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Notation

F Stimulus (field) a transformation matrix
R Response W work done (energy)
P Property dW work increment
j electric current [ identity matrix
E electric field O symmetry operator (matrix)
D electric polarization Y Young’s modulus
¢ Strain (also, permutation 0 Kronecker delta
tensor) e axis (unit) vector
Stress (or conductivity) T tensor
Resistivity o direction cosine

piezoelectric tensor
elastic stiffness
elastic compliance

L OO QL Q
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Objective

The objective of this lecture is to provide a mathematical framework
for the description of properties, especially when they vary with
direction.

A basic property that occurs in almost applications is elasticity.
Although elastic response is linear for all practical purposes, it is often
anisotropic (composites, textured polycrystals etc.).

Why do we care about elastic anisotropy? In composites, especially
fibre composites, it is easy to design in substantial anisotropy by
varying the lay-up of the fibres. See, for example:
http://www.jwave.vt.edu/crcd/kriz/lectures/Geom 3.html

Geologists are very familiar with elastic anisotropy and exploit it for
understanding seismic results; see, e.g.,
https://en.wikipedia.org/wiki/Seismic anisotropy .
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In Class Questions

Why is plastic yielding a non-linear property, in contrast to elastic
deformation?

What is the definition of a tensor?

Why is stress is 2"9-rank tensor?

Why is elastic stiffness a 4th-rank tensor?

What is “matrix notation” (in the context of elasticity)?

What are the relationships between tensor and matrix coefficients for
stress? Strain? Stiffness? Compliance?

Why do we need factors of 2 and 4 in some of these conversion factors?

How do we use crystal symmetry to decrease the number of coefficients
needed to describe stiffness and compliance?

How many independent coefficients are needed for stiffness (and
compliance) in cubic crystals? In isotropic materials?

How do we express the directional dependence of Young’s modulus?
What is Zener’s anisotropy factor?
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: Q&A

1. How do we write the relationship between (tensor) stress and (tensor) strain? c=C:e. How about the other way
around? £=S:c. What are “stiffness” and “compliance” in this context? The stiffness tensor is the collection of
coefficients that connect all the different stress coefficients/components to all the different strain
coefficients/components. How do we express this in Voigt or vector-matrix notation? The only difference is that the
stress and strain are vectors and the stiffness and compliance are matrices. If indices are used then stress and strain
each have two indices and the stiffness and compliance each have four.

2. What are the relationships between the coefficients of the (4t rank) stiffness tensor and the stiffness matrix (6x6)?
See the notes for details but, e.g., {11,22,33},, .., correspond to {1,2,3}, ...ix- E-8. C;,(matrix)=C;;,,(tensor). What
about the compliance tensor and matrix? Here, more care is required because certain coefficients have factors of 2 or
4,

3. What does work conjugacy mean? The energy stored in a body when elastic strains and stresses are present is
calculated as the product of the stress and strain, which means that the work done makes the strain and stress
conjugate (joined) variables. What does this mean for the relationships between (2"9 rank) tensor stress and its
vector form? What about strain? Answering these two together, we note that work conjugacy means that whatever
notation is used to express stress and strain, the product of the two must be the same because of conservation of
energy. This then explains why factors of two are used in the conversion to/from matrix to tensor representations of
the shear components of strain (but not the normal strain components). These factors of two could have been
applied to stress, but by convention we do this for strain.

4. How do we write the tensor transformation rule in vector-matrix notation? See the notes for details but the basic idea
is that a 6x6 matrix (that can be applied to a stiffness or compliance tensor) is formed from the coefficients of the
transformation matrix.

5. How do we apply crystal symmetry to elastic moduli (e.g. the stiffness tensor)? We apply a symmetry operator to the
(stiffness) tensor and set the new and old versions of the tensor equal to each other, coefficient by coefficient. What
net effect does it have on the stiffness matrix for cubic materials? Applying the cubic crystal symmetry to the stiffness
tensor reduces most of the coefficients to zero and there are only 3 independent coefficients that remain.
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Q&A, part 2

How do we convert from stiffness to compliance (and vice versa)? The detailed mathematics is out of
scope for this course. It is sufficient to know that the two tensors combine to form a 4t rank identity
tensor, from which one can obtain algebraic relationships as given in the notes. Be aware that these
formulae depend on the crystal symmetry (as do the compliance & stiffness tensors themselves).

How do we apply symmetry (and transformations of axes in general) to the property of anisotropic
elasticity? There are two answers. The first answer is that one can apply the tensor transformation
rule, just as explained in previous lectures. Generate the transformation matrix with any the
methods described (i.e. dot products between old and new axes, or using the combination of axis
and angle). Then write out the transformation with 4 copies of the matrix taking care to specify the
indices correctly. The alternative answer is to generate a 6x6 transformation matrix that can be used
with vector-matrix (Voigt) notation for either the stress, strain (6x1) vectors or the modulus (6x6)
matrix.

How do we show that symmetry reduces the number of independent coefficients in an anisotropic
elasticity modulus tensor? Given a symmetry matrix, one proceeds just as in the previous examples
i.e. apply symmetry and then equate individual coefficients to find the cases of either zero or
equality(between different coefficients).

How do we calculate the (anisotropic) elastic (Young’s) modulus in an arbitrary direction? This looks
ahead to the next lecture. The idea is to realize that a tensile test is such that there is only one non-
zero coefficient in the stress tensor (or vector); the strain tensor, however, has to have more than
one non-zero coefficient (because of the Poisson effect). Therefore one uses the relationship that
strain = compliance x stress. By rotating the compliance tensor such that one axis (usually x) is
parallel to the desired direction, one obtains the Young’s modulus in that direction as 1/S,;.
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Anisotropy: Practical Applications

e The practical applications of anisotropy of
composites, especially fiber-reinforced
composites are numerous.

e The stiffness of fiber composites varies
tremendously with direction. Torsional rigidity is

very important in car bodies, boats, aeroplanes
etc.

e Even in monolithic polymers (e.g. drawn
polyethylene) there exists large anisotropy
because of the alignment of the long-chain
molecules.
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Application example: quartz oscillators

e Piezoelectric quartz crystals are commonly used for frequency control
in watches and clocks. Despite having small values of the
piezoelectric coefficients, quartz has positive aspects of low losses
and the availability of orientations with negligible temperature
sensitivity. The property of piezoelectricity relates strain to electric
field, or polarization to stress.

* &ij = dijkEk

e PZT, lead zirconium titanate PbZr,,Ti,O,, is another commonly used
piezoelectric material.

Please acknowledge Carnegie Mellon if you make public use of these slides



10

Examinable

Piezoelectric Devices

* The property of piezoelectricity relates strain to electric field, or
polarization to stress.

&; = dypcE
* PZT, lead zirconium titanate PbZr,_ Ti O,, is another commonly used
piezoelectric material.

Piezo printer

Note: Newnham consistently
uses vector-matrix notation,
rather than tensor notation.
We will explain how this works
later on.

