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Notation
F Stimulus (field)
R Response
P Property
j electric current 
E electric field
D electric polarization
e Strain (also, permutation 

tensor)
s Stress (or conductivity)
r Resistivity
d piezoelectric tensor
C elastic stiffness
S elastic compliance

a transformation matrix
W work done (energy)
dW work increment
I identity matrix
O symmetry operator (matrix)
Y Young’s modulus
d Kronecker delta
e axis (unit) vector
T tensor
a direction cosine
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Objective

• The objective of this lecture is to provide a mathematical framework 
for the description of properties, especially when they vary with 
direction.

• A basic property that occurs in almost applications is elasticity.  
Although elastic response is linear for all practical purposes, it is often 
anisotropic (composites, textured polycrystals etc.).

• Why do we care about elastic anisotropy?  In composites, especially 
fibre composites, it is easy to design in substantial anisotropy by 
varying the lay-up of the fibres.  See, for example: 
http://www.jwave.vt.edu/crcd/kriz/lectures/Geom_3.html

• Geologists are very familiar with elastic anisotropy and exploit it for 
understanding seismic results; see, e.g., 
https://en.wikipedia.org/wiki/Seismic_anisotropy .

Please	acknowledge	Carnegie	Mellon	if	you	make	public	use	of	these	slides	
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In	Class	Questions
1. Why is plastic yielding a non-linear property, in contrast to elastic 

deformation?
2. What is the definition of a tensor?
3. Why is stress is 2nd-rank tensor?
4. Why is elastic stiffness a 4th-rank tensor?
5. What is “matrix notation” (in the context of elasticity)?
6. What are the relationships between tensor and matrix coefficients for 

stress? Strain? Stiffness?  Compliance?
7. Why do we need factors of 2 and 4 in some of these conversion factors?
8. How do we use crystal symmetry to decrease the number of coefficients 

needed to describe stiffness and compliance?
9. How many independent coefficients are needed for stiffness (and 

compliance) in cubic crystals?  In isotropic materials?
10. How do we express the directional dependence of Young’s modulus?
11. What is Zener’s anisotropy factor?
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Q&A
1. How do we write the relationship between (tensor) stress and (tensor) strain? s=C:e. How about the other way 

around? e=S:s. What are “stiffness” and “compliance” in this context? The stiffness tensor is the collection of 
coefficients that connect all the different stress coefficients/components to all the different strain 
coefficients/components. How do we express this in Voigt or vector-matrix notation? The only difference is that the 
stress and strain are vectors and the stiffness and compliance are matrices.  If indices are used then stress and strain 
each have two indices and the stiffness and compliance each have four.

2. What are the relationships between the coefficients of the (4th rank) stiffness tensor and the stiffness matrix (6x6)? 
See the notes for details but, e.g., {11,22,33}tensor correspond to {1,2,3}matrix. E.g.	C12(matrix)=C1122(tensor). What 
about the compliance tensor and matrix? Here, more care is required because certain coefficients have factors of 2 or 
4.

3. What does work conjugacy mean? The energy stored in a body when elastic strains and stresses are present is 
calculated as the product of the stress and strain, which means that the work done makes the strain and stress 
conjugate (joined) variables. What does this mean for the relationships between (2nd rank) tensor stress and its 
vector form?  What about strain? Answering these two together, we note that work conjugacy means that whatever 
notation is used to express stress and strain, the product of the two must be the same because of conservation of 
energy.  This then explains why factors of two are used in the conversion to/from matrix to tensor representations of 
the shear components of strain (but not the normal strain components).  These factors of two could have been 
applied to stress, but by convention we do this for strain.

4. How do we write the tensor transformation rule in vector-matrix notation? See the notes for details but the basic idea 
is that a 6x6 matrix (that can be applied to a stiffness or compliance tensor) is formed from the coefficients of the 
transformation matrix.

5. How do we apply crystal symmetry to elastic moduli (e.g. the stiffness tensor)? We apply a symmetry operator to the 
(stiffness) tensor and set the new and old versions of the tensor equal to each other, coefficient by coefficient. What 
net effect does it have on the stiffness matrix for cubic materials? Applying the cubic crystal symmetry to the stiffness 
tensor reduces most of the coefficients to zero and there are only 3 independent coefficients that remain.
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Q&A,	part	2
6. How do we convert from stiffness to compliance (and vice versa)? The detailed mathematics is out of 

scope for this course.  It is sufficient to know that the two tensors combine to form a 4th rank identity 

tensor, from which one can obtain algebraic relationships as given in the notes.  Be aware that these 

formulae depend on the crystal symmetry (as do the compliance & stiffness tensors themselves).

7. How do we apply symmetry (and transformations of axes in general) to the property of anisotropic 

elasticity? There are two answers. The first answer is that one can apply the tensor transformation 

rule, just as explained in previous lectures.  Generate the transformation matrix with any the 

methods described (i.e. dot products between old and new axes, or using the combination of axis 

and angle).  Then write out the transformation with 4 copies of the matrix taking care to specify the 

indices correctly.  The alternative answer is to generate a 6x6 transformation matrix that can be used 

with vector-matrix (Voigt) notation for either the stress, strain (6x1) vectors or the modulus (6x6) 

matrix.

8. How do we show that symmetry reduces the number of independent coefficients in an anisotropic 

elasticity modulus tensor? Given a symmetry matrix, one proceeds just as in the previous examples 

i.e. apply symmetry and then equate individual coefficients to find the cases of either zero or 

equality(between different coefficients).

