
Anisotropic	Elasticity	

27-750	
Texture,	Microstructure	&	Anisotropy	

A.D.	Rolle<	

Last	revised:	22nd	Feb.	‘16	



2	

Bibliography	
•  R.E.	Newnham,	Proper'es	of	Materials:	Anisotropy,	Symmetry,	Structure,	

Oxford	University	Press,	2004,	620.112	N55P.	
•  Nye,	J.	F.	(1957).	Physical	Proper'es	of	Crystals.	Oxford,	Clarendon	Press.	
•  Kocks,	U.	F.,	C.	Tomé	and	R.	Wenk	(1998).	Texture	and	Anisotropy,	Cambridge	

University	Press,	Cambridge,	UK.		Chapter	7.	
•  T.	Courtney,	Mechanical	Behavior	of	Materials,	McGraw-Hill,	0-07-013265-8,	

620.11292	C86M.	
•  Reid,	C.	N.	(1973).	Deforma:on	Geometry	for	Materials	Scien:sts.	Oxford,	UK,	

Pergamon.	
•  Newey,	C.	and	G.	Weaver	(1991).	Materials	Principles	and	Prac:ce.	Oxford,	

England,	Bu<erworth-Heinemann.	

Please	acknowledge	Carnegie	Mellon	if	you	make	public	use	of	these	slides		



3	

Notation	
F				S]mulus	(field)	
R				Response	
P				Property	
j				electric	current		
E				electric	field	
D				electric	polariza]on	
ε  Strain	(also,	permuta]on	

tensor)	
σ  Stress	(or	conduc]vity)	
ρ  Resis]vity	
d			piezoelectric	tensor	
C				elas]c	s]ffness	
S				elas]c	compliance	
	

a				transforma]on	matrix	
W				work	done	(energy)	
dW			work	increment	
I				iden]ty	matrix	
O				symmetry	operator	(matrix)	

Y				Young’s	modulus	
δ  		Kronecker	delta	
e				axis	(unit)	vector	
T				tensor	
α				direc]on	cosine	
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Objective	

•  The	objec]ve	of	this	lecture	is	to	provide	a	mathema]cal	framework	
for	the	descrip]on	of	proper]es,	especially	when	they	vary	with	
direc]on.	

•  A	basic	property	that	occurs	in	almost	applica]ons	is	elas:city.		
Although	elas]c	response	is	linear	for	all	prac]cal	purposes,	it	is	oden	
anisotropic	(composites,	textured	polycrystals	etc.).	

•  Why	do	we	care	about	elas]c	anisotropy?		In	composites,	especially	
fibre	composites,	it	is	easy	to	design	in	substan]al	anisotropy	by	
varying	the	lay-up	of	the	fibres.		See,	for	example:		
hIp://www.jwave.vt.edu/crcd/kriz/lectures/Geom_3.html	

•  Geologists	are	very	familiar	with	elas]c	anisotropy	and	exploit	it	for	
understanding	seismic	results;	see,	e.g.,	
hIps://en.wikipedia.org/wiki/Seismic_anisotropy	.	
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In	Class	Questions	
1.  Why	is	plas]c	yielding	a	non-linear	property,	in	contrast	to	elas]c	

deforma]on?	
2.  What	is	the	defini]on	of	a	tensor?	
3.  Why	is	stress	is	2nd-rank	tensor?	
4.  Why	is	elas]c	s]ffness	a	4th-rank	tensor?	
5.  What	is	“matrix	nota]on”	(in	the	context	of	elas]city)?	
6.  What	are	the	rela]onships	between	tensor	and	matrix	coefficients	for	

stress?	Strain?	S]ffness?		Compliance?	
7.  Why	do	we	need	factors	of	2	and	4	in	some	of	these	conversion	factors?	
8.  How	do	we	use	crystal	symmetry	to	decrease	the	number	of	coefficients	

needed	to	describe	s]ffness	and	compliance?	
9.  How	many	independent	coefficients	are	needed	for	s]ffness	(and	

compliance)	in	cubic	crystals?		In	isotropic	materials?	
10.  How	do	we	express	the	direc]onal	dependence	of	Young’s	modulus?	
11.  What	is	Zener’s	anisotropy	factor?	
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Q&A	
1. How	do	we	write	the	rela]onship	between	(tensor)	stress	and	(tensor)	strain?	σ=C:ε.		How	about	the	other	way	
around?	ε=S:σ. What	are	“s]ffness”	and	“compliance”	in	this	context?	The	s]ffness	tensor	is	the	collec]on	of	
coefficients	that	connect	all	the	different	stress	coefficients/components	to	all	the	different	strain	coefficients/
components.		How	do	we	express	this	in	Voigt	or	vector-matrix	nota]on?	The	only	difference	is	that	the	stress	and	
strain	are	vectors	and	the	s]ffness	and	compliance	are	matrices.		If	indices	are	used	then	stress	and	strain	each	have	
two	indices	and	the	s]ffness	and	compliance	each	have	four.	

2. What	are	the	rela]onships	between	the	coefficients	of	the	(4th	rank)	s]ffness	tensor	and	the	s]ffness	matrix	(6x6)?	
See	the	notes	for	details	but,	e.g.,	{11,22,33}tensor	correspond	to	{1,2,3}matrix. E.g.	C12(matrix)=C1122(tensor).	What	
about	the	compliance	tensor	and	matrix?	Here,	more	care	is	required	because	certain	coefficients	have	factors	of	2	or	
4.	