> 50-500N

. 5-20 um
] \A

v

100N-10N

20-100 um Fig. 12.12 Ceramic multilayer actuators

consist of thin layers of piezoelectric ceramic
and metal electrodes. In contrast to traditional
piezoelectrics, even low voltages produce
large forces and substantial displacements.
A tradeoff exists between force and dis-
placement. The multilayer stack utilizing the
ds;3 coefficient give kilonewton forces cap-
25-2500 um able of pushing heavy weights through small

distances. Bimorph benders make use of the

smaller transverse of d3; coefficients to give

larger displacements in the millimeter range,

& 18 - but only small forces.

v

Pneumatic valve ?

0-5N

v

[Newnham]
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Piezoelectric Crystals

(a)

PbTiO;
Symmetry 4mm
* How is it that crystals can be piezoelectric? () I
RS A
e The answer is that the bonding must be ionic to some Y
degree (i.e. there is a net charge on the different O D
elements) and the arrangement of the atoms must be il
non-centrosymmetric. v
Pi=dy; X5
e PZTis a standard piezoelectric material. It has Pb atoms d33=120 pC/N

at the cell corners (a~44), O on face centers, and a Ti or
Zr atom near the body center. Below a certain
temperature (Curie T), the cell transforms from cubic

(high T) to tetragonal (low T). Applying stress distorts ,/P'f-.zs(féi}x
the cell, which changes the electric displacement in ;
) > (d) 49/@

different ways (see figure). @«—@:@;
e Although we can understand the effect at the single @,/ @/J

crystal level, real devices (e.g. sonar transducers) are (G-

. . . . 2s=d | 5X5
polycrystalline. The operation is much complicated ,1]:,;300 [if,N

than discussed here, and involves “poling” to maximize
the response, which in turns involves motion of domain

walls.

Fig. 12.11 Structure—property relations for
the intrinsic piezoelectric effect in PbTiOs.
In the unstressed state there is an electric
dipole associated with the off-center shift of
the titanium atom. Under stress, this dipole
can be increased (d33), decreased (d3)), or
tilted (dys).

[Newnham]
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Mathematical Descriptions

Mathematical descriptions of properties are available.

Mathematics, or a type of mathematics provides a
quantitative framework. It is always necessary, however,
to make a correspondence between mathematical
variables and physical quantities.

In group theory one might say that there is a set of
mathematical operations & parameters, and a set of
physical quantities and processes: if the mathematics is a
good description, then the two sets are isomorphous.

This lecture makes extensive use of tensors. A tensor is a
guantity that can be transformed from one set of axes to
another via the tensor transformation rule (next slide).
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Tensor: definition, contd.

e |n order for a quantity to “qualify” as a tensor it has to obey the
axis transformation rule, as discussed in the previous slides.

e The transformation rule defines relationships between

transformed and untransformed tensors of various ranks.

e |t says that any tensor quantity can be transformed from one
reference frame to another; this transformation of axes is

sometimes called a passive rotation.

Vector:
2nd rank

3rd rank
4t rank

’ —
Vi =a;V;

Iy = aga;Ty
’ —

Tijk - ailaimaknTlmn
’ —

T,-jk, =a, d; akoa,pT

Im-—in mnop

This rule is a critical piece of information, which

you must know how to use.
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Non-Linear properties, example

Another important example of non-linear anisotropic properties is
plasticity, i.e. the irreversible deformation of solids.

A typical description of the response at plastic yield

(what happens when you load a material to its yield stress)
is elastic-perfectly plastic. In other
words, the material responds

elastically until the yield stress is lne j

{\

reached, at which point the stress
remains constant (strain rate
unlimited). @

e A more realistic description is a power-law with a
large exponent, n~50. The stress is scaled by the crss,

and be expressed as either shear stress- € = o

shear strain rate [graph], or tensile stress-tensile strain O i

[equation]. g
[Kocks]
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Linear properties

e Certain properties, such as elasticity in most

cases, are linear which means that we can
simplify even further to obtain

R=R,+PF

R:PF/

e.g. elasticity: o=Ce¢

orif R,=0,

stiffness

In tension, C =Young’s modulus, Y or E.
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Elasticity

Elasticity: example of a property that requires tensors to
describe it fully.

Even in cubic metals, a crystal is quite anisotropic. The
[111] in many cubic metals is stiffer than the [100]
direction.

Even in cubic materials, 3 numbers/coefficients/moduli
are required to describe elastic properties; isotropic
materials only require 2.

Familiarity with Miller indices, suffix notation, Einstein
convention, Kronecker delta, permutation tensor, and
tensors is assumed.
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Elastic Anisotropy: 1

e First we restate the linear elastic relations for the
properties Compliance, written S, and Stiffness,
written C (admittedly not very logical choice of
notation), which connect stress, o, and strain, €.
We write it first in vector-tensor notation with “
signifying inner product (i.e. add up terms that
have a common suffix or index in them):

oc=C:eg
eE=S5.0

V4

e |n component form (with suffixes),
Oy = Cijklgkl
&jj = Sijlekl
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Elastic Anisotropy: 2

The definitions of the stress and strain tensors
mean that they are both symmetric (second rank)
tensors. Therefore we can see that

€33 = 97311011

€32 = 93211011 = €3
which means that,

S7311 = 93211
and in general,

Sijkl = Yjikl

We will see later on that this reduces considerably
the number of different coefficients needed.
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Stiffness in sample coordes.

e Consider how to express the elastic properties of a single
crystal in the sample coordinates. In this case we need to
rotate the (4t rank) tensor stiffness from crystal
coordinates to sample coordinates using the orientation
(matrix), a :

Cijkl = aimajnakoalpcmnop

e Note how the transformation matrix appears four times
because we are transforming a 4" rank tensor!

e The axis transformation matrix, a, is sometimes also
written as 4, also as the orientation matrix g.
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Young’s modulus from
compliance

e Young's modulus as a function of direction can be
obtained from the compliance tensor as:
E=1/s"1111
Using compliances and a stress boundary
condition (only o,,#0) is most straightforward.
To obtain s';,,;, we simply apply the same
transformation rule,

s ijkl — = a]n Uyo alpSmnop
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“Voigt” or “matrix” notation

e |tis useful to re-express the three quantities
involved in a simpler format. The stress and
strain tensors are vectorized, i.e. converted into
a 1x6 notation and the elastic tensors are
reduced to 6x6 matrices.

/ Gl | Gl 2 Gl 3\ / Gl 06 05\

O-21 022 023 O-6 02 04

\O3; O3, Oj; O; O, O;

H((71 ,0,,03,0,,05 »(76)
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“matrix notation”, contd.

e Similarly for strain:

1 1
/511 €, 513\ /51 386 385\
1 1
€y Eyp Exz| ST 3Ee & Ty
1 1
E31 &35 & 385 584 €,

%(81,82,83,84,85,86)

The particular definition of shear strain used in the
reduced notation happens to correspond to that used in

mechanical engineering such that ¢, is the change in angle
between direction 2 and direction 3 due to deformation.
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Work conjugacy, matrix inversion

e The more important consideration is that the
reason for the factors of two is so that work
conjugacy is maintained.

dW = ode = 6;;: dg; = o » d&,

Also we can combine the expressions
o = (Ce and € = So to give:

o = CSo, which shows:
[=CS, or, C =51
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Tensor conversions: stiffness

e Lastly we need a way to convert the tensor
coefficients of stiffness and compliance to the
matrix coefficients. For stiffness, it is very simple
because one substitutes values according to the
following table, such that [vector-matrix] C,,
= (111 [tensor] for example.