9. How do we calculate the (anisotropic) elastic (Young’s) modulus in an arbitrary direction? This looks 

ahead to the next lecture.  The idea is to realize that a tensile test is such that there is only one non-

zero coefficient in the stress tensor (or vector); the strain tensor, however, has to have more than 

one non-zero coefficient (because of the Poisson effect).  Therefore one uses the relationship that 

strain = compliance x stress.  By rotating the compliance tensor such that one axis (usually x) is 

parallel to the desired direction, one obtains the Young’s modulus in that direction as 1/S11.

Please	acknowledge	Carnegie	Mellon	if	you	make	public	use	of	these	slides
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Anisotropy:	Practical	Applications

• The practical applications of anisotropy of 
composites, especially fiber-reinforced 
composites are numerous.

• The stiffness of fiber composites varies 
tremendously with direction.  Torsional rigidity is 
very important in car bodies, boats, aeroplanes 
etc.

• Even in monolithic polymers (e.g. drawn 
polyethylene) there exists large anisotropy 
because of the alignment of the long-chain 
molecules.
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Application	example:	quartz	oscillators
• Piezoelectric quartz crystals are commonly used for frequency control 

in watches and clocks.  Despite having small values of the 
piezoelectric coefficients, quartz has positive aspects of low losses 
and the availability of orientations with negligible temperature 
sensitivity. The property of piezoelectricity relates strain to electric 
field, or polarization to stress.

• eij =	dijkEk
• PZT, lead zirconium titanate PbZr1-xTixO3, is another commonly used 

piezoelectric material.
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Piezoelectric	Devices
10

[Newnham]

• The property of piezoelectricity relates strain to electric field, or 
polarization to stress.
eij =	dijkEk

• PZT, lead zirconium titanate PbZr1-xTixO3, is another commonly used 
piezoelectric material.

Note: Newnham consistently 
uses vector-matrix notation, 
rather than tensor notation.  
We will explain how this works 
later on.

Examinable
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Piezoelectric	Crystals
• How is it that crystals can be piezoelectric?

• The answer is that the bonding must be ionic to some 
degree (i.e. there is a net charge on the different 
elements) and the arrangement of the atoms must be 
non-centrosymmetric.

• PZT is a standard piezoelectric material.  It has Pb atoms 
at the cell corners (a~4Å), O on face centers, and a Ti or 
Zr atom near the body center.  Below a certain 
temperature (Curie T), the cell transforms from cubic 
(high T) to tetragonal (low T).  Applying stress distorts 
the cell, which changes the electric displacement in 
different ways (see figure).

• Although we can understand the effect at the single 
crystal level, real devices (e.g. sonar transducers) are 
polycrystalline.  The operation is much complicated 
than discussed here, and involves “poling” to maximize 
the response, which in turns involves motion of domain 
walls.
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Mathematical	Descriptions
• Mathematical descriptions of properties are available.
• Mathematics, or a type of mathematics provides a 

quantitative framework. It is always necessary, however, 
to make a correspondence between mathematical 
variables and physical quantities.

• In group theory one might say that there is a set of 
mathematical operations & parameters, and a set of 
physical quantities and processes: if the mathematics is a 
good description, then the two sets are isomorphous.

• This lecture makes extensive use of tensors.  A tensor is a 
quantity that can be transformed from one set of axes to 
another via the tensor transformation rule (next slide).
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Tensor:	definition,	contd.
• In order for a quantity to “qualify” as a tensor it has to obey the 

axis transformation rule, as discussed in the previous slides.
• The transformation rule defines relationships between 

transformed and untransformed tensors of various ranks.
• It says that any tensor quantity can be transformed from one 

reference frame to another; this transformation of axes is 
sometimes called a passive rotation.

Vector: V’i =	aijVj
2nd rank T’ij =	aikailTkl
3rd rank T’ijk =	ailaimaknTlmn
4th rank T’ijkl =	aimainakoalpTmnop

This rule is a critical piece of information, which 
you must know how to use.
Please	acknowledge	Carnegie	Mellon	if	you	make	public	use	of	these	slides	
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Non-Linear	properties,	example
• Another important example of non-linear anisotropic properties is 

plasticity, i.e. the irreversible deformation of solids.  
• A typical description of the response at plastic yield 

(what happens when you load a material to its yield stress)
is elastic-perfectly plastic.  In other 
words, the material responds 
elastically until the yield stress is 
reached, at which point the stress 
remains constant (strain rate 
unlimited).         

˙ ε = σ
σ yield

# 

$ 
% 

& 

' 
( 

n
•  A more realistic description is a power-law with a 
large exponent, n~50.  The stress is scaled by the crss, 
and be expressed as either shear stress-
shear strain rate [graph], or tensile stress-tensile strain 
[equation].

[Kocks]
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Linear	properties
• Certain properties, such as elasticity in most 

cases, are linear which means that we can 
simplify even further to obtain

R	=	R0 +	PF
or if R0 =	0,

R =	PF.

e.g. elasticity: s = C e

In tension, C º Young’s modulus, Y or E.

stiffness

Please	acknowledge	Carnegie	Mellon	if	you	make	public	use	of	these	slides	
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Elasticity

• Elasticity: example of a property that requires tensors to 
describe it fully.

• Even in cubic metals, a crystal is quite anisotropic.  The 
[111] in many cubic metals is stiffer than the [100] 
direction.

• Even in cubic materials, 3 numbers/coefficients/moduli
are required to describe elastic properties; isotropic 
materials only require 2.