3. What	does	work	conjugacy	mean?	The	energy	stored	in	a	body	when	elas]c	strains	and	stresses	are	present	is	
calculated	as	the	product	of	the	stress	and	strain,	which	means	that	the	work	done	makes	the	strain	and	stress	
conjugate	(joined)	variables.		What	does	this	mean	for	the	rela]onships	between	(2nd	rank)	tensor	stress	and	its	vector	
form?		What	about	strain?	Answering	these	two	together,	we	note	that	work	conjugacy	means	that	whatever	nota]on	
is	used	to	express	stress	and	strain,	the	product	of	the	two	must	be	the	same	because	of	conserva]on	of	energy.		This	
then	explains	why	factors	of	two	are	used	in	the	conversion	to/from	matrix	to	tensor	representa]ons	of	the	shear	
components	of	strain	(but	not	the	normal	strain	components).		These	factors	of	two	could	have	been	applied	to	stress,	
but	by	conven]on	we	do	this	for	strain.	

4. How	do	we	write	the	tensor	transforma]on	rule	in	vector-matrix	nota]on?	See	the	notes	for	details	but	the	basic	idea	
is	that	a	6x6	matrix	(that	can	be	applied	to	a	s]ffness	or	compliance	tensor)	is	formed	from	the	coefficients	of	the	
transforma]on	matrix.	

5. How	do	we	apply	crystal	symmetry	to	elas]c	moduli	(e.g.	the	s]ffness	tensor)?	We	apply	a	symmetry	operator	to	the	
(s]ffness)	tensor	and	set	the	new	and	old	versions	of	the	tensor	equal	to	each	other,	coefficient	by	coefficient.	What	
net	effect	does	it	have	on	the	s]ffness	matrix	for	cubic	materials?	Applying	the	cubic	crystal	symmetry	to	the	s]ffness	
tensor	reduces	most	of	the	coefficients	to	zero	and	there	are	only	3	independent	coefficients	that	remain.	
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Q&A,	part	2	
6.  How	do	we	convert	from	s]ffness	to	compliance	(and	vice	versa)?	The	detailed	mathema]cs	is	out	of	

scope	for	this	course.		It	is	sufficient	to	know	that	the	two	tensors	combine	to	form	a	4th	rank	iden]ty	
tensor,	from	which	one	can	obtain	algebraic	rela]onships	as	given	in	the	notes.		Be	aware	that	these	
formulae	depend	on	the	crystal	symmetry	(as	do	the	compliance	&	s]ffness	tensors	themselves).	

7.  How	do	we	apply	symmetry	(and	transforma]ons	of	axes	in	general)	to	the	property	of	anisotropic	
elas]city?	There	are	two	answers.	The	first	answer	is	that	one	can	apply	the	tensor	transforma]on	
rule,	just	as	explained	in	previous	lectures.		Generate	the	transforma]on	matrix	with	any	the	
methods	described	(i.e.	dot	products	between	old	and	new	axes,	or	using	the	combina]on	of	axis	
and	angle).		Then	write	out	the	transforma]on	with	4	copies	of	the	matrix	taking	care	to	specify	the	
indices	correctly.		The	alterna]ve	answer	is	to	generate	a	6x6	transforma]on	matrix	that	can	be	used	
with	vector-matrix	(Voigt)	nota]on	for	either	the	stress,	strain	(6x1)	vectors	or	the	modulus	(6x6)	
matrix.	

8.  How	do	we	show	that	symmetry	reduces	the	number	of	independent	coefficients	in	an	anisotropic	
elas]city	modulus	tensor?	Given	a	symmetry	matrix,	one	proceeds	just	as	in	the	previous	examples	
i.e.	apply	symmetry	and	then	equate	individual	coefficients	to	find	the	cases	of	either	zero	or	
equality(between	different	coefficients).	

9.  How	do	we	calculate	the	(anisotropic)	elas]c	(Young’s)	modulus	in	an	arbitrary	direc]on?	This	looks	
ahead	to	the	next	lecture.		The	idea	is	to	realize	that	a	tensile	test	is	such	that	there	is	only	one	non-
zero	coefficient	in	the	stress	tensor	(or	vector);	the	strain	tensor,	however,	has	to	have	more	than	
one	non-zero	coefficient	(because	of	the	Poisson	effect).		Therefore	one	uses	the	rela]onship	that	
strain	=	compliance	x	stress.		By	rota]ng	the	compliance	tensor	such	that	one	axis	(usually	x)	is	
parallel	to	the	desired	direc]on,	one	obtains	the	Young’s	modulus	in	that	direc]on	as	1/S11.	
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Anisotropy:	Practical	Applications	

•  The	prac]cal	applica]ons	of	anisotropy	of	
composites,	especially	fiber-reinforced	
composites	are	numerous.	

•  The	s]ffness	of	fiber	composites	varies	
tremendously	with	direc]on.		Torsional	rigidity	is	
very	important	in	car	bodies,	boats,	aeroplanes	
etc.	

•  Even	in	monolithic	polymers	(e.g.	drawn	
polyethylene)	there	exists	large	anisotropy	
because	of	the	alignment	of	the	long-chain	
molecules.	
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Application	example:	quartz	oscillators	
•  Piezoelectric	quartz	crystals	are	commonly	used	for	frequency	control	

in	watches	and	clocks.		Despite	having	small	values	of	the	
piezoelectric	coefficients,	quartz	has	posi]ve	aspects	of	low	losses	
and	the	availability	of	orienta]ons	with	negligible	temperature	
sensi]vity.	The	property	of	piezoelectricity	relates	strain	to	electric	
field,	or	polariza]on	to	stress.	