Tensor 11 | 22 |33 | 23 | 32 | 13 | 31 | 12

Matrix 1 2 3 4 4 5 5 6
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Stiffness Matrix

C12 Cl 3 C14
22 C23 C24

®
19

15

a 0

P
O

EQ ;ﬁ

P Bﬁ
aﬁ
ﬁﬁ

® &Q P
8\{3

~
9
~
@
~
~
n
)
@
N
@)

2

15 C25 35 45 55 56

C16 C26 C36 C46 C56 C66
Vector-matrix notation (two indices for the moduli, one index for stress or
strain); note that this matrix is symmetric, therefore there are only 21
independent coefficients, even for triclinic crystals (see later slides).

®
®
®
®
9
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Axis Transformations

e |tis still possible to perform axis transformations, as
allowed for by the Tensor Rule. The coefficients can be
combined [Newnham] together into a 6 by 6 matrix that
can be used for 2" rank tensors such as stress and strain,
below.

Table 10.1 Transformation matrices for stresses and strains written in matrix form

e Stress (in vector TR Y I TR T
. . (u ) (a3,) (uj:.‘) (2axa) (2ayyaz)) (2a2,a2)
notation) transforms as: . . :
(a3,) (a3,) (az,) (2ay;axy) (2ayiaa;) (2azyax)
)
X i ) a’l] X] o (azyayy) (a@raxy) (araszy) (arnayy +axay) (axyav + axpay) (aypay + anasz)

(ayay) laxyay) (aszagy) lapyaxy +apas) (ayzasz) v~ aayy) (dy ayy < daaz)

o Straln (In VeCtor nOtatlon) (aypan) (ayra2) (ayrary) (appay +apyan) (apzax + apaxp) (ayax +apan)/
tranSformS aS: (u‘;,) t“.{|) ((H:Ij 1:¢l3111;|) 124Ilr(l||l 12(!::(I},|
) — ('(t"f’ Ill’ (u%-) (2ayyazz) (2ayay3) (2a;2ax)
X = (o 1)Tx ;
) J (ais) (a34) (a3;) (2az3asy) (2aviayy) (2a)3az3)

. «urm @="
Where SU perscrlpt T i (apa)) (azan) (ayaiy) {@xayy +ayvany) (apan + axypapy) (ayaypy + apayy)
signifies tra nspose Of the (ajza;)  (ana) (anay)  (ayan +avan)  (ayapy +anaw) (a)a; +anap)

(aya)r) (azjaxn) (ayaxy) (a; ay; +avyan) (ayiayy; +apav) (anan +ana)
.
matrix.
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Tensor conversions: compliance

e For compliance some factors of two are required
and so the rule becomes:

p=1 m.AND.n €[1,2,3
p=2 m XORn €[1,2,3
p=4 m.AND.n €456
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Relationships between coefficients:
Cin terms of S

Some additional useful relations between coefficients for
cubic materials are as follows. Symmetrical relationships
exist for compliances in terms of stiffnesses (next slide).

Ci1 = (Sq11+S42)/{(511-512) (S11+254,)}
Cip =-S12/{(511-S12) (511+254,)}

Cas=1/544
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Sin terms of C

The relationships for S in terms of C are symmetrical to those
for stiffnesses in terms of compliances (a simple exercise
in algebra).

S11=(C11+C) /{(C11-C12) (C11+2C,) )
S12=-C12/{(C11-C15)(C11+2C15) )
Saa=1/Cyy

Si1-S12 = (C11+2C,) /{(C11-C12)(C11+2C4,)}
S11-512 = 1/(C11'C12)-
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30

Neumann's Principle

e A fundamental natural law: Neumann's Principle:
the symmetry elements of any physical property
of a crystal must include the symmetry elements
of the point group of the crystal. The property
may have additional symmetry elements to those
of the crystal (point group) symmetry. There are
32 crystal classes for the point group symmetry.

e F.E. Neumann 1885.
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Neumann, extended

e |f a crystal has a defect structure such as a dislocation
network that is arranged in a non-uniform way then the
symmetry of certain properties may be reduced from the
crystal symmetry. In principle, a finite elastic strain in one
direction decreases the symmetry of a cubic crystal to
tetragonal or less. Therefore the modified version of
Neumann's Principle: the symmetry elements of any
physical property of a crystal must include the symmetry
elements that are common to the point group of the
crystal and the defect structure contained within the
crystal.
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Effect of crystal symmetry

e Consider an active rotation of the crystal, where O is the
symmetry operator. Since the crystal is
indistinguishable (looks the same) after applying the
symmetry operator, the result before, R, and the
result after, R(?, must be identical:

RV =pF
R? = oro! F}
R(l) <_=—>R(2)

p

~

The two results are indistinguishable and therefore
equal. It is essential, however, to express the property
and the operator in the same (crystal) reference frame.
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Symmetry, properties, contd.

Expressed mathematically, we can rotate, e.g. a second rank property tensor
thus:
P'= OPOT = P, or, in coefficient notation,
P ’ij = 0y 0yPy

where O is a symmetry operator.

Since the rotated (property) tensor, P’, must be the same as the original
tensor, P, then we can equate coefficients:

P’y = Py
If we find, for example, that P’,;, =-P,,then the only value of P,; that
satisfies this equality is P,; = 0.
Remember that you must express the property with respect to a particular
set of axes in order to use the coefficient form. In everything related to
single crystals, always use the crystal axes as the reference frame!

Homework question: based on cubic crystal symmetry, work out why a
second rank tensor property can only have one independent coefficient.
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Effect of symmetry on stiffness matrix

e Why do we need to look at the effect of symmetry? For a
cubic material, only 3 independent coefficients are needed
as opposed to the 81 coefficients in a 4th rank tensor.