• Familiarity with Miller indices, suffix notation, Einstein 
convention, Kronecker delta, permutation tensor, and 
tensors is assumed.
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Elastic	Anisotropy:	1
• First we restate the linear elastic relations for the 

properties Compliance, written S, and Stiffness, 
written C (admittedly not very logical choice of 
notation), which connect stress, s, and strain, e. 
We write it first in vector-tensor notation with “:”
signifying inner product (i.e. add up terms that 
have a common suffix or index in them): 

s =	C:e
e =	S:s

• In component form (with suffixes),
sij =	Cijklekl
eij =	Sijklskl

Please	acknowledge	Carnegie	Mellon	if	you	make	public	use	of	these	slides	
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Elastic	Anisotropy:	2

The definitions of the stress and strain tensors 
mean that they are both symmetric (second rank) 
tensors.  Therefore we can see that

e23 = S2311s11
e32 = S3211s11 = e23

which means that,
S2311 =	S3211

and in general,
Sijkl =	Sjikl

We will see later on that this reduces considerably 
the number of different coefficients needed.
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Stiffness	in	sample	coords.

• Consider how to express the elastic properties of a single 
crystal in the sample coordinates.  In this case we need to 
rotate the (4th rank) tensor stiffness from crystal 
coordinates to sample coordinates using the orientation 
(matrix), a :

cijkl'	=	aimajnakoalpcmnop
• Note how the transformation matrix appears four times 

because we are transforming a 4th rank tensor!
• The axis transformation matrix, a, is sometimes also 

written as l, also as the orientation matrix g.

Please	acknowledge	Carnegie	Mellon	if	you	make	public	use	of	these	slides	



20 Young’s	modulus	from	
compliance

• Young's modulus as a function of direction can be 
obtained from the compliance tensor as: 

E=1/s'1111
Using compliances and a stress boundary 
condition (only s11¹0) is most straightforward.
To obtain s'1111, we simply apply the same 
transformation rule,

s'ijkl =	aim	ajnakoalpsmnop
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“Voigt”	or	“matrix”	notation
• It is useful to re-express the three quantities 

involved in a simpler format.  The stress and 
strain tensors are vectorized,  i.e. converted into 
a 1x6 notation and the elastic tensors are 
reduced to 6x6 matrices.
σ11 σ12 σ13
σ 21 σ 22 σ 23

σ 31 σ 32 σ33

" 

# 

$ 
$ 

% 

& 

' 
' ← → * 

σ1 σ 6 σ 5

σ 6 σ 2 σ 4

σ 5 σ 4 σ 3

" 

# 

$ 
$ 

% 

& 

' 
' 

← → * σ1,σ 2,σ3,σ4 ,σ 5,σ 6( )
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“matrix	notation”,	contd.
• Similarly for strain:

The particular definition of shear strain used in the 
reduced notation happens to correspond to that used in 
mechanical engineering such that e4 is the change in angle 
between direction 2 and direction 3 due to deformation.

ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

" 

# 

$ 
$ 

% 

& 

' 
' ← → * 

ε1
1
2ε6

1
2ε5

1
2ε6 ε2

1
2 ε4

1
2 ε5

1
2 ε4 ε3

" 

# 

$ 
$ 

% 

& 

' 
' 

← → * ε1,ε2 ,ε3,ε4,ε5,ε6( )
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Work	conjugacy,	matrix	inversion

• The more important consideration is that the 
reason for the factors of two is so that work 
conjugacy is maintained.

dW = s:de = sij :	deij =	sk •	dek
Also we can combine the expressions
s =	Ce and e =	Ss to give:

s =	CSs, which shows:
I =	CS,	or,	C	=	S-1

Please	acknowledge	Carnegie	Mellon	if	you	make	public	use	of	these	slides	
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Tensor	conversions:	stiffness
• Lastly we need a way to convert the tensor 

coefficients of stiffness and compliance to the 
matrix coefficients.  For stiffness, it is very simple 
because one substitutes values according to the 
following table, such that [vector-matrix] C11
= C1111 [tensor] for example.

Tensor 11 22 33 23 32 13 31 12 21
Matrix 1 2 3 4 4 5 5 6 6

Please	acknowledge	Carnegie	Mellon	if	you	make	public	use	of	these	slides	
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Stiffness	Matrix

Please	acknowledge	Carnegie	Mellon	if	you	make	public	use	of	these	slides	

C =

C11 C12 C13 C14 C15 C16
C12 C22 C23 C24 C25 C26
C13 C23 C33 C34 C35 C36
C14 C24 C34 C44 C45 C46
C15 C25 C35 C45 C55 C56
C16 C26 C36 C46 C56 C66

!

"

#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&

Vector-matrix	notation	(two	indices	for	the	moduli,	one	index	for	stress	or	
strain);	note	that	this	matrix	is	symmetric,	therefore	there	are	only	21	
independent	coefficients,	even	for	triclinic	crystals	(see	later	slides).



Axis	Transformations
• It is still possible to perform axis transformations, as 

allowed for by the Tensor Rule.  The coefficients can be 
combined [Newnham] together into a 6 by 6 matrix that 
can be used for 2nd rank tensors such as stress and strain, 
below.  

26

• Stress (in vector 
notation) transforms as:
X’i =	aij Xj

• Strain (in vector notation) 
transforms as:
x’i =	(a-1ij)T xj
where superscript “T” 
signifies transpose of the 
matrix.
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Tensor	conversions:	compliance
• For compliance some factors of two are required 

and so the rule becomes:

pSijkl = Smn
p = 1 m.AND.n ∈ 1,2,3[ ]
p = 2 m .XOR.n ∈ 1, 2,3[ ]
p = 4 m.AND.n ∈ 4,5,6[ ]

Please	acknowledge	Carnegie	Mellon	if	you	make	public	use	of	these	slides	
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Relationships	between	coefficients:
C	in	terms	of	S

Some additional useful relations between coefficients for 
cubic materials are as follows.  Symmetrical relationships 
exist for compliances in terms of stiffnesses (next slide).

C11 =	(S11+S12)/{(S11-S12)(S11+2S12)}

C12 =	-S12/{(S11-S12)(S11+2S12)}

C44 =	1/S44.
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S	in	terms	of	C

The relationships for S in terms of C are symmetrical to those 
for stiffnesses in terms of compliances (a simple exercise 
in algebra).