•  				εij	=	dijkEk	
•  PZT,	lead	zirconium	]tanate	PbZr1-xTixO3,	is	another	commonly	used	

piezoelectric	material.	
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Piezoelectric	Devices	
10	

[Newnham]	

• 	The	property	of	piezoelectricity	relates	strain	to	electric	field,	or	
polariza]on	to	stress.	
				εij	=	dijkEk	
• 	PZT,	lead	zirconium	]tanate	PbZr1-xTixO3,	is	another	commonly	used	
piezoelectric	material.	

Note:	Newnham	consistently	
uses	vector-matrix	nota]on,	
rather	than	tensor	nota]on.		
We	will	explain	how	this	works	
later	on.	

Examinable	
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Piezoelectric	Crystals	
•  How	is	it	that	crystals	can	be	piezoelectric?	
•  The	answer	is	that	the	bonding	must	be	ionic	to	some	

degree	(i.e.	there	is	a	net	charge	on	the	different	
elements)	and	the	arrangement	of	the	atoms	must	be	
non-centrosymmetric.	

•  PZT	is	a	standard	piezoelectric	material.		It	has	Pb	atoms	
at	the	cell	corners	(a~4Å),	O	on	face	centers,	and	a	Ti	or	
Zr	atom	near	the	body	center.		Below	a	certain	
temperature	(Curie	T),	the	cell	transforms	from	cubic	
(high	T)	to	tetragonal	(low	T).		Applying	stress	distorts	
the	cell,	which	changes	the	electric	displacement	in	
different	ways	(see	figure).	

•  Although	we	can	understand	the	effect	at	the	single	
crystal	level,	real	devices	(e.g.	sonar	transducers)	are	
polycrystalline.		The	opera]on	is	much	complicated	
than	discussed	here,	and	involves	“poling”	to	maximize	
the	response,	which	in	turns	involves	mo]on	of	domain	
walls.	

11	
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Mathematical	Descriptions	
•  Mathema]cal	descrip]ons	of	proper]es	are	available.	
•  Mathema]cs,	or	a	type	of	mathema]cs	provides	a	

quan:ta:ve	framework.	It	is	always	necessary,	however,	
to	make	a	correspondence	between	mathema]cal	
variables	and	physical	quan]]es.	

•  In	group	theory	one	might	say	that	there	is	a	set	of	
mathema]cal	opera]ons	&	parameters,	and	a	set	of	
physical	quan]]es	and	processes:	if	the	mathema]cs	is	a	
good	descrip]on,	then	the	two	sets	are	isomorphous.	

•  This	lecture	makes	extensive	use	of	tensors.		A	tensor	is	a	
quan]ty	that	can	be	transformed	from	one	set	of	axes	to	
another	via	the	tensor	transforma:on	rule	(next	slide).	
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Tensor:	deWinition,	contd.	
•  In	order	for	a	quan]ty	to	“qualify”	as	a	tensor	it	has	to	obey	the	

axis	transforma:on	rule,	as	discussed	in	the	previous	slides.	
•  The	transforma:on	rule	defines	rela]onships	between	

transformed	and	untransformed	tensors	of	various	ranks.	
•  It	says	that	any	tensor	quan]ty	can	be	transformed	from	one	

reference	frame	to	another;	this	transforma:on	of	axes	is	
some]mes	called	a	passive	rota:on.	
	
Vector: 	 	 	V’i		=	aijVj	
2nd	rank 	 	 	T’ij		=	aikailTkl	
3rd	rank 		 	 	T’ijk		=	ailaimaknTlmn	
4th	rank	 	 	 	T’ijkl		=	aimainakoalpTmnop	

This	rule	is	a	criWcal	piece	of	informaWon,	which	
you	must	know	how	to	use.	
Please	acknowledge	Carnegie	Mellon	if	you	make	public	use	of	these	slides		
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Non-Linear	properties,	example	
•  Another	important	example	of	non-linear	anisotropic	proper]es	is	

plas]city,	i.e.	the	irreversible	deforma]on	of	solids.			
•  A	typical	descrip]on	of	the	response	at	plas]c	yield		

(what	happens	when	you	load	a	material	to	its	yield	stress)	
is	elas]c-perfectly	plas]c.		In	other		
words,	the	material	responds		
elas]cally	un]l	the	yield	stress	is		
reached,	at	which	point	the	stress		
remains	constant	(strain	rate		
unlimited).										

˙ ε = σ
σ yield

# 

$ 
% 

& 

' 
( 

n
•		A	more	realis]c	descrip]on	is	a	power-law	with	a	
large	exponent,	n~50.		The	stress	is	scaled	by	the	crss,	
and	be	expressed	as	either	shear	stress-	
shear	strain	rate	[graph],	or	tensile	stress-tensile	strain	
[equa]on].	

[Kocks]	
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Linear	properties	
•  Certain	proper]es,	such	as	elas]city	in	most	
cases,	are	linear	which	means	that	we	can	
simplify	even	further	to	obtain	
	

	 	 	R	=	R0	+	PF	
or	if	R0	=	0,	

	 	 	R	=	PF.	
	
e.g.	elas]city: 	σ	=	C	ε 
 
In	tension,	C	≡	Young’s	modulus,	Y	or	E.	

stiffness	
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Elasticity	

•  Elas:city:	example	of	a	property	that	requires	tensors	to	
describe	it	fully.	

•  Even	in	cubic	metals,	a	crystal	is	quite	anisotropic.		The	
[111]	in	many	cubic	metals	is	s]ffer	than	the	[100]	
direc]on.	

•  Even	in	cubic	materials,	3	numbers/coefficients/moduli	
are	required	to	describe	elas]c	proper]es;	isotropic	
materials	only	require	2.	