The reason for this is the symmetry of the material.

e What does symmetry mean? Fundamentally, if you pick
up a crystal, rotate [mirror] it and put it back down, then a
symmetry operation [rotation, mirror] is such that you
cannot tell that anything happened.

e From a mathematical point of view, this means that the
property (its coefficients) does not change. For example,
if the symmetry operator changes the sign of a coefficient,
then it must be equal to zero.
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Znd Rank Tensor Properties & Symmetry

TABLE 3

The effect of crystal symmetry on properties represented by symmetrical

second-rank tensors

! Nature of repre- | Number | Tensor referred
Optical | ! Characteristic | sentation quadric | of inde- to axes in the
classi- symmetry and 1its pendent conventional
fication System (see p. 280)F orientation coefficients | orientation}
Isotropic | Cubic 4 3-fold axes | Sphere 1 S 0 0 7
(anaxial) 0 S 0
o o0 S
Tetragonal | 1 4-fold axis Quadric of revo- 2 S, O 0 7
Uniaxial{| Hexagonal | 1 6-fold axis lution about the 0 S, 0
Trigonal 1 3-fold axis principal sym- L0 0 S;
metry axis
(23)(2)
Orthorhom- | 3 mutually General quadric 3 S, O 0 7
bic perpendicular| with axes 0 S, 0
2-fold axes; (x4, Ty, z3) || to L0 0 S;
no axes of the diad axes
higher order (z, ¥, 2)
Monoclinic | 1 2-fold axis General quadric 4 S;; O Ss
Biaxial with one axis 0 S, O ]
(z,) || to the S, O Sas
diad axis (y) :
Triclinic A centre of General quadric. 6 rS;; Sz Sa
symmetry or | No fixed rela- Sis Sas S”]
no symmetry | tion to crystal- 1S5 Sz Sas
lographic axes

T Axes of symmetry may be rotation axes or inversion axes.
t The setting of the reference axes z,, #;, , in column 6 in relation to the crystallo-
graphic axes z, ¥, z and to the symmetry elements is that shown in column 4. For
further notes on axial conventions, see Appendix B.

e The table from Nye shows the number of independent, non-zero coefficients allowed in

a 2nd rank tensor according to the crystal symmetry class.
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Examinable

Effect of symmetry on stiffness matrix

e Following Reid, p.66 et seq.:

Apply a -90° rotation about the crystal-z axis (axis 3)*,

C’ijkl — OimOjnOkoolpCmnop:
C'=C
_O;
sz C21 C23 C25 _C24 _C26
C21 C11 C13 C15 _C14 _C16
C' = C23 C13 C33 C35 _C34 _C36
C25 C15 C35 C55 _C54 _C56
-Gy Gy -Gy -G Gy Cis
_C26 _C16 _C36 _C56 C46 C66

(0 1 0)
=l-1 0 0
\O 01/

*Reid describes
this as +90°, but -
90° reproduces
his result
(because he
apparently
considers
positive to be
clockwise).
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Examinable

Effect of symmetry, 2

e Using P’ = P, we can equate all the coefficients in
the 6x6 matrix and find that:
C11=Cgy, C137Cy3 Cyy=C35, Ci6=-Cyq
C147C15 = Cyy = (5 = Gz = G35 = Gz = Cys = Cye =
C56 - 0

Ch G, G; O 0 Cis
Ch, G, Gy 0 0 -Ci
s Gy Gy 000
“=lo 0o o C. 0 0
o 0 0 0 C, C,
Cie —Ci 0 0 Cis Cos
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Effect of symmetry, 3

e Thus by repeated applications of the symmetry
operators, one can demonstrate (for cubic crystal
symmetry) that one can reduce the 81
coefficients down to only 3 independent
guantities. These become two in the case of
iIsotropy.

Gy Cp Cp 0 0

Co Gp G2 0 0

Cr ¢ G 0 0

0 0 0 Cyg O
0) 0 0 0 Cyqyg O
0 0 0 0 0 Cy

o O O O
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Cubic crystals: anisotropy factor

e |f one applies the symmetry elements of the
cubic system, it turns out that only three
independent coefficients remain: ¢, C;, and
C,4, (similar set for compliance). From these
three, a useful combination of the first two is

¢ =(C11-C3)/2

e See Nye, Physical Properties of Crystals

Please acknowledge Carnegie Mellon if you make public use of these slides



40

Zener'’s anisotropy factor

e ("'=(Cyy-Cy,)/2turns out to be the stiffness associated with a

shear in a <110> direction on a plane. In certain martensitic
transformations, this modulus can approach zero which
corresponds to a structural instability.

Zener (Physics, Carnegie Tech. Inst.) proposed a measure of
elastic anisotropy based on the ratio C,,/C". This turns out to
be a useful criterion for identifying materials that are elastically
anisotropic, i.e., via the extent to which C,,/C" varies from
unity.

Note that this provides a way to convert an anisotropic elastic
stiffness into an isotropic one. One can, e.g., adjust C,, until
the Zener ratio=1. Some care is required, however, because

one might want to match some average Young’'s modulus, for
example.

Please acknowledge Carnegie Mellon if you make public use of these slides
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Rotated compliance (matrix)

e Given an orientation a,], we transform the

compliance tensor, using cubic point group
symmetry, and find that:

' 4 4 4
1= 11(“11"‘“12"‘“13)
5 ) ) )
+ 2810\ aia13 + ajaio + a1 1013

< ) 2 2 )
+ 4461126113"'0116112"'61116113
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Rotated compliance (matrix)

e This can be further simplified with the aid of the standard
relations between the direction cosines, a;.a;, = 1 for i=j; a;.a;,
=0 for i), (a,a;, = 0;) to read as follows.

511 =38~

s
2l s, =8, —— {(x(x + a3+(x(x}
2

e By definition, the Young’s modulus in any direction is given by

the reciprocal of the compliance, E=1/5";,.

e By definition, the Young’s modulus along <100> is given by the

reciprocal of the compliance for <100>:
Elgo = 1/5;;,={(C11-Cp) (G + 2615)}/ (G + ).
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Anisotropy in cubic materials

e Thus the second term on the RHS is zero for <100> directions
and, for C,,/C'>1, a maximum in <111> directions
(conversely a minimum for C,,/C'<1).

The following table shows that

most cubic metals have positive O e Iy
values of Zener's coefficient so Ni 245 2.18
that <100> is soft and <111> ‘ljel ;i ;2
is hard, with the exceptions of V Ta 157 1.50
and NaCI W (2000K) 1.23 1.35
) W (R.T.) 101 1.01
e See the supplemental slides for v 0.78 0.72
Nb 0.55 0.57
how to go between Cvalues and 5-CuZn 1868 S 21
the Lamé constants used to spinel 243 2.13
) ) ) ) MgO 1.49 137
describe isotropic materials. NaCl 0.60 04
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Stiffness coefficients, cubics

Ca Ci Cy Anisotropy ratio

Material class Material (10 N/m?) (10'° N/m?) (10 N/m?) (Cy — Ci2)2Cy,
Metals Ag 12.4 9.3 4.6 0.34
Al 10.8 6.1 2.9 0.81
Au 18.6 15.7 4.2 0.35
Cu 16.8 12.1 7.5 0.31
a-Fe 23.7 14.1 11.6 0.41
Mo 46.0 17.6 11.0 1.29
Na 0.73 0.63 0.42 0.12
Ni 24.7 14.7 12.5 0.40
Pb 5.0 4.2 1.5 0.27
W 50.1 19.8 15.1 1.00
Covalent Si 16.6 6.4 8.0 0.64
solids Diamond 107.6 12.5 57.6 0.83
TiC 51.2 11.0 17.7 1.14
Tonic solids LiF 11.2 4.6 6.3 0.52
' MgO 29.1 9.0 15.5 0.65
NaCl 4.9 1.3 1.3 1.38

Table 2.2
Stiffness coefficients for selected cubic materials

|Courtney]
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Anisotropy in terms of moduli

e Another way to write the above equation is to
insert the values for the Young's modulus in the
soft and hard directions, assuming that the
<100> are the most compliant direction(s).
(Courtney uses a, 3, and y in place of my a4, a,,
and a;.) The advantage of this formula is that
moduli in specific directions can be used directly.

