065E-02 7.7246E-02 7.1090E-02 6.7171E-02 6.4644E-02
6.2644E-02 6.0870E-02
Finished PDF-ODF inversion.
error: 6.0870E-02
alpha: 1.0518E+00 1.0678E+00 1.1113E+00
required time: 6s

odf = ODF (show methods, plot)
 comment: ODF recalculated from /Users/rollett/Word/teaching/Micro14/MatLab_Casper/Al-PFs/alr.epf
 crystal symmetry: aluminum (m-3m)
 sample symmetry : orthorhombic

 Radially symmetric portion:
 kernel: de la Vallee Poussin, hw = 5°
 center: 1232 orientations, resolution: 5°
 weight: 1

17	

Recalculated	
 PFs
•  Type “plotPDF(odf,h,'antipodal')” to plot the same set

of pole figures but based on the ODF. Note that these
are quadrant PFs because of the assumed
orthorhombic sample symmetry.

18	

Adjust	
 sample	
 symmetry
•  Now go into the script that you had generated

for the PF import, and change (by editing it)
the sample symmetry from orthorhombic to
triclinic.

19	

Re-­‐analyze
•  Re-run the calcODF and plotpdf commands.

20	

Inverse	
 PFs
•  To	
 get	
 a	
 complete	
 set	
 of	
 3	
 inverse	
 pole	
 figures,	
 type	

“plotIPDF(odf,[xvector,yvector,zvector],'an4podal')”.	
 	
 The	

3	
 sample	
 direc4ons	
 (X,	
 Y	
 &	
 Z)	
 are	
 specified	
 by	
 the	
 built-­‐in	

“xvector”,	
 “yvector”	
 and	
 “zvector”.	
 You	
 may	
 need	
 to	
 use	

Annotate	
 to	
 label	
 the	
 corners.

21	

Sections	
 through	
 ODF
•  plot(odf,’PHI2’,'sec4ons')	
 will	
 give	
 you	
 plots	
 of	

sec4ons	
 through	
 the	
 ODF.	
 	
 These	
 go	
 to	
 360°	
 in	

phi1,	
 because	
 of	
 the	
 triclinic	
 sample	
 symmetry.

22	

3D	
 view
•  “plot(odf,'PHI2','surf3')” – gives rotatable view.

23	

Misc.
>> textureindex(odf)
ans =
 10.6263
>> entropy(odf)
ans =
 -1.6371
•  These values suggest a moderately strong

texture.

•  The section on “Characterizing ODFs”
provides a few other techniques.

24	

Misc.,	
 tricks	

•  Inside a script (*.m file), you can run a portion
of it by positioning the cursor at the end of the
line where you want to go to, and hit “Control-
Enter” to run the script to that position.

25	

Errors
%Error analysis:
%For a more quantitative description of the reconstruction quality one can
use the function calcError to compute the fit between the reconstructed
ODF and the measured pole figure intensities. The following measured are
available:
 RP - error ; L1 – error; L2 – error
calcError(pf,odf,'RP',1)
ans =
 0.1540 0.1631 0.1319 0.1033 0.1163 0.1763 0.1734

%In order to recognize bad pole figure intensities it is often useful to plot
difference pole figures between the normalized measured intensities and
the recalculated ODF. This can be done with the command PlotDiff.
plotDiff(pf,odf)

26	

Volume	
 fraction

First we specify an texture component using
“orientation”:
ori = orientation('Euler',phi1,Phi,phi2,cs,ss)
e.g. center = orientation('Euler’,0,55,45,CS,SS)
The function 'volume' returns the ratio of an
orientation that is close to an orientation
(center) by a misorientation tolerance (radius) to
the volume of the entire odf.
Syntax:
v = volume(odf,center,radius,<options>)

27	

Part	
 2:	
 EBSD	
 input	

•  Navigate with “cd” to wherever your data is; in this case, we will

work with one or more of the CdTe datasets provided by Prof.
Zaefferer’s group. You are recommended to place it in a folder/
directory by itself so that you can store the images from running
Matlab+MTEX. On the Macs, “Grab” is v handy for screen/window
captures.