•  Familiarity	with	Miller	indices,	suffix	nota:on,	Einstein	
conven:on,	Kronecker	delta,	permuta:on	tensor,	and	
tensors	is	assumed.	
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Elastic	Anisotropy:	1	
•  First	we	restate	the	linear	elas]c	rela]ons	for	the	
proper]es	Compliance,	wri<en	S,	and	S:ffness,	
wri<en	C	(admi<edly	not	very	logical	choice	of	
nota]on),	which	connect	stress,	σ,	and	strain,	ε.	
We	write	it	first	in	vector-tensor	nota]on	with	“:”	
signifying	inner	product	(i.e.	add	up	terms	that	
have	a	common	suffix	or	index	in	them):		

	 	 	σ	=	C:ε 
	 	 	ε	=	S:σ	

•  In	component	form	(with	suffixes),	
	 	 	σij	=	Cijklεkl	
	 	 	εij	=	Sijklσkl	

Please	acknowledge	Carnegie	Mellon	if	you	make	public	use	of	these	slides		
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Elastic	Anisotropy:	2	

The	defini]ons	of	the	stress	and	strain	tensors	mean	
that	they	are	both	symmetric	(second	rank)	
tensors.		Therefore	we	can	see	that	

	 	 	ε23	=	S2311σ11	
	 	 	ε32	=	S3211σ11	=	ε23			

which	means	that, 		
	 	 	S2311	=	S3211	

and	in	general,	
	 	 	Sijkl	=	Sjikl	

We	will	see	later	on	that	this	reduces	considerably	
the	number	of	different	coefficients	needed.	
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Stiffness	in	sample	coords.	

•  Consider	how	to	express	the	elas]c	proper]es	of	a	single	
crystal	in	the	sample	coordinates.		In	this	case	we	need	to	
rotate	the	(4th	rank)	tensor	s]ffness	from	crystal	
coordinates	to	sample	coordinates	using	the	orienta]on	
(matrix),	a	:	

	 	 	cijkl'	=	aimajnakoalpcmnop	
•  Note	how	the	transforma]on	matrix	appears	four	]mes	

because	we	are	transforming	a	4th	rank	tensor!	
•  The	axis	transforma]on	matrix,	a,	is	some]mes	also	

wri<en	as	λ,	also	as	the	orientaWon	matrix	g.	
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20	 Young’s	modulus	from	
compliance	

•  Young's	modulus	as	a	func]on	of	direc]on	can	be	
obtained	from	the	compliance	tensor	as:		
																									E=1/s'1111		
Using	compliances	and	a	stress	boundary	
condi]on	(only	σ11≠0)	is	most	straighyorward.		To	
obtain	s'1111,	we	simply	apply	the	same	
transforma]on	rule,	
	
	 	s'ijkl	=	aim	ajn	ako	alpsmnop	

Please	acknowledge	Carnegie	Mellon	if	you	make	public	use	of	these	slides		
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“Voigt”	or	“matrix”	notation	
•  It	is	useful	to	re-express	the	three	quan]]es	
involved	in	a	simpler	format.		The	stress	and	
strain	tensors	are	vectorized,		i.e.	converted	into	
a	1x6	nota]on	and	the	elas]c	tensors	are	reduced	
to	6x6	matrices.	
σ11 σ12 σ13
σ 21 σ 22 σ 23

σ 31 σ 32 σ33

" 

# 

$ 
$ 

% 

& 

' 
' ← → * 

σ1 σ 6 σ 5

σ 6 σ 2 σ 4

σ 5 σ 4 σ 3

" 

# 

$ 
$ 

% 

& 

' 
' 

← → * σ1,σ 2,σ3,σ4 ,σ 5,σ 6( )
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“matrix	notation”,	contd.	
•  Similarly	for	strain:	
	
	
	
	
	
	
The	par]cular	defini]on	of	shear	strain	used	in	the	
reduced	nota]on	happens	to	correspond	to	that	used	in	
mechanical	engineering	such	that	ε4	is	the	change	in	angle	
between	direc]on	2	and	direc]on	3	due	to	deforma]on.	

ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

" 

# 

$ 
$ 

% 

& 

' 
' ← → * 

ε1
1
2ε6

1
2ε5

1
2ε6 ε2

1
2 ε4

1
2 ε5

1
2 ε4 ε3

" 

# 

$ 
$ 

% 

& 

' 
' 

← → * ε1,ε2 ,ε3,ε4,ε5,ε6( )
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Work	conjugacy,	matrix	inversion	

•  The	more	important	considera]on	is	that	the	
reason	for	the	factors	of	two	is	so	that	work	
conjugacy	is	maintained.	
	
	dW	=	σ:dε = σij	:	dεij	=	σk	•	dεk	
	
Also	we	can	combine	the	expressions	
	σ	=	Cε	and	ε	=	Sσ to	give:	

	 	 		σ	=	CSσ,	which	shows:	
	 	 	I	=	CS,	or,	C	=	S-1	
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Tensor	conversions:	stiffness	
•  Lastly	we	need	a	way	to	convert	the	tensor	
coefficients	of	s]ffness	and	compliance	to	the	
matrix	coefficients.		For	s]ffness,	it	is	very	simple	
because	one	subs]tutes	values	according	to	the	
following	table,	such	that	[vector-matrix]	C11	
=	C1111	[tensor]	for	example.	

Tensor 11 22 33 23 32 13 31 12 21
Matrix 1 2 3 4 4 5 5 6 6

Please	acknowledge	Carnegie	Mellon	if	you	make	public	use	of	these	slides		
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Stiffness	Matrix	

Please	acknowledge	Carnegie	Mellon	if	you	make	public	use	of	these	slides		

C =

C11 C12 C13 C14 C15 C16
C12 C22 C23 C24 C25 C26
C13 C23 C33 C34 C35 C36
C14 C24 C34 C44 C45 C46
C15 C25 C35 C45 C55 C56
C16 C26 C36 C46 C56 C66

!