1 1 1 1 2 2 2 2 2 2
— — 3« - oo, + oo +a;
Euvw ElOO kElOO ElllJ
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Example Problem

2.11 a Sketch a (001) plane in a face-centered cubic material and an arbitrary vector within it
making an angle 6 with the [100] direction. Plot the Young's modulus for copper as a function of 6 for
directions between [110] and [100].

b Sketch a (110) plane in Cu and a vector in the plane making an angle o with the [110] direction. Plot E
vs. a for directions between [110] and [001].

Looi}

Solution: (a) The plane is illustrated to the right.

Use Eq. (3.22). (k°°\)

1/E(ma| = 1/Ec100> -3{1/E<100- ‘1/E<111>}(Q252 + o%y? + B2 'Yz)

where a is the cosine of the angle between the

direction [100] and [hkI], B is the cosine of the Cote]
angle between [010] and [hKI], and v is the like ij el
cosine between [001] and [hki]. From the sketches
provided we see that a = cos8, B = cos(90°-6) o ©1e]
= sin 8 and y =0. Employing moduli in units of
10" N/m?, with E_g0, = 6.7, Ecyyys =11.2 the < Lol
above equation becomes
Lroc] Cnke]
1/Epwg = 0.149 - 0.2915cos?6sin?6
The table below presents results obtained with the Should be E<111>= 18.89
above formula; the figure to the right graphs these 15 —— T
results. a
6(°) cos?0sin?®  E (10°N/m?) s
0 0 6.7 0or
5 0.0075 6.81 E (10" Nm) |
10 0.0292  7.12 &
15 0.0625 7.65 5 E
20 0.1033 8.41
25 0.1467 9.41
30 0.1875 10.6 3 )
35 0.2207 11.82 ) J] PRI NS EFERT S —————
40 0.2425 12.77 0 10 20 30 40
45 (=[110]) 0.25 13.14 ‘ (100} o o
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Alternate Vectorization

1-100 lf-loo l000
bP=—2l0 -1 o;b?=—0 1 o;b®==(0 0 1
J6 J2 J2

0 0 2 L0 0 0 010

0 01 (0 1 0 1 00

b¥=110 0 0l; b =111 0 0l b9 =11lo0 1 0
J2 J3

1 00 0 0 0 0 01

An alternate vectorization, discussed by Tomé on p287 of the Kocks et al.
textbook, is to use the above set of eigentensors. For both stress and strain,
one can matrix multiply each eigentensor into the stress/strain tensor in turn
and obtain the coefficient of the corresponding stress/strain vector. Work
conjugacy is still satisfied. The first two eigentensors represent shears in the
{110} planes; the next three are simple shears on {110}<110> systems, and the
last (6%") is the hydrostatic component. The same vectorization can be used
for plastic anisotropy, except in this case, the sixth, hydrostatic component is
(generally) ignored.

Please acknowledge Carnegie Mellon if you make public use of these slides
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Summary

e We have covered the following topics:

Linear properties

Non-linear properties

Examples of properties

Tensors, vectors, scalars, tensor transformation law.

Elasticity, as example as of higher order property, also
as example as how to apply (crystal) symmetry.

Please acknowledge Carnegie Mellon if you make public use of these slides
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Supplemental Slides

e The following slides contain some useful material
for those who are not familiar with all the
detailed mathematical methods of matrices,
transformation of axes, tensors etc.

Please acknowledge Carnegie Mellon if you make public use of these slides
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Einstein Convention

e The Einstein Convention, or summation rule for

suffixes looks like this:
4;=5; (
where “1” and “}” both are integer indexes whose
range is {1,2,3}. So, to find each “i"” component
of A on the LHS, we sum up over the repeated
index, “j”, on the RHS:

A;=Bq;,0; + B0, + By

A, =B,,C; + B,,(C; + B,s(;

A; = B30, + B3,C, + B3y

owin
1
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Matrix Multiplication

e Take each row of the LH matrix in turn and
multiply it into each column of the RH matrix.

* In suffix notation, a;; = by.cy

ao + b +cy

a +be +cu ay + bp+cv

do+ed+ fy dP+ec+ fu dy +ep+ fv

a
d
[

la+mo +ny

b
e f

m n

C

Ib+me+nu ly +mo+nv)

« By
O € ¢

A owov,
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Properties of Rotation Matrix

e The rotation matrix is an orthogonal matrix, meaning that
any row is orthogonal to any other row (the dot products
are zero). In physical terms, each row represents a unit
vector that is the position of the corresponding (new) old
axis in terms of the (old) new axes.

a |b |l c
d |e
[ m||n

The same applies to columns: in suffix notation -

a;i0y; = Oy, Ak = Oj

} ad+be+cf =0

" bc+ef+mn =0

Please acknowledge Carnegie Mellon if you make public use of these slides
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Direction Cosines,
contd.

e That the set of direction cosines are not independent is
evident from the following construction:

€,"€,=a,d,c "€ = aikajlékl =d;dy = 51']'
Thus, there are six relationships (i takes values from 1 to
3, and j takes values from 1 to 3) between the nine

direction cosines, and therefore, as stated above, only
three are independent, exactly as expected for a rotation.

e Another way to look at a rotation: combine an axis
(described by a unit vector with two parameters) and a
rotation angle (one more parameter, for a total of 3).

Please acknowledge Carnegie Mellon if you make public use of these slides
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Orthogonal Matrices

e Note that the direction cosines can be arranged
into a 3x3 matrix, A, and therefore the relation
above is equivalent to the expression

AN =1

where A T denotes the transpose of A. This
relationship identifies A as an orthogonal matrix,
which has the properties

A= AT det A = =1

Please acknowledge Carnegie Mellon if you make public use of these slides
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Relationships

e When both coordinate systems are right-handed,
det(A)=+1 and A is a proper orthogonal matrix. The
orthogonality of A also insures that, in addition to the
relation above, the following holds:

VaN /\,
Combining these relations leads to the following inter-
relationships between components of vectors in the two

coordinate systemes:

/ /
Vi=dpV;, V;=a;V,

Please acknowledge Carnegie Mellon if you make public use of these slides
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Transformation Law

e These relations are called the laws of transformation for
the components of vectors. They are a consequence of,
and equivalent to, the parallelogram law for addition of
vectors. That such is the case is evident when one
considers the scalar product expressed in two coordinate
systems:

- = / /
uv=uyv. = aﬁujakivk =

l

S . N, .
jkl/thk=l/thj=l/l-V-

Il 1
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Invariants

Thus, the transformation law as expressed preserves the
lengths and the angles between vectors. Any function of
the components of vectors which remains unchanged
upon changing the coordinate system is called an
invariant of the vectors from which the components are
obtained. The derlvatlons illustrate the fact that the
scalar product g4+ V is an invariant of U and V Other
examples of invariants include the vector product of two
vectors and the triple scalar product of three vectors. The
reader should note that the transformation law for
vectors also applies to the components of points when
they are referred to a common origin.