S11 =	(C11+C12)/{(C11-C12)(C11+2C12)}
S12 =	-C12/{(C11-C12)(C11+2C12)}
S44 =	1/C44

S11 - S12 = (C11+2C12)/{(C11-C12)(C11+2C12)}
S11 - S12 =	1/(C11-C12).
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Neumann's	Principle

• A fundamental natural law: Neumann's Principle: 
the symmetry elements of any physical property 
of a crystal must include the symmetry elements 
of the point group of the crystal.  The property 
may have additional symmetry elements to those 
of the crystal (point group) symmetry.  There are 
32 crystal classes for the point group symmetry.

• F.E. Neumann 1885.
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Neumann,	extended

• If a crystal has a defect structure such as a dislocation 
network that is arranged in a non-uniform way then the 
symmetry of certain properties may be reduced from the 
crystal symmetry.  In principle, a finite elastic strain in one 
direction decreases the symmetry of a cubic crystal to 
tetragonal or less.  Therefore the modified version of 
Neumann's Principle: the symmetry elements of any 
physical property of a crystal must include the symmetry 
elements that are common to the point group of the 
crystal and the defect structure contained within the 
crystal.
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Effect	of	crystal	symmetry
• Consider an active rotation of the crystal, where O is the 

symmetry operator.  Since the crystal is 
indistinguishable (looks the same) after applying the 
symmetry operator, the result before, R(1), and the 
result after, R(2), must be identical:

The two results are indistinguishable and therefore 
equal. It is essential, however, to express the property 
and the operator in the same (crystal) reference frame.

R(1) = PF
R(2) = OPOT F
R(1) =

← → # R(2)

$ 

% 
& & 

' 
& 
& 
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Symmetry,	properties,	contd.
• Expressed mathematically, we can rotate, e.g. a second rank property tensor 

thus:
P'	=	OPOT =	P , or, in coefficient notation, 
P’ij =	OikOilPkl

where O is a symmetry operator.
• Since the rotated (property) tensor, P’, must be the same as the original 

tensor, P, then we can equate coefficients:
P’ij =	Pij

• If we find, for example, that P’21	 =	-P21,then the only value of P21 that 
satisfies this equality is P21 =	0.

• Remember that you must express the property with respect to a particular 
set of axes in order to use the coefficient form.  In everything related to 
single crystals, always use the crystal axes as the reference frame!

• Homework question: based on cubic crystal symmetry, work out why a 
second rank tensor property can only have one independent coefficient.
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Effect	of	symmetry	on	stiffness	matrix

• Why do we need to look at the effect of symmetry?  For a 
cubic material, only 3 independent coefficients are needed 
as opposed to the 81 coefficients in a 4th rank tensor.  
The reason for this is the symmetry of the material.

• What does symmetry mean?  Fundamentally, if you pick 
up a crystal, rotate [mirror] it and put it back down, then a 
symmetry operation [rotation, mirror] is such that you 
cannot tell that anything happened.

• From a mathematical point of view, this means that the 
property (its coefficients) does not change.  For example, 
if the symmetry operator changes the sign of a coefficient, 
then it must be equal to zero.

Please	acknowledge	Carnegie	Mellon	if	you	make	public	use	of	these	slides	
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2nd	Rank	Tensor	Properties	&	Symmetry

• The table from Nye shows the number of independent, non-zero coefficients allowed in 
a 2nd rank tensor according to the crystal symmetry class.
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Effect	of	symmetry	on	stiffness	matrix
• Following Reid, p.66 et seq.:

Apply a -90° rotation about the crystal-z axis (axis 3)*,
C’ijkl = OimOjnOkoOlpCmnop:
C’ = C

€ 

O4
z =

0 1 0
−1 0 0
0 0 1

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

Examinable
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*Reid describes 
this as +90°, but -
90° reproduces 
his result 
(because he 
apparently 
considers 
positive to be 
clockwise).

!C =

C22 C21 C23 C25 −C24 −C26
C21 C11 C13 C15 −C14 −C16
C23 C13 C33 C35 −C34 −C36
C25 C15 C35 C55 −C54 −C56
−C24 −C14 −C34 −C54 C44 C46
−C26 −C16 −C36 −C56 C46 C66

#

$

%
%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(
(
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Effect	of	symmetry,	2
• Using P’	=	P, we can equate all the coefficients in 

the 6x6 matrix and find that:
C11=C22,	C13=C23,	C44=C35,	C16=-C26,
C14=C15 =	C24	=	C25 =	C34	=	C35 =	C36	=	C45 =	C46	=	
C56 =	0.

€ 

" C =

C11 C12 C13 0 0 C16

C12 C11 C13 0 0 −C16

C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 C46

C16 −C16 0 0 C46 C66

$ 

% 

& 
& 
& 
& 
& 
& 
& 

' 

( 

) 
) 
) 
) 
) 
) 
) 

Examinable
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Effect	of	symmetry,	3
• Thus by repeated applications of the symmetry 

operators, one can demonstrate (for cubic crystal 
symmetry) that one can reduce the 81 
coefficients down to only 3 independent 
quantities. These become two in the case of 
isotropy.

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

! 

" 

# 
# 
# 
# 
# 
# 
# 
# 
# 

$ 

% 

& 
& 
& 
& 
& 
& 
& 
& 
& 
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Cubic	crystals:	anisotropy	factor

• If one applies the symmetry elements of the 
cubic system, it turns out that only three 
independent coefficients remain: C11,	C12 and 
C44, (similar set for compliance). From these 
three, a useful combination of the first two is 

C'	=	(C11 - C12)/2

• See Nye, Physical Properties of Crystals
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Zener’s	anisotropy	factor
• C'	=	(C11 - C12)/2 turns out to be the stiffness associated with a 

shear in a <110> direction on a  plane.  In certain martensitic 

transformations, this modulus can approach zero which 

corresponds to a structural instability.  