"

#
#
#
#
#
#
#
#

$

%

&
&
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&
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&
&

Vector-matrix	notation	(two	indices	for	the	moduli,	one	index	for	stress	or	
strain);	note	that	this	matrix	is	symmetric,	therefore	there	are	only	21	
independent	coef[icients,	even	for	triclinic	crystals	(see	later	slides).	



Axis	Transformations	
•  It	is	s]ll	possible	to	perform	axis	transforma]ons,	as	

allowed	for	by	the	Tensor	Rule.		The	coefficients	can	be	
combined	[Newnham]	together	into	a	6	by	6	matrix	that	
can	be	used	for	2nd	rank	tensors	such	as	stress	and	strain,	
below.			

26	

•  Stress	(in	vector	nota]on)	
transforms	as:	
X’i	=	αij	Xj	

•  Strain	(in	vector	nota]on)	
transforms	as:	
x’i	=	(α-1ij)T	xj	
where	superscript	“T”	
signifies	transpose	of	the	
matrix.	

Please	acknowledge	Carnegie	Mellon	if	you	make	public	use	of	these	slides	
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Tensor	conversions:	compliance	
•  For	compliance	some	factors	of	two	are	required	
and	so	the	rule	becomes:	
	

pSijkl = Smn
p = 1 m.AND.n ∈ 1,2,3[ ]
p = 2 m .XOR.n ∈ 1, 2,3[ ]
p = 4 m.AND.n ∈ 4,5,6[ ]
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Relationships	between	coefWicients:	
	C	in	terms	of	S	

Some	addi]onal	useful	rela]ons	between	coefficients	for	
cubic	materials	are	as	follows.		Symmetrical	rela]onships	
exist	for	compliances	in	terms	of	s]ffnesses	(next	slide).	
	
C11	=	(S11+S12)/{(S11-S12)(S11+2S12)}	
	
C12	=	-S12/{(S11-S12)(S11+2S12)}	
	
C44	=	1/S44.	

Please	acknowledge	Carnegie	Mellon	if	you	make	public	use	of	these	slides		
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S	in	terms	of	C	

The	rela]onships	for	S	in	terms	of	C	are	symmetrical	to	those	
for	s]ffnesses	in	terms	of	compliances	(a	simple	exercise	
in	algebra).	
	
S11	=	(C11+C12)/{(C11-C12)(C11+2C12)}	
	
S12	=	-C12/{(C11-C12)(C11+2C12)}	
	
S44	=	1/C44.	
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Neumann's	Principle	

•  A	fundamental	natural	law:	Neumann's	Principle:	
the	symmetry	elements	of	any	physical	property	
of	a	crystal	must	include	the	symmetry	elements	
of	the	point	group	of	the	crystal.		The	property	
may	have	addi]onal	symmetry	elements	to	those	
of	the	crystal	(point	group)	symmetry.		There	are	
32	crystal	classes	for	the	point	group	symmetry.	

•  F.E.	Neumann	1885.	
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Neumann,	extended	

•  If	a	crystal	has	a	defect	structure	such	as	a	disloca]on	
network	that	is	arranged	in	a	non-uniform	way	then	the	
symmetry	of	certain	proper]es	may	be	reduced	from	the	
crystal	symmetry.		In	principle,	a	finite	elas]c	strain	in	one	
direc]on	decreases	the	symmetry	of	a	cubic	crystal	to	
tetragonal	or	less.		Therefore	the	modified	version	of	
Neumann's	Principle:	the	symmetry	elements	of	any	
physical	property	of	a	crystal	must	include	the	symmetry	
elements	that	are	common	to	the	point	group	of	the	
crystal	and	the	defect	structure	contained	within	the	
crystal.	
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Effect	of	crystal	symmetry	
•  Consider	an	ac]ve	rota]on	of	the	crystal,	where	O	is	the	

symmetry	operator.		Since	the	crystal	is	
indis]nguishable	(looks	the	same)	ader	applying	the	
symmetry	operator,	the	result	before,	R(1),	and	the	
result	ader,	R(2),	must	be	iden]cal:	
	
	
	
	
	
	
The	two	results	are	indis]nguishable	and	therefore	
equal.	It	is	essen]al,	however,	to	express	the	property	
and	the	operator	in	the	same	(crystal)	reference	frame.	

R(1) = PF
R(2) = OPOT F
R(1) =

← → # R(2)

$ 

% 
& & 

' 
& 
& 
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Symmetry,	properties,	contd.	
•  Expressed	mathema]cally,	we	can	rotate,	e.g.	a	second	rank	property	tensor	

thus:	
		P'	=	OPOT	=	P	,	or,	in	coefficient	nota]on,		

										P’ij		=	OikOilPkl	
	
where	O	is	a	symmetry	operator.	

•  Since	the	rotated	(property)	tensor,	P’,	must	be	the	same	as	the	original	
tensor,	P,	then	we	can	equate	coefficients:	

	 	 	P’ij		=	Pij	
•  If	we	find,	for	example,	that	P’21		=	-P21,then	the	only	value	of	P21		that	

sa]sfies	this	equality	is	P21	=	0.	
•  Remember	that	you	must	express	the	property	with	respect	to	a	par]cular	

set	of	axes	in	order	to	use	the	coefficient	form.		In	everything	related	to	single	
crystals,	always	use	the	crystal	axes	as	the	reference	frame!	