Please acknowledge Carnegie Mellon if you make public use of these slides
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Orthogonality

e A rotation matrix, /A, is an orthogonal matrix,
however, because each row is mutually
orthogonal to the other two.

Ay =0y, Ayay =0

e Equally, each column is orthogonal to the other
two, which is apparent from the fact that each
row/column contains the direction cosines of the
new/old axes in terms of the old/new axes and
we are working with [mutually perpendicular]
Cartesian axes.

Please acknowledge Carnegie Mellon if you make public use of these slides
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Anisotropy

Anisotropy as a word simply means that something varies with direction.
Anisotropy is from the Greek: aniso = different, varying; tropos = direction.

Almost all crystalline materials are anisotropic; many materials are
engineered to take advantage of their anisotropy (beer cans, turbine blades,
microchips...)

Older texts use trigonometric functions to describe anisotropy but tensors
offer a general description with which it is much easier to perform
calculations.

For materials, what we know is that some properties are anisotropic. This
means that several numbers, or coefficients, are needed to describe the
property - one number is not sufficient.

Elasticity is an important example of a property that, when examined in single
crystals, is often highly anisotropic. In fact, the lower the crystal symmetry,
the greater the anisotropy is likely to be.

Nomenclature: in general, we need to use tensors to describe fields and
properties. The simplest case of a tensor is a scalar which is all we need for
isotropic properties. The next “level” of tensor is a vector, e.g. electric
current.

Please acknowledge Carnegie Mellon if you make public use of these slides
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Scalars, Vectors, Tensors

e Scalar:= quantity that requires only one number, e.g.

density, mass, specific heat. Equivalent to a zero-rank
tensor.

Vector:= quantity that has direction as well as
magnitude, e.g. velocity, current, magnetization;
requires 3 numbers or coefficients (in 3D). Equivalent to
a first-rank tensor.

Tensor:= quantity that requires higher order
descriptions but is the same, no matter what
coordinate system is used to describe it, e.g. stress,
strain, elastic modulus; requires 9 (or more, depending
on rank) numbers or coefficients.

Please acknowledge Carnegie Mellon if you make public use of these slides
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Vector field, response

e |f we have a vector response, R, that we can write
in component form, a vector field, F, that we can
also write in component form, and a property, P,
that we can write in matrix form (with nine
coefficients) then the linearity of the property
means that we can write the following (R, = 0):

R; = PyF;

e Ascalar (e.g. pressure) can be called a zero-rank
tensor.

e A vector (e.g. electric current) is also known as a
first-rank tensor.

Please acknowledge Carnegie Mellon if you make public use of these slides
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Linear anisotropic property

e This means that each component of the response is
linearly related to each component of the field and that
the proportionality constant is the appropriate coefficient

in the matrix. Example:
R, = P;F;,

which says that the first component of the response is
linearly related to the third field component through the

property coefficient P;.

X3 A

R+

Fs

. Xy
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Example: electrical conductivity

e An example of such a linear anisotropic (second
order tensor, discussed in later slides) property is
the electrical conductivity of a material:

e Field: Electric Field, E

e Response: Current Density, /
* Property: Conductivity,
']i =G0 Ej

Please acknowledge Carnegie Mellon if you make public use of these slides
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Anisotropic electrical conductivity

e We can illustrate anisotropy with Nye’s example of
electrical conductivity, o:

| J

| j |
E E
a b

) Jh
Fic. 1.1. The relation between the electn(_z currez}t /
density j and the electric field E in. (a) an isotropic X,
conductor and (b) an anisotropic conductor.

e

F1c. 1.2. The components of current density
when a field is applied along Oz,.

Stimulus/ Field: E;=0, E,=E;=0
Response: j,=0;;,E}, J,=0,,FE,, j3=03,E,
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Changing the Coordinate System

e Many different choices are possible for the orthonormal base
vectors and origin of the Cartesian coordinate system. A
vector is an example of an entity which is independent of the
choice of coordinate system. Its direction and magnitude must
not change (and are, in fact, invariants), although its
components will change with this choice.

e Why would we want to do something like this? For example,
although the properties are conveniently expressed in a crystal
reference frame, experiments often place the crystals in a non-
symmetric position with respect to an experimental frame.
Therefore we need some way of converting the coefficients of
the property into the experimental frame.

e Changing the coordinate system is also known as axis
transformation.

Please acknowledge Carnegie Mellon if you make public use of these slides
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Motivation for Axis Transformation

e One motivation for axis transformations is the need to
solve problems where the specimen shape (and the
stimulus direction) does not align with the crystal axes.
Consider what happens when you apply a force parallel to
the sides of this specimen ...

[100]

G

The direction parallel to the
long edge does not line up with
any simple, low index crystal
direction. Therefore we have to
find a way to transform the
nroperties that we know for the
material into the frame of the
problem (or vice versa).

Applied stress

[110]

Image of Pt surface from www.cup.uni-muenchen.de/pc/wintterlin/IMGs/pt10p3.jpg
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New Axes

e Consider a new orthonormal system consisting of right-
handed base vectors: e/, e/, and ég
These all have the same origin, o,
associated with ¢/, €, and e/,

e The vector vis clearly expressed equally well in either
coordinate system:

A %Y,

Note - same physical vector but different values of the
components.

e We need to find a relationship between the two sets of
components for the vector.
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Anisotropy in Composites

e The same methods developed here for
describing the anisotropy of single crystals can
be applied to composites.

e Anisotropy is important in composites, not
because of the intrinsic properties of the
components but because of the arrangement
of the components.

e As an example, consider (a) a uniaxial
composite (e.g. tennis racket handle) and (b) a
flat panel cross-ply composite (e.g. wing
surface).

Please acknowledge Carnegie Mellon if you make public use of these slides
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Fiber Symmetry

Please acknowledge Carnegie Mellon if you make public use of these slides



Fiber Symmetry

e We will use the same matrix notation for stress,
strain, stiffness and compliance as for single
crystals.

e The compliance matrix, s, has 5 independent
coefficients.

g

W

e

W

2

N

@

-
o O O O
o O O O

0 0 0 0 sy 0
0 0 0 0 0 2(s;,-5)

Please acknowledge Carnegie Mellon if you make public use of these slides



71

Relationships

e For a uniaxial stress along the z (3) direction,
E3=O'3 _ 1 (=O'ZZ)
€3  S33\ €
e This stress causes strain in the transverse plane:
e,;=e,,=S;,033. Therefore we can calculate
Poisson’s ratio as:
Vs = € _ 513 (=€ﬁ)
€3 S33\ €
e Similarly, stresses applied perpendicular to z give
rise to different moduli and Poisson’s ratios.

o 1 —S12 —513
Ey=—=—, Vy=—", Vy=—"+

€ S S11 S11
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Relationships, contd.

e Similarly the torsional modulus is related to
shears involving the z axis, i.e. yz or xz shears:

Sy =S55=1/G

e Shear in the x-y plane (1-2 plane) is related to the
other compliance coefficients:

Se6 = 2(S117S12) = I/ny

Please acknowledge Carnegie Mellon if you make public use of these slides
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Plates: Orthotropic Symmetry

e Again, we use the same matrix notation for stress, strain,
stiffness and compliance as for single crystals.

e The compliance matrix, s, has 9 independent coefficients.

e This corresponds to othorhombic sample symmetry: see
the following slide with Table from Nye’s book.

e

N

)

N

)

2!