• Zener (Physics, Carnegie Tech. Inst.) proposed a measure of 

elastic anisotropy based on the ratio C44/C'. This turns out to 

be a useful criterion for identifying materials that are elastically 

anisotropic, i.e., via the extent to which C44/C' varies from 

unity.  

• Note that this provides a way to convert an anisotropic elastic 

stiffness into an isotropic one. One can, e.g., adjust C12 until 

the Zener ratio=1. Some care is required, however, because 

one might want to match some average Young’s modulus, for 

example.
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Rotated	compliance	(matrix)

• Given an orientation aij, we transform the 
compliance tensor, using cubic point group 
symmetry, and find that:

! S 11 = S11 a11
4 + a12

4 + a13
4( )

+ 2S12 a12
2 a13

2 + a11
2 a12

2 + a11
2 a13

2( )
+ S44 a12

2 a13
2 + a11

2 a12
2 + a11

2 a13
2( )

Please	acknowledge	Carnegie	Mellon	if	you	make	public	use	of	these	slides	



42

Rotated	compliance	(matrix)
• This can be further simplified with the aid of the standard 

relations between the direction cosines, aikajk =	1 for i=j;	aikajk
=	0 for i¹j,	(aikajk =	dij) to read as follows.

• By definition, the Young’s modulus in any direction is given by 
the reciprocal of the compliance, E	=	1/S’11.

• By definition, the Young’s modulus along <100> is given by the 
reciprocal of the compliance for <100>: 
E100 =	1/S11 =	{(C11-C12)(C11+ 2C12)}/(C11+ C12).

€ 

" s 11 = s11 −

2 s11 − s12 −
s44
2

$ 

% 
& 

' 

( 
) α1

2α2
2 +α2

2α3
2 +α3

2α1
2{ }
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Anisotropy	in	cubic	materials
• Thus the second term on the RHS is zero for <100>	directions 

and, for C44/C'>1, a maximum in <111>	directions 
(conversely a minimum for C44/C'<1).		
The following table shows that 
most cubic metals have positive 
values of Zener's coefficient so 
that <100>	is soft and <111>	
is hard, with the exceptions of V 
and NaCl.

• See the supplemental slides for 
how to go between C values and 
the Lamé constants used to 
describe isotropic materials.

Material C44/C' E111/E100

Cu 3.21 2.87
Ni 2.45 2.18
A1 1.22 1.19
Fe 2.41 2.15
Ta 1.57 1.50

W (2000K) 1.23 1.35
W (R.T.) 1.01 1.01

V 0.78 0.72
Nb 0.55 0.57

β-CuZn 18.68 8.21
spinel 2.43 2.13
MgO 1.49 1.37
NaC1 0.69 0.74
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Stiffness	coefficients,	cubics

[Courtney]
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Anisotropy	in	terms	of	moduli

• Another way to write the above equation is to 
insert the values for the Young's modulus in the 
soft and hard directions, assuming that the 
<100>	are the most compliant direction(s).  
(Courtney uses a,	b,	and g in place of my a1,	a2,	
and a3.)  The advantage of this formula is that 
moduli in specific directions can be used directly.

1
Euvw

=
1
E100

− 3 1
E100

−
1
E111

" 
# 
$ 

% 
& 
' 
α1
2α 2

2 + α2
2α 3

2 +α3
2α1

2( )
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Example	Problem

Should	be	E<111>=	18.89

[Courtney]
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An alternate vectorization, discussed by Tomé on p287 of the Kocks et al. 
textbook, is to use the above set of eigentensors.  For both stress and strain, 
one can matrix multiply each eigentensor into the stress/strain tensor in turn 
and obtain the coefficient of the corresponding stress/strain vector.  Work 
conjugacy is still satisfied.  The first two eigentensors represent shears in the 
{110} planes; the next three are simple shears on {110}<110> systems, and the 
last (6th) is the hydrostatic component.  The same vectorization can be used 
for plastic anisotropy, except in this case, the sixth, hydrostatic component is 
(generally) ignored.
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Summary

• We have covered the following topics:
– Linear properties
– Non-linear properties
– Examples of properties
– Tensors, vectors, scalars, tensor transformation law.
– Elasticity, as example as of higher order property, also 

as example as how to apply (crystal) symmetry.
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Supplemental	Slides

• The following slides contain some useful material 
for those who are not familiar with all the 
detailed mathematical methods of matrices, 
transformation of axes, tensors etc.
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Einstein	Convention
• The Einstein Convention, or summation rule for 

suffixes looks like this:
Ai =	Bij Cj

where “i” and “j” both are integer indexes whose 
range is {1,2,3}. So, to find each “ith” component
of A on the LHS, we sum up over the repeated 
index, “j”, on the RHS:

A1 =	B11C1 +	B12C2 +	B13C3
A2 =	B21C1 +	B22C2 +	B23C3
A3 =	B31C1 +	B32C2 +	B33C3
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Matrix	Multiplication
• Take each row of the LH matrix in turn and 

multiply it into each column of the RH matrix.
• In suffix notation, aij =	bikckj

aα + bδ + cγ aβ + bε + cµ aγ + bφ + cν
dα + eδ + fγ dβ + eε + fµ dγ + eφ + fν
lα +mδ + nγ lβ + mε + nµ lγ +mφ + nν

( 

) 

* 
* 
* 

+ 

, 

- 
- 
- 

=

a b c
d e f
l m n

( 

) 

* 
* 
* 

+ 

, 

- 
- 
- 
×

α β γ

δ ε φ

λ µ ν

( 

) 

* 
* 
* 

+ 

, 

- 
- 
- 
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Properties	of	Rotation	Matrix
• The rotation matrix is an orthogonal matrix, meaning that 

any row is orthogonal to any other row (the dot products 
are zero).  In physical terms, each row represents a unit 
vector that is the position of the corresponding (new) old 
axis in terms of the (old) new axes.