•  Homework	ques]on:	based	on	cubic	crystal	symmetry,	work	out	why	a	
second	rank	tensor	property	can	only	have	one	independent	coefficient.	
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Effect	of	symmetry	on	stiffness	matrix	

•  Why	do	we	need	to	look	at	the	effect	of	symmetry?		For	a	
cubic	material,	only	3	independent	coefficients	are	needed	
as	opposed	to	the	81	coefficients	in	a	4th	rank	tensor.		The	
reason	for	this	is	the	symmetry	of	the	material.	

•  What	does	symmetry	mean?		Fundamentally,	if	you	pick	
up	a	crystal,	rotate	[mirror]	it	and	put	it	back	down,	then	a	
symmetry	opera]on	[rota]on,	mirror]	is	such	that	you	
cannot	tell	that	anything	happened.	

•  From	a	mathema]cal	point	of	view,	this	means	that	the	
property	(its	coefficients)	does	not	change.		For	example,	
if	the	symmetry	operator	changes	the	sign	of	a	coefficient,	
then	it	must	be	equal	to	zero.	
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2nd	Rank	Tensor	Properties	&	Symmetry	

•  The	table	from	Nye	shows	the	number	of	independent,	non-zero	coefficients	allowed	in	
a	2nd	rank	tensor	according	to	the	crystal	symmetry	class.	
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Effect	of	symmetry	on	stiffness	matrix	
•  Following	Reid,	p.66	et	seq.:	
Apply	a	-90°	rota]on	about	the	crystal-z	axis	(axis	3)*,	
C’ijkl = OimOjnOkoOlpCmnop:	
	C’ = C!

€ 

O4
z =

0 1 0
−1 0 0
0 0 1

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

Examinable	
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*Reid	describes	
this	as	+90°,	but	
-90°	reproduces	
his	result	
(because	he	
apparently	
considers	
posi]ve	to	be	
clockwise).	

!C =

C22 C21 C23 C25 −C24 −C26
C21 C11 C13 C15 −C14 −C16
C23 C13 C33 C35 −C34 −C36
C25 C15 C35 C55 −C54 −C56
−C24 −C14 −C34 −C54 C44 C46
−C26 −C16 −C36 −C56 C46 C66

#

$

%
%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(
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Effect	of	symmetry,	2	
•  Using	P’	=	P,	we	can	equate	all	the	coefficients	in	
the	6x6	matrix	and	find	that:	
C11=C22,	C13=C23,	C44=C35,	C16=-C26,	
	C14=C15	=	C24	=	C25	=	C34	=	C35	=	C36	=	C45	=	C46	=	
C56	=	0.	

€ 

" C =

C11 C12 C13 0 0 C16

C12 C11 C13 0 0 −C16

C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 C46

C16 −C16 0 0 C46 C66

$ 

% 

& 
& 
& 
& 
& 
& 
& 
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) 
) 

Examinable	
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Effect	of	symmetry,	3	
•  Thus	by	repeated	applica]ons	of	the	symmetry	
operators,	one	can	demonstrate	(for	cubic	crystal	
symmetry)	that	one	can	reduce	the	81	
coefficients	down	to	only	3	independent	
quan]]es.	These	become	two	in	the	case	of	
isotropy.	

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

! 

" 

# 
# 
# 
# 
# 
# 
# 
# 
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Cubic	crystals:	anisotropy	factor	

•  If	one	applies	the	symmetry	elements	of	the	
cubic	system,	it	turns	out	that	only	three	
independent	coefficients	remain:	C11,	C12	and	
C44,	(similar	set	for	compliance).	From	these	
three,	a	useful	combina]on	of	the	first	two	is		

	 	 	 		
	 	C'	=	(C11	-	C12)/2	

	
•  See	Nye,	Physical	Proper:es	of	Crystals	
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Zener’s	anisotropy	factor	

•  C'	=	(C11	-	C12)/2	turns	out	to	be	the	s]ffness	
associated	with	a	shear	in	a	<110>	direc]on	on	a		
plane.		In	certain	martensi]c	transforma]ons,	this	
modulus	can	approach	zero	which	corresponds	to	
a	structural	instability.		Zener	(Physics,	Carnegie	
Tech.	Inst.)	proposed	a	measure	of	elas]c	
anisotropy	based	on	the	ra]o	C44/C'.		This	turns	
out	to	be	a	useful	criterion	for	iden]fying	
materials	that	are	elas]cally	anisotropic.			
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Rotated	compliance	(matrix)	

•  Given	an	orienta]on	aij,	we	transform	the	
compliance	tensor,	using	cubic	point	group	
symmetry,	and	find	that:	

! S 11 = S11 a11
4 + a12

4 + a13
4( )

+ 2S12 a12
2 a13

2 + a11
2 a12

2 + a11
2 a13

2( )
+ S44 a12

2 a13
2 + a11

2 a12
2 + a11

2 a13
2( )
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Rotated	compliance	(matrix)	

•  This	can	be	further	simplified	with	the	aid	of	the	standard	
rela]ons	between	the	direc]on	cosines,	aikajk	=	1	for	i=j;	
aikajk	=	0	for	i≠j,	(aikajk	=	δij)	to	read	as	follows.	
	
	
	
	
	
	

•  By	defini]on,	the	Young’s	modulus	in	any	direc]on	is	
given	by	the	reciprocal	of	the	compliance,	E	=	1/S’11.	

€ 

" s 11 = s11 −

2 s11 − s12 −
s44
2

$ 

% 
& 

' 

( 
) α1

2α2
2 +α2

2α3
2 +α3

2α1
2{ }
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Anisotropy	in	cubic	materials	

•  Thus	the	second	term	on	the	RHS	is	zero	for	<100>	
direc]ons	and,	for	C44/C'>1,	a	maximum	in	<111>	
direc]ons	(conversely	
	a	minimum	for	C44/C'<1).			
The	following	table	shows		
that	most	cubic	metals	have		
posi]ve	values	of	Zener's		
coefficient	so	that	<100>		
is	sod	and	<111>	is	hard,		
with	the	excep]ons	of	V		
and	NaCl.	