•  Click on “Import EBSD data”, just as you did for the pole figure
data and follow the steps to specify the material etc. Make sure
that you have CdTe.cif in the mtex-4.0.5/data/cif/ folder so that
mtex knows about CdTe as a material. It will very likely ask you
about both the CdTe phase and about an unindexed phase. This
latter is not a problem.

•  This generates a dataset called “ebsd”. You can change this name
in the script that was generated in the above step.

•  Note that the mtex folder will have a version number (e.g. the 4.0.5
above) in the name but this version number may vary depending
on when you downloaded the package.

28	

EBSD:	
 determine,	
 plot	
 grains	

•  We take input from: monomodGrainSize+Twins.ang
•  Type “import_wizard” to get the interactive window for importing data.
•  Click on the “EBSD” tab
•  Navigate to the “monomodGrainSize+Twins.ang” file. The data will then be imported.
•  Click “Next” several times to see the program recognize the phase(s) automatically until only “Finish” is available.
•  You will then have a MatLab script in its own window. Save it under whatever name you prefer (you will see something

like “myname.m” appear, in whichever folder/directory you choose).
•  Click on “Run” (green arrow, pointing right). This will execute the script and import the dataset as an entity called “ebsd”.
•  Check the contents of the data by just typing the name “ebsd”. If you do not see the phase “Cadmium Telluride” appear in

the list (just a blank list) then edit the script to remove “not indexed” as a phase. In other words,
% crystal symmetry
CS = {...
 crystalSymmetry('432', [6.41 6.41 6.41], 'mineral', 'Cadmium Telluride', 'color', 'light blue'),…
 'not indexed'};
should become:
% crystal symmetry
CS = {...
 crystalSymmetry('432', [6.41 6.41 6.41], 'mineral', 'Cadmium Telluride', 'color', 'light blue’)};

•  Then repeat the importation by clicking on Run again, and again type “ebsd”. You should see this:
>> ebsd
ebsd = EBSD (show methods, plot)
 Phase Orientations Mineral Color Symmetry Crystal reference frame
 0 290700 (100%) Cadmium Telluride light blue 432
 Properties: ci, iq, sem_signal, x, y
 Scan unit : um

•  This slightly odd procedure is required in order to account for the fact that MTEX gets confused if you tell it to look for both
a real phase and non-indexed points when, in this particular dataset, every single point is indexed and belongs to the
Cadmium Telluride phase. As of version 4.0.5, this problem appears to be fixed.

29	

EBSD:	
 determine,	
 plot	
 grains	

•  Type “grains_FMC = calcGrains(ebsd('Cadmium Telluride'),'FMC',…

3.5)” (takes a while to compute)
•  Then compute inverse pole figure coloring with:

oM = ipdfHSVOrientationMapping(ebsd('Cadmium Telluride'))
•  Then plot the ipdfHKL map with

plot(ebsd('Cadmium Telluride'),oM.orientation2color(ebsd('Cadmium…
Telluride').orientations))
and compute
grain boundaries:
gB=grains_FMC.boundary…
('Cadmium Telluride')
hold on
plot(gB,'linewidth',2.)

•  This will provide a map
with the GBs delineated
(and “linewidth” controls
the thickness).

30	

ODF	
 from	
 EBSD	

First, do this:
plot(ebsd)
This should be “boring” i.e. it should show only 1 phase.
odf = calcODF(ebsd('Cadmium Telluride').orientations)
.OR.
odf = calcODF(ebsd('Cadmium
Telluride').orientations,'halfwidth',5*degree)
The second should show a few lines of output with details
about the calculation.
The third is the calculation of the ODF (in v4, using “psi” as
the 3rd argument does not work, hence the numerical
value).

31	

Plot	
 ODF
32	

h = [Miller(1,0,0,CS{1}),Miller(1,1,0,CS{1}),…
Miller(1,1,1,CS{1})]
This defines a set of pole figure indices.
CAUTION: the above assumes you specified
two phases in the input script, so check your
input script as to which phase is the one that
you want. For example, you may need to
replace “{1}“ by “{2}“ if the phase of interest is
the second one.
plotODF(odf,h,'antipodal')
This shows a set of sections based on the
calculated ODF.