• The same applies to columns: in suffix notation -
aijakj = dik,	ajiajk =	dik

a b c
d e f
l m n

! 

" 

# 
# 
# 

$ 

% 

& 
& 
& 

ad+be+cf =	0

bc+ef+mn =	0
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• That the set of direction cosines are not independent is 
evident from the following construction:

Thus, there are six relationships (i takes values from 1 to 
3, and j takes values from 1 to 3) between the nine 
direction cosines, and therefore, as stated above, only 
three are independent, exactly as expected for a rotation.

• Another way to look at a rotation: combine an axis 
(described by a unit vector with two parameters) and a 
rotation angle (one more parameter, for a total of 3).

€ 

ˆ " e i ⋅ ˆ " e j = aika jl ˆ e k ⋅ ˆ e l = aika jlδkl = aika jk = δij

Direction	Cosines,	
contd.
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• Note that the direction cosines can be arranged 
into a 3x3 matrix,  L, and therefore the relation 
above is equivalent to the expression

where L T denotes the transpose of L.  This 
relationship identifies L as an orthogonal matrix, 
which has the properties  

ΛΛT = I

Λ−1 = ΛT det Λ = ±1

Orthogonal	Matrices
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• When both coordinate systems are right-handed, 
det(L)=+1 and L is a proper orthogonal matrix.  The 
orthogonality of L also insures that, in addition to the 
relation above, the following holds:

Combining these relations leads to the following inter-
relationships between components of vectors in the two 
coordinate systems:

€ 

ˆ e j = aij ˆ " e i

€ 

vi = a ji " v j  ,  " v j = a jivi

Relationships
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• These relations are called the laws of transformation for 
the components of vectors.  They are a consequence of, 
and equivalent to, the parallelogram law for addition of 
vectors.  That such is the case is evident when one 
considers the scalar product  expressed in two coordinate 
systems:

  

€ 

 u ⋅  v = uivi = a ji # u jaki # v k =

δ jk # u j # v k = # u j # v j = # u i # v i

Transformation	Law
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Thus, the transformation law as expressed preserves the 
lengths and the angles between vectors.  Any function of 
the components of vectors which remains unchanged 
upon changing the coordinate system is called an 
invariant of the vectors from which the components are 
obtained.  The derivations illustrate the fact that the 
scalar product            is an invariant of        and        .  Other 
examples of invariants include the vector product of two 
vectors and the triple scalar product of three vectors.  The 
reader should note that the transformation law for 
vectors also applies to the components of points when 
they are referred to a common origin.

  

€ 

 u ⋅  v   

€ 

 u   

€ 

 v 

Invariants
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• A rotation matrix, L, is an orthogonal matrix, 
however, because each row is mutually 
orthogonal to the other two.  

• Equally, each column is orthogonal to the other 
two, which is apparent from the fact that each 
row/column contains the direction cosines of the 
new/old axes in terms of the old/new axes and 
we are working with [mutually perpendicular] 
Cartesian axes. 

€ 

akiakj = δij , aika jk = δij

Orthogonality
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Anisotropy
• Anisotropy as a word simply means that something varies with direction.
• Anisotropy is from the Greek: aniso = different, varying; tropos = direction.
• Almost all crystalline materials are anisotropic; many materials are 

engineered to take advantage of their anisotropy (beer cans, turbine blades, 
microchips…)

• Older texts use trigonometric functions to describe anisotropy but tensors 
offer a general description with which it is much easier to perform 
calculations.

• For materials, what we know is that some properties are anisotropic.  This 
means that several numbers, or coefficients, are needed to describe the 
property - one number is not sufficient.

• Elasticity is an important example of a property that, when examined in single 
crystals, is often highly anisotropic.  In fact, the lower the crystal symmetry, 
the greater the anisotropy is likely to be.

• Nomenclature: in general, we need to use tensors to describe fields and 
properties.  The simplest case of a tensor is a scalar which is all we need for 
isotropic properties.  The next “level” of tensor is a vector, e.g. electric 
current.
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Scalars,	Vectors,	Tensors

• Scalar:= quantity that requires only one number, e.g. 
density, mass, specific heat.  Equivalent to a zero-rank 
tensor.

• Vector:= quantity that has direction as well as 
magnitude, e.g. velocity, current, magnetization; 
requires 3 numbers or coefficients (in 3D). Equivalent to 
a first-rank tensor.

• Tensor:= quantity that requires higher order 
descriptions but is the same, no matter what 
coordinate system is used to describe it, e.g. stress, 
strain, elastic modulus; requires 9 (or more, depending 
on rank) numbers or coefficients.
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Vector	field,	response
• If we have a vector response, R, that we can write 

in component form, a vector field, F, that we can 
also write in component form, and a property, P, 
that we can write in matrix form (with nine 
coefficients) then the linearity of the property 
means that we can write the following (R0 =	0):

Ri =	PijFj

• A scalar (e.g. pressure) can be called a zero-rank 
tensor. 

• A vector (e.g. electric current) is also known as a 
first-rank tensor.
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Linear	anisotropic	property
• This means that each component of the response is 

linearly related to each component of the field and that 
the proportionality constant is the appropriate coefficient 
in the matrix. Example:

R1 =	P13F3,
which says that the first component of the response is 
linearly related to the third field component through the 
property coefficient P13.  