Material C44/C' E111/E100

Cu 3.21 2.87
Ni 2.45 2.18
A1 1.22 1.19
Fe 2.41 2.15
Ta 1.57 1.50

W (2000K) 1.23 1.35
W (R.T.) 1.01 1.01

V 0.78 0.72
Nb 0.55 0.57

β-CuZn 18.68 8.21
spinel 2.43 2.13
MgO 1.49 1.37
NaC1 0.69 0.74
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Stiffness	coefWicients,	cubics	

[Courtney]	
Please	acknowledge	Carnegie	Mellon	if	you	make	public	use	of	these	slides		
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Anisotropy	in	terms	of	moduli	

•  Another	way	to	write	the	above	equa]on	is	to	
insert	the	values	for	the	Young's	modulus	in	the	
sod	and	hard	direc]ons,	assuming	that	the	
<100>	are	the	most	compliant	direc]on(s).		
(Courtney	uses	α,	β,	and	γ	in	place	of	my	α1,	α2,	
and	α3.)		The	advantage	of	this	formula	is	that	
moduli	in	specific	direc]ons	can	be	used	directly.	

1
Euvw

=
1
E100

− 3 1
E100

−
1
E111

" 
# 
$ 

% 
& 
' 
α1
2α 2

2 + α2
2α 3

2 +α3
2α1

2( )
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Example	Problem	

Should	be	E<111>=	18.89	

[Courtney]	

Please	acknowledge	Carnegie	Mellon	if	you	make	public	use	of	these	slides		



Alternate	Vectorization	
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An	alternate	vectoriza]on,	discussed	by	Tomé	on	p287	of	the	Kocks	et	al.	
textbook,	is	to	use	the	above	set	of	eigentensors.		For	both	stress	and	strain,	
one	can	matrix	mul]ply	each	eigentensor	into	the	stress/strain	tensor	in	turn	
and	obtain	the	coefficient	of	the	corresponding	stress/strain	vector.		Work	
conjugacy	is	s]ll	sa]sfied.		The	first	two	eigentensors	represent	shears	in	the	
{110}	planes;	the	next	three	are	simple	shears	on	{110}<110>	systems,	and	the	
last	(6th)	is	the	hydrosta]c	component.		The	same	vectoriza]on	can	be	used	
for	plas]c	anisotropy,	except	in	this	case,	the	sixth,	hydrosta]c	component	is	
(generally)	ignored.	
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Summary	

•  We	have	covered	the	following	topics:	
–  Linear	proper]es	
–  Non-linear	proper]es	
–  Examples	of	proper]es	
–  Tensors,	vectors,	scalars,	tensor	transforma]on	law.	
–  Elas]city,	as	example	as	of	higher	order	property,	also	
as	example	as	how	to	apply	(crystal)	symmetry.	
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Supplemental	Slides	

•  The	following	slides	contain	some	useful	material	
for	those	who	are	not	familiar	with	all	the	
detailed	mathema]cal	methods	of	matrices,	
transforma]on	of	axes,	tensors	etc.	
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Einstein	Convention	
•  The	Einstein	Conven]on,	or	summa]on	rule	for	
suffixes	looks	like	this:	

	 	Ai	=	Bij	Cj	
where	“i”	and	“j”	both	are	integer	indexes	whose	
range	is	{1,2,3}.		So,	to	find	each	“ith”	component	
of	A	on	the	LHS,	we	sum	up	over	the	repeated	
index,	“j”,	on	the	RHS:	

	 	A1	=	B11C1	+	B12C2	+	B13C3	
	 	A2	=	B21C1	+	B22C2	+	B23C3	
	 	A3	=	B31C1	+	B32C2	+	B33C3	
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Matrix	Multiplication	
•  Take	each	row	of	the	LH	matrix	in	turn	and	
mul]ply	it	into	each	column	of	the	RH	matrix.	

•  In	suffix	nota]on,	aij	=	bikckj	

aα + bδ + cγ aβ + bε + cµ aγ + bφ + cν
dα + eδ + fγ dβ + eε + fµ dγ + eφ + fν
lα +mδ + nγ lβ + mε + nµ lγ +mφ + nν

( 

) 

* 
* 
* 

+ 

, 

- 
- 
- 

=

a b c
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δ ε φ
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Properties	of	Rotation	Matrix	
•  The	rota]on	matrix	is	an	orthogonal	matrix,	meaning	that	

any	row	is	orthogonal	to	any	other	row	(the	dot	products	
are	zero).		In	physical	terms,	each	row	represents	a	unit	
vector	that	is	the	posi]on	of	the	corresponding	(new)	old	
axis	in	terms	of	the	(old)	new	axes.	

•  The	same	applies	to	columns:	in	suffix	nota]on	-	
	 	 	 	 	aijakj	=	δik,	ajiajk	=	δik		

a b c
d e f
l m n

! 

" 

# 
# 
# 

$ 

% 

& 
& 
& 

ad+be+cf	=	0	

bc+ef+mn	=	0	
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•  That	the	set	of	direc]on	cosines	are	not	independent	is	
evident	from	the	following	construc]on:	
	
	
Thus,	there	are	six	rela]onships	(i	takes	values	from	1	to	
3,	and	j	takes	values	from	1	to	3)	between	the	nine	
direc]on	cosines,	and	therefore,	as	stated	above,	only	
three	are	independent,	exactly	as	expected	for	a	rota]on.	