N

W

-
o o O O
o O O O O

0 0 0 0 0 s
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Plates: 0° and 90° plies

e If the composite is a laminate composite with fibers laid in at 0° and
90° in equal thicknesses then the symmetry is higher because the x
and y directions are equivalent.

e The compliance matrix, s, has 6 independent coefficients.

e This corresponds to (tetragonal) 4mm sample symmetry: see the
following slide with Table from Nye’s book.

o O O O
o O O O O

0 0 0 0 0 s
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TABLE 9

Form of the (s;;) and (c;;) matrices

Effect of Symmetry on the
Elasticity Tensors, S, C

TETRAGONAL
Classes 4mm, 42m,t 422, 4/mmm

N
N

Classes 4, 4, 4|m

N

N

(7 (6

P TRIGONAL
Classes 3, 3

~N1

Classes 32, 3m, 3m

Nl

KEY TO NOTATION
+  zero component
® non-zero component
®—@ equal components
@—o0 components numerically equal, but opposite in sign
For s ® twice the numerical equal of the heavy dot component to which it is
joined
Forc @ the numerical equal of the heavy dot component to which it is joined
Fors X  2(s;;,—8,)
Fore X 3(c;1—¢y)
All the matrices are symmetrical about the leading diagonal.
TRICLINIC
Both classes
o o o 0 0 O
e &0 0 o
o0 00
® o0
(N J
e/ (21)
MONOCLINIC
All classes
Diad ||z, een -9 - Diad|jz,/ ® ®*® ° ° ©
(standard [ I ] o - o e - - @
orientation) ® - o0 - ® + - @
® - 0 ® 0 -
® - ) ® -
o/ (13) e/ (13)
ORTHORHOMBIC Cusic
All classes All classes
e 0o O - - ._I e .
e ® ¢+ - - \ « e .
e - o e .
o - - : . -
o - .
e/ (9) (3)

HeExAcoNAL

N1
5

IsoTrROPIC
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"Lamé constants (isotropic elasticity)

For an elastically isotropic body, there are only 2
elastic moduli, known as the Lamé constants.

011 A+ 2G A A O 0 O
/0'22\ / A A+ 2G A 0O O 0\
o33 | A A A+2G 0 0 O
o3 | 0 0 0 G 0 0
013 0 0 0 0 G 0
\o12) \ 0 0 0 0 0 G

Ci1 =+ 2G

This means that, if you know the
La-rné Cons-tants, then you can 012 — )\

obtain the stiffness values thus:
Ciuy=0G
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Stiffnesses in terms of E and v

(11:(1Eu)(1 1jéu>

E v
C12 = (1+v) (1 —2v)

E
CM_2u+u)

S11= (C11+C12) /{(C11-C12) (€14 +2C45)}
S =(U+2G+ ) [ {{(A+2G - 1) (A+2G + 2A)}

Si1=(A+6) /{G(2G + 34)}

S12 = -C12/{(C11-C12)(C11+2Cy,)}
S, =-4/{2G(2G + 31)}

Su=1/G
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" Young’s, Bulk moduli, Poisson’s ratio

1. Young’s modulus : the ratio of longitudinal stress to longitudinal strain under uniaxial normal
loading in the longitudinal direction.

G\ E
E=2G+— FEF=2G(14+v)=>G=
G+ ( ) 2(1+v)
2. Poisson’s ratio : minus the ratio of lateral strain to longitudinal strain.
A A E
e S N
A+ G 20+ G) (1+v)(1—2v)
3. Bulk modulus : minus the ratio of pressure to dilatation.
Kz_lamz+0yy+azz _ E
3 €xz + €yy + €22 3(1 —2v)
v=1/2(G+ ) =>1-v={2(G+ ) - A }Y2(G+2)  E=2{26(GC+ 1) +GCl}/2(G + 7)
1-v={2G + 1) }/2(G+ ) E=2{2¢% +3G2}/2(G + A)
1-2v={2(G+A) -2 }/2(G+ A) = G/ (G + ) E/1-2v=2G2G + 31} | 2G = 2G + 34
1-(1-2v)/(1-2V) = A/ G E/1-2v=2G{2G + 31} | 2G = 2G + 3G {2v [(1-2V)}
2v/(1-2v) = A/ G E/1-2v=2G{1+ v}/(1-2v)
G2v/(1-2v) = A E=2G{1+v}=>G =E/ {1+ v}
A=G2v/(1-2v)
A=E/ Z1+ v} *2v/(1-2V) Ch=£/{1+v+vE/ {1+ v)(1-2v)}
A=vE/{(1+ V) (1-2V)} Chu=E[1+(v/@-2v)]/{1+ v}

A=E/(Q+v){v/(1-2v)}
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General Anisotropic Properties

e Many different properties of crystals can be
described as tensors.

e The rank of each tensor property depends,
naturally, on the nature of the quantities related
by the property.
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Examples of Materials Properties as

Tensors

Table 1 shows a series of tensors that are of importance for material
science. The tensors are grouped by rank, and are also labeled (in the
last column) by E (equilibrium property) or T (transport property). The
number following this letter indicates the maximum number of
independent, nonzero elements in the tensor, taking into account
symmetries imposed by thermodynamics.

The Field and Response columns contain the following symbols: AT =
temperature difference, AS = entropy change, E; = electric field
components, H; = magnetic field components, & = mechanical strain,
D; = electric displacement, B; = magnetic induction, g; = mechanical
stress, A3; = change of the impermeability tensor, j; = electrical
current density, VT = temperature gradient, h; = heat flux, V,c =
concentration gradient, m, = mass flux, p? = anti-symmetric part of
resistivity tensor, p°; = symmetric part of resistivity tensor, Ap; =
change in the component ij of the resistivity tensor, I, = direction
cosines of wave direction in crystal, G = gyration constant,
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Property Svmbol Field Response | Tvpe#
Tensors of Rank 0 (Scalars)
Specific Heat C AT T'AS El
Tensors of Rank 1 (Vectors)
Electrocaloric ;i E; AS E3
Magnetocaloric q; H, AS E3
Pvroelectric j AT D, E3
Pyromagnetic q. AT B; E3
Tensors of Rank 2
Thermal expansion oy AT €ij E6
Piezocaloric effect a:J Tij AS E6
Dielectric permittivity Kij E; D; E6
Magnetic permeability ILi; H; B; E6
Optical activity Gij lil G E6
Magnetoelectric polarization Aij H; D; E9
Converse magnetoelectric polarization " E; B; E9
Electrical conductivity (resistivity) 7i; (pij) E; (j;) Ji (E;) | T6
Thermal conductivity K;; VT h; T6
Diffusivity D;; Ve m; T6
Thermoelectric power 2ij VT E; 19
Hall effect R;;j B; P4 19