F3R1

x1

x3
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Example:	electrical	conductivity

• An example of such a linear anisotropic (second 
order tensor, discussed in later slides) property is 
the electrical conductivity of a material:

• Field: Electric Field, E
• Response:  Current Density, J
• Property:  Conductivity, s
• Ji =	sij Ej
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Anisotropic	electrical	conductivity

• We can illustrate anisotropy with Nye’s example of 
electrical conductivity, s:

Stimulus/	Field:		E1¹0,	E2=E3=0
Response:	j1=s11E1,	j2=s21E1,	j3=s31E1,

O
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Changing	the	Coordinate	System
• Many different choices are possible for the orthonormal base 

vectors and origin of the Cartesian coordinate system.  A 
vector is an example of an entity which is independent of the 
choice of coordinate system.  Its direction and magnitude must 
not change (and are, in fact, invariants), although its 
components will change with this choice.  

• Why would we want to do something like this?  For example, 
although the properties are conveniently expressed in a crystal 
reference frame, experiments often place the crystals in a non-
symmetric position with respect to an experimental frame.  
Therefore we need some way of converting the coefficients of 
the property into the experimental frame.

• Changing the coordinate system is also known as axis 
transformation.
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Motivation	for	Axis	Transformation
• One motivation for axis transformations is the need to 

solve problems where the specimen shape (and the 
stimulus direction) does not align with the crystal axes.  
Consider what happens when you apply a force parallel to 
the sides of this specimen …

66

[100]

[110]

The	direction	parallel	to	the	
long	edge	does	not	line	up	with	
any	simple,	low	index	crystal	
direction.		Therefore	we	have	to	
find	a	way	to	transform the	
properties	that	we	know	for	the	
material	into	the	frame	of	the	
problem	(or	vice	versa).

Image	of	Pt	surface	from	www.cup.uni-muenchen.de/pc/wintterlin/IMGs/pt10p3.jpg

Applied	stress
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• Consider a new orthonormal system consisting of right-
handed base vectors:
These all have the same origin, o,
associated with

• The vector v is clearly expressed equally well in either 
coordinate system:

Note - same physical vector but different values of the 
components. 

• We need to find a relationship between the two sets of 
components for the vector. 

  

€ 

 v = vi ˆ e i = " v i ˆ " e i
€ 

ˆ " e 1,  ˆ " e 2 and ˆ " e 3

New	Axes

€ 

ˆ " e 1,  ˆ " e 2 and ˆ " e 3
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Anisotropy	in	Composites
• The same methods developed here for 

describing the anisotropy of single crystals can 
be applied to composites.

• Anisotropy is important in composites, not
because of the intrinsic properties of the 
components but because of the arrangement
of the components.

• As an example, consider (a) a uniaxial 
composite (e.g. tennis racket handle) and (b) a 
flat panel cross-ply composite (e.g. wing 
surface).
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Fiber	Symmetry

x
y

z
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Fiber	Symmetry
• We will use the same matrix notation for stress, 

strain, stiffness and compliance as for single 
crystals.

• The compliance matrix, s, has 5 independent 
coefficients.

€ 

s11 s12 s13 0 0 0
s12 s11 s13 0 0 0
s13 s13 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s44 0
0 0 0 0 0 2 s11 − s12( )
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Relationships

• For a uniaxial stress along the z (3) direction,

• This stress causes strain in the transverse plane: 
e11	=	e22	=	s12s33.  Therefore we can calculate 
Poisson’s ratio as:

• Similarly, stresses applied perpendicular to z give 
rise to different moduli and Poisson’s ratios.

€ 

E3 =
σ 3
ε3

=
1
s33

=
σ zz

εzz
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% 
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( 
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ν13 =
e1
e3

=
s13
s33

=
exx
ezz
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$ 
% 

& 

' 
( 

€ 

E1 =
σ1
ε1

=
1
s11
, ν 21 =

−s12
s11

, ν 31 =
−s13
s11
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Relationships,	contd.
• Similarly the torsional modulus is related to 

shears involving the z axis, i.e. yz or xz shears:
s44 =	s55 =	1/G

• Shear in the x-y	plane (1-2 plane) is related to the 
other compliance coefficients:

s66 =	2(s11-s12)	=	1/Gxy
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Plates:	Orthotropic	Symmetry
• Again, we use the same matrix notation for stress, strain, 

stiffness and compliance as for single crystals.
• The compliance matrix, s, has 9 independent coefficients.
• This corresponds to othorhombic sample symmetry: see 

the following slide with Table from Nye’s book.

€ 

s11 s12 s13 0 0 0
s12 s22 s23 0 0 0
s13 s23 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s55 0
0 0 0 0 0 s66
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$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 
' 

Please	acknowledge	Carnegie	Mellon	if	you	make	public	use	of	these	slides	



74

Plates:	0° and	90° plies
• If the composite is a laminate composite with fibers laid in at 0° and 

90° in equal thicknesses then the symmetry is higher because the x 
and y directions are equivalent.

• The compliance matrix, s, has 6 independent coefficients.
• This corresponds to (tetragonal) 4mm sample symmetry: see the 

following slide with Table from Nye’s book.
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s11 s12 s13 0 0 0
s12 s11 s13 0 0 0
s13 s13 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s44 0
0 0 0 0 0 s66
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Effect	of	Symmetry	on	the	
Elasticity	Tensors,	S,	C
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For	an	elastically	isotropic	body,	there	are	only	2	
elastic	moduli,	known	as	the	Lamé constants.