ODF	
 plot	

33	

plotODF(odf) shows the same
sections but in tableau style.

Try	
 this	
 first:	
 plotPDF(odf,h,'an4podal’)	

This	
 longer	
 version	
 should	
 equalize	
 the	
 contour	
 levels:	

plotPDF(odf,h,'an4podal','minmax',	
 'off',	
 'contour',	
 0:0.5:4)	

colorbar	

set(gcf,'PaperPosi4onMode','auto');	

print(w1,'-­‐dpng’,'filename');	

This	
 shows	
 a	
 set	
 of	
 PFs	
 based	
 on	
 the	
 calculated	
 ODF.	
 	
 As	
 you	
 can	
 see,	
 the	

texture	
 is	
 nearly	
 random.	
 	
 Make	
 sure	
 that	
 MatLab	
 is	
 pointed	
 to	
 your	
 local	

directory/folder	
 with	
 the	
 data.	

Pole	
 Cigures	

34	

Discrete	
 PFs	

•  This command will show discrete pole figure plots,

where the argument “500” controls how many
individual orientations are included in the plot:
plotPDF(ebsd(’Cadmium…
Telluride').orientations,h,'points',500,'antipodal')

35	

Inverse	
 Pole	
 Figures	
 (IVPs)
plotIPDF(odf,[xvector,yvector,zvector],'antipodal','minmax', 'off',…
'contour', 0:0.25:2)
>> hold on
>> colorbar
Note how the 001 inverse pole figure shows a maximum at the <111>
position. Annotate can be used to label the corners.

36	

Grain	
 Boundaries	

To compute the grain
boundaries:
gB = grains_FMC(
'Cadmium Telluride')
.boundary
Then to get a map of
just the GBs:
plot(gB)
To map GBs by misor
angle [note that in v4.0.4,
 one has to add a
double phase specification]:
plot(gB('Cadmium Telluride’, 'Cadmium Telluride'),gB('Cadmium
Telluride’, 'Cadmium Telluride').misorientation.angle/degree,'linewidth',
1.5)

37	

Note that you restrict the GBs examined to a particular phase by specifying the two phases in the command
about GBs that you are using, just as you see here.

Grain	
 Boundaries:	
 2	

You	
 can	
 make	
 a	
 basic	
 analysis	
 of	
 	

the	
 grain	
 boundaries	
 in	
 your	
 map	
 	

by	
 making	
 a	
 histogram	
 of	
 the	
 	

misorienta4on	
 angles.	

plotAngleDistribu4on(gB	

('Cadmium	
 Telluride’	

,'Cadmium	
 Telluride'));	

To	
 export	
 the	
 figure	
 directly,	
 	

here’s	
 a	
 new	
 trick.	
 	
 You	
 can	
 save	
 	

the	
 figure	
 as	
 a	
 MatLab	
 object:	

w1	
 =	
 figure(1);	

Then	
 you	
 export	
 it	
 in,	
 say,	
 	

PNG	
 format	
 thus:	

set(gcf,'PaperPosi4onMode','auto')	

print(w1,'-­‐dpng',	
 	

’path_to_your_directory’);	

The	
 clumsy	
 thing	
 here	
 is	
 the	
 need	
 	

for	
 the	
 complete	
 pathname.	
 	
 This	
 can	
 be	
 structured	
 by	
 saving	
 the	
 path	
 to	
 the	

relevant	
 directory	
 in	
 a	
 MatLab	
 variable	
 and	
 then	
 concatena4ng	
 with	
 an	
 actual	

(local)	
 filename.	