Bl 1 1.1 pal T W S | L 1 | £
Fi€4ast dLRITUOWICTUGZT LATTICSIT VICHUIT I yOU TIId KT DUDIIC UST Ul

1 1
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Tensors of Rank 3

Piezoelectricity ;i Tk D; E1R
Converse piezoelectricity ik E} €ij E18
Piezomagnetism Qijk Tk B; E1R
Converse plezomagnetism Q,’Z.j e H, €ij E18
Electro-optic effect Tiik E, A E18
Nernst tensor Yiik V1B, E; 127
Tensors of Rank 4
Elasticity Sijkl (C-i.jkl) Tl (EM) €ij (U.g_j) E21
Electrostriction Vijkl ELE, €ij E36
Photoelasticity Qijki Ol ABij E36
Kerr effect Dijki E,LE, ABij E36
Magnetoresistance &ijki B, B, Pij 136
Piezoresistance IL; ik Okl Apij T36
Magnetothermoelectric power ikl V,;1'By By FE; 1564
Second order Hall effect Pijkl B; B By p? 130
Tensors of Rank 6
Third order elasticity Cijkimn €11€mmn Tij E56

Courtesy of Prof. M. De Graef
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Principal Effects Courtesy of Prof. M. De Graef

Electrocaloric = pyroelectric
"l Magnetocaloric = pyromagnetic
Thermal expansion = piezocaloric

Magnetoelectric and converse magnetoelectric

Piezoelectric and converse piezoelectric

Piezomagnetic and converse piezomagnetic

Please acknowledge Carnegie Mellon if you make public use of these slides
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Principal Effects

Courtesy of Prof. M. De Graef
1st rank cross effects

2nd rank cross effects

3rd rank cross effects
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General crystal symmetry shown above.
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Please acknowledge Carnegie Mellon if you make public use of these slides




( g Pr Pr jis qx qr q gy gy Vs 0 0 0 \

Pr Kar 0 0 Axx Azy 0 0 0 0 dyyz drx2 0
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s 0 0 Ky 0 0 Az ypy dyrr dyzy 0 0 0
gr Azxxr —Azy 0 Hry 0 0 0 0 0 Qryz Qzxz 0
gr  Arxy Ay 0 0 Jxx 0 0 0 0 —Qzrrz  Qxy: 0
4z 0 0 Azz 0 0 Pzz  Qopzx  Qozx Qzzz 0 0 0
Qipy 0 0 l‘lz:z::r 0 0 QZ-l‘l‘ Srxrx Srryy Sxxzz 0 0 Sxrrry
are 0 0 doze O 0 Q:vy Srzyy Srrxaz  Sxxzz 0 0 —Szrry
(A 0 0 dyzy 0 0 Q20 Spxzz  Sprzz  Szzzz 0 0 0
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Point group 4

Courtesy of Prof. M. De Graef
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Note how many fewer independent coefficients there are!
Note how the center of symmetry eliminates many of the
properties, such as pyroelectricity

Courtesy of Prof. M. De Graef
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Homogeneity

Stimuli and responses of interest are, in general, not scalar quantities but
tensors. Furthermore, some of the properties of interest, such as the
plastic properties of a material, are far from linear at the scale of a
polycrystal. Nonetheless, they can be treated as linear at a suitably local
scale and then an averaging technique can be used to obtain the response
of the polycrystal. The local or microscopic response is generally well
understood but the validity of the averaging techniques is still
controversial in many cases. Also, we will only discuss cases where a
homogeneous response can be reasonably expected.

There are many problems in which a non-homogeneous response to a
homogeneous stimulus is of critical importance. Stress-corrosion cracking,
for example, is a wildly non-linear, non-homogeneous response to an
approximately uniform stimulus which depends on the mechanical and
electro-chemical properties of the material.

Please acknowledge Carnegie Mellon if you make public use of these slides
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Use of MuPAD inside Matlab

e Note that the 6x6 transformation matrix can be
programmed inside Matlab just as a 3x3 can.

e |n order to apply a transformation (e.g. a
symmetry operator) to a 6x6 stiffness or
compliance matrix, the formula is the same as

before, i.e.:
C’'=0CO0"

Please acknowledge Carnegie Mellon if you make public use of these slides



90 Table II. Symmetry operators of rotation groups

M atriX tetragonal branch

hexagonal branch cubic branch
ST 0 o 1 0 o 1 0 ol 0o o0 A
o 20 1 0: -0 1 0: 0 1 0! 0 -1 0
representation of RIS | S KIS
10 o .5 a0 fo 0o 1] 0 o 1
0 1 0 2 -5 0 1 0o 0 0o -1 0
the , v 0 00 1 0o 1 0 1 o o
1 0 0 L5 a0 o 1 0 o o0 1
. . 0 -1 L a -5 0 0 0 1i 0o 1 o
rotation point N | T R
.| 0 0 5 a 0 0 -1 0:f 0 0 -1
b0 -1 0 -a 5 0 0 0 1x o0 1 0
00 1 o 0 1 1 0o o0} 1 o0 o0
groups : |
o0 1 0. 1 0 0 0 -1 o0 -1 o0 o
P10 0 0 -1 0 o o -1:l o 0o -1
What is a group? A group is a set of c 00 ¢t oo o
. . 0 1 0 5 -a 0 o 1 o 1 o o
objects that form a closed set: if you 1 0 o a 5 0 o 0o -1il 0o o -1
. 0 0 1! o 0 1 1 0 ol o 1 o
combine any two of them together,the | = 6 :
.. ) 0 1 0 5 a0 0 0 a1 1 0 0
result is simply a different member of Loooo a5 0 PLoo oo ol
that same group of objects. Rotations in o4 o ) . o o ala e o
a given point group form closed sets - try PR o 10 S I S
it for yourself! 42 s . o P
a 5 0 1 0o 0 -1 o0 o
0 0 1 [0 - L0l o o0 -1
Note: the 3rd matrix in the 1st 2 2 8 (l) (1) 8 1 (1) 0
column (x-diad) is missing a “-” on . 00 o0 1 0 @
the 33 element; this is corrected in KOCkS , TOme & Vv enk P10 0 1 0 0f 0 1 0
this slide. Also, in the 2nd from the e e O O
bottom, last column: the 33 element Ch . 1 Table II - o ol o
should be +1, not -1. In some L e o 4 ol Y o e
versions of the book, in the last 6:2 . 0....0. . -1 Zg 0 -1 0o o @
matrix (bottom right corner) the 33 432
clementis 1r}correctly given as -1 The dashed boxes The dashed boxes The dashed box
here the +1 is correct. in this column in this column in this column
make up group 32. comprises the 3-fold axes only.

make up g Olﬁ) 4
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