Lamé constants	(isotropic	elasticity)
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This	means	that,	if	you	know	the	
Lamé constants,	then	you	can	

obtain	the	stiffness	values	thus:
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S11 =	(C11+C12)/{(C11-C12)(C11+2C12)}
S11=	(l+2G	+ l)	/	{(l+2G	- l)(l+2G	+ 2l)}
S11=	(l+G)	/	{G(2G	+ 3l)}
S12 =	-C12/{(C11-C12)(C11+2C12)}
S12 =	-l /	{2G	(2G	+ 3l)}
S44 =	1 / G

Stiffnesses in	terms	of	E	and	n



Young’s,	Bulk	moduli,	Poisson’s	ratio
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n=		l /2(G	+ l)	=>	1-n=	{2(G	+ l)	- l }/2(G	+ l)
1-n=	{2G	+ l)	}/2(G	+ l)
1-2n=	{2(G	+ l)	- 2l }/2(G	+ l)	=	G	/	(G	+ l)
1-(1-2n)/(1-2n)	= l/G	
2n /(1-2n)	= l/G	
G	2n /(1-2n)	= l
l = G	2n /(1-2n)
l = E/ 2{1	+	n}	* 2n /(1-2n)
l =n E/ {(1	+	n)	(1-2n)}
l = E/(1	+	n) {n /(1-2n)}

E	=	2{2G(G	+ l) +	Gl}/2(G	+ l)
E	=	2{2G2 + 3G	l}/2(G	+ l)
E/ 1-2n = 2G{2G	+ 3l}	/	2G	 = 2G	+ 3l
E/	1-2n = 2G{2G	+ 3l}	/	2G	 =	2G	+ 3G	{2n /(1-2n)}
E/	1-2n = 2G	{1	+	n}	/(1-2n)
E = 2G	{1	+	n}	=>	G	 =	E/ 2{1	+	n}

C11 =	E/ {1	+	n}	+	n E/ {(1	+	n)	(1-2n)}
C11 =	E [1	+	(n / (1-2n))]	/ {1	+	n}
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General	Anisotropic	Properties

• Many different properties of crystals can be 
described as tensors.

• The rank of each tensor property depends, 
naturally, on the nature of the quantities related 
by the property.
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Examples	of	Materials	Properties	as	
Tensors

• Table 1 shows a series of tensors that are of importance for material 
science. The tensors are grouped by rank, and are also labeled (in the 
last column) by E (equilibrium property) or T (transport property). The 
number following this letter indicates the maximum number of 
independent, nonzero elements in the tensor, taking into account 
symmetries imposed by thermodynamics. 

• The Field and Response columns contain the following symbols: ∆T = 
temperature difference, ∆S = entropy change, Ei = electric field 
components, Hi = magnetic field components, eij = mechanical strain, 
Di = electric displacement, Bi = magnetic induction, sij = mechanical 
stress, ∆bij = change of the impermeability tensor, ji = electrical 
current density, ÑjT = temperature gradient, hi = heat flux, Ñjc = 
concentration gradient, mi = mass flux, ra

i = anti-symmetric part of 
resistivity tensor, rs

i = symmetric part of resistivity tensor, ∆rij = 
change in the component ij of the resistivity tensor, li = direction 
cosines of wave direction in crystal, G = gyration constant,
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Courtesy	of	Prof.	M.	De	Graef
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Principal	Effects
Electrocaloric =	pyroelectric
Magnetocaloric =	pyromagnetic
Thermal	expansion	=	piezocaloric
Magnetoelectric and	converse	magnetoelectric
Piezoelectric	and	converse	piezoelectric
Piezomagnetic and	converse	piezomagnetic

Courtesy	of	Prof.	M.	De	Graef
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Principal	Effects

1st	rank	cross	effects

2nd	rank	cross	effects

3rd	rank	cross	effects

Courtesy	of	Prof.	M.	De	Graef
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General crystal symmetry shown above.

Courtesy	of	Prof.	M.	De	Graef
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Point	group	4

Courtesy	of	Prof.	M.	De	Graef
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Point	group	m3m
Note	how	many	fewer	independent	coefficients	there	are!
Note	how	the	center	of	symmetry	eliminates	many	of	the	
properties,	such	as	pyroelectricity

Courtesy	of	Prof.	M.	De	Graef
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Homogeneity
• Stimuli and responses of interest are, in general, not scalar quantities but 

tensors.  Furthermore, some of the properties of interest, such as the 
plastic properties of a material, are far from linear at the scale of a 
polycrystal.  Nonetheless, they can be treated as linear at a suitably local 
scale and then an averaging technique can be used to obtain the response 
of the polycrystal.  The local or microscopic response is generally well 
understood but the validity of the averaging techniques is still 
controversial in many cases.  Also, we will only discuss cases where a 
homogeneous response can be reasonably expected.  

• There are many problems in which a non-homogeneous response to a 
homogeneous stimulus is of critical importance. Stress-corrosion cracking, 
for example, is a wildly non-linear, non-homogeneous response to an 
approximately uniform stimulus which depends on the mechanical and 
electro-chemical properties of the material.
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Use	of	MuPAD inside	Matlab
• Note that the 6x6 transformation matrix can be 

programmed inside Matlab just as a 3x3 can.
• In order to apply a transformation (e.g. a 

symmetry operator) to a 6x6 stiffness or 
compliance matrix, the formula is the same as 
before, i.e.:

C’=	O	C	OT
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Matrix
representation of 
the 
rotation point 
groups

What is a group?  A group is a set of 
objects that form a closed set: if you 
combine any two of them together, the 
result is simply a different member of 
that same group of objects.  Rotations in 
a given point group form closed sets - try 
it for yourself!

Note: the 3rd matrix in the 1st 
column (x-diad) is missing a “-” on 
the 33 element; this is corrected in 
this slide. Also, in the 2nd from the 
bottom, last column: the 33 element 
should be +1, not -1. In some 
versions of the book, in the last 
matrix (bottom right corner) the 33 
element is incorrectly given as -1; 
here the +1 is correct.

Kocks, Tomé & Wenk:
Ch. 1 Table II
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