	

38	

Kernel	
 Ave.	
 Misorientation	

To see gradients in orientation, one can calculate and then map
thus:
kamvalues = KAM(ebsdmonotwins,'threshold',5*degree);
plot(ebsd,ebsd.KAM./degree);
to control the color range
setColorRange([0,1]) ;
And include a color bar (legend):
colorbar
And then capture the figure thus:
w2=figure(1);
this ensures that the framing of
the figure is correct (tends to cut
off large
aspect ratio figures unless you do this):
set(gcf,'PaperPositionMode','auto')
print(w2,'-dpng',
’path_to_your_directory’);

39	

KAM	
 Misorientation	
 with	
 GBs	

40	

Grain	
 Boundary	
 types	

As an example, let’s emphasize sigma-3 boundaries; first we have to
specify the boundary type as an axis-angle pair.
rot = rotation('axis',vector3d(1,1,1),'angle',60*degree);
gB = grains_FMC.boundary('Cadmium Telluride','Cadmium Telluride')
ind = angle(gB.misorientation,rot)<10*degree;
Then to make the map:
close all
plot(gB)
hold on
plot(gB(ind),'linewidth',1.5,…
'linecolor','r')
Plot shows general GBs in
black and twin boundaries
in red selected as Σ3
 [Works as of 5-Nov-14 in
v 4.0.5]

41	

Misc.	

•  These notes from the workshop in Belo
Horizonte, Brasil, Sept. 2015.

•  Look for a folder called workshops-
BeloHorizonte-2015.1 with “15-brasil” inside,
with “matlab” inside that.

•  There are example scripts in the folder, each
of which contains many procedures to do
various things.

42	

Extra	
 for	
 Grain	
 Boundaries	

•  Note	
 that	
 you	
 restrict	
 the	
 GBs	
 examined	
 to	
 a	
 par4cular	
 phase	
 by	
 specifying	
 the	
 two	
 phases	
 in	
 the	

command	
 about	
 GBs	
 that	
 you	
 are	
 using,	
 just	
 as	
 you	
 see	
 here.	

•  The	
 general	
 Matlab	
 command	
 “struct”	
 will	
 show	
 you	
 what’s	
 inside	
 a	
 variable/container.	

•  To	
 smooth	
 grain	
 boundaries	
 (and	
 you	
 can	
 use	
 a	
 different	
 name	
 to	
 avoid	
 over-­‐wri4ng	
 the	
 previous,	

unsmoothed	
 dataset):	

grains	
 =	
 smooth(grains)	

•  To	
 get	
 the	
 list	
 of	
 boundaries	
 in	
 the	
 different	
 phases:	

grains.boundary	
 [I	
 think	
 …]	

•  (Note	
 that	
 “grains”	
 is	
 the	
 name	
 of	
 your	
 current	
 set	
 of	
 grains	
 and	
 boundaries)	
 The	
 coordinates	
 of	
 the	

segments	
 (F	
 for	
 segment)	
 are	
 in	
 a	
 list	
 like	
 this	
 where	
 the	
 1st	
 column	
 is	
 the	
 1st	
 vertex	
 and	
 2nd	
 column	
 is	

the	
 2nd	
 vertex	
 (at	
 the	
 end	
 vertex);	
 the	
 list	
 is	
 as	
 long	
 as	
 the	
 number	
 of	
 segments:	

grains.boundary.F	

•  The	
 actual	
 coordinates	
 of	
 each	
 vertex	
 (V	
 for	
 vertex)	
 is	
 given	
 by	
 	

grains.boundary.V	

•  If	
 you	
 type	
 the	
 following,	
 you	
 get	
 the	
 two	
 IDs	
 on	
 either	
 side	
 of	
 the	
 boundary	
 segment:	

grains.boundary.grainID	

•  The	
 index	
 into	
 the	
 orienta4ons	
 of	
 the	
 adjacent	
 pixels	
 can	
 be	
 found	
 thus:	

grains.boundary.edsdID	

•  The	
 list	
 of	
 point/pixel	
 orienta4ons:	

Edbsd.rota4ons	
 (grains.boundary.edsbID)	

43	

Homework	

•  The homework is simple to state but will
require thought, in addition to processing the
datasets with MTEX:
Four datasets are provided. Investigate the
differences between them and report on what
you (or your group) believe those differences
are.

44	

45	

Summary	

•  The sequence provided up to this point illustrates how
to read in and perform standard analysis on pole
figures and EBSD maps.