•  Another	way	to	look	at	a	rota]on:	combine	an	axis	
(described	by	a	unit	vector	with	two	parameters)	and	a	
rota]on	angle	(one	more	parameter,	for	a	total	of	3).	

€ 

ˆ " e i ⋅ ˆ " e j = aika jl ˆ e k ⋅ ˆ e l = aika jlδkl = aika jk = δij

Direction	Cosines,	
contd.	
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•  Note	that	the	direc]on	cosines	can	be	arranged	
into	a	3x3	matrix,		Λ,	and	therefore	the	rela]on	
above	is	equivalent	to	the	expression	
	
	
where	Λ	T	denotes	the	transpose	of	Λ.		This	
rela]onship	iden]fies	Λ	as	an	orthogonal	matrix,	
which	has	the	proper]es			

ΛΛT = I

Λ−1 = ΛT det Λ = ±1

Orthogonal	Matrices	
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•  When	both	coordinate	systems	are	right-handed,	det(Λ)=
+1	and	Λ		is	a	proper	orthogonal	matrix.		The	
orthogonality	of	Λ	also	insures	that,	in	addi]on	to	the	
rela]on	above,	the	following	holds:	
	
	
Combining	these	rela]ons	leads	to	the	following	inter-
rela]onships	between	components	of	vectors	in	the	two	
coordinate	systems:	

€ 

ˆ e j = aij ˆ " e i

€ 

vi = a ji " v j  ,  " v j = a jivi

Relationships	
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•  These	rela]ons	are	called	the	laws	of	transforma:on	for	
the	components	of	vectors.		They	are	a	consequence	of,	
and	equivalent	to,	the	parallelogram	law	for	addi]on	of	
vectors.		That	such	is	the	case	is	evident	when	one	
considers	the	scalar	product		expressed	in	two	coordinate	
systems:	

  

€ 

 u ⋅  v = uivi = a ji # u jaki # v k =

δ jk # u j # v k = # u j # v j = # u i # v i

Transformation	Law	
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Thus,	the	transforma]on	law	as	expressed	preserves	the	
lengths	and	the	angles	between	vectors.		Any	func]on	of	
the	components	of	vectors	which	remains	unchanged	
upon	changing	the	coordinate	system	is	called	an	
invariant	of	the	vectors	from	which	the	components	are	
obtained.		The	deriva]ons	illustrate	the	fact	that	the	
scalar	product												is	an	invariant	of								and								.		Other	
examples	of	invariants	include	the	vector	product	of	two	
vectors	and	the	triple	scalar	product	of	three	vectors.		The	
reader	should	note	that	the	transforma]on	law	for	
vectors	also	applies	to	the	components	of	points	when	
they	are	referred	to	a	common	origin.	

  

€ 

 u ⋅  v   

€ 

 u   

€ 

 v 

Invariants	
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•  A	rota]on	matrix,	Λ,	is	an	orthogonal	matrix,	
however,	because	each	row	is	mutually	
orthogonal	to	the	other	two.			

•  Equally,	each	column	is	orthogonal	to	the	other	
two,	which	is	apparent	from	the	fact	that	each	
row/column	contains	the	direc]on	cosines	of	the	
new/old	axes	in	terms	of	the	old/new	axes	and	
we	are	working	with	[mutually	perpendicular]	
Cartesian	axes.		

€ 

akiakj = δij , aika jk = δij

Orthogonality	
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Anisotropy	
•  Anisotropy	as	a	word	simply	means	that	something	varies	with	direc]on.	
•  Anisotropy	is	from	the	Greek:	aniso	=	different,	varying;	tropos	=	direc]on.	
•  Almost	all	crystalline	materials	are	anisotropic;	many	materials	are	

engineered	to	take	advantage	of	their	anisotropy	(beer	cans,	turbine	blades,	
microchips…)	

•  Older	texts	use	trigonometric	func]ons	to	describe	anisotropy	but	tensors	
offer	a	general	descrip]on	with	which	it	is	much	easier	to	perform	
calcula]ons.	

•  For	materials,	what	we	know	is	that	some	proper]es	are	anisotropic.		This	
means	that	several	numbers,	or	coefficients,	are	needed	to	describe	the	
property	-	one	number	is	not	sufficient.	

•  Elas]city	is	an	important	example	of	a	property	that,	when	examined	in	single	
crystals,	is	oden	highly	anisotropic.		In	fact,	the	lower	the	crystal	symmetry,	
the	greater	the	anisotropy	is	likely	to	be.	

•  Nomenclature:	in	general,	we	need	to	use	tensors	to	describe	fields	and	
proper]es.		The	simplest	case	of	a	tensor	is	a	scalar	which	is	all	we	need	for	
isotropic	proper]es.		The	next	“level”	of	tensor	is	a	vector,	e.g.	electric	
current.	
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Scalars,	Vectors,	Tensors	

•  Scalar:=	quan]ty	that	requires	only	one	number,	e.g.	
density,	mass,	specific	heat.		Equivalent	to	a	zero-rank	
tensor.	

•  Vector:=	quan]ty	that	has	direc]on	as	well	as	
magnitude,	e.g.	velocity,	current,	magne]za]on;	
requires	3	numbers	or	coefficients	(in	3D).	Equivalent	to	
a	first-rank	tensor.	

•  Tensor:=	quan]ty	that	requires	higher	order	
descrip]ons	but	is	the	same,	no	ma<er	what	
coordinate	system	is	used	to	describe	it,	e.g.	stress,	
strain,	elas]c	modulus;	requires	9	(or	more,	depending	
on	rank)	numbers	or	coefficients.	
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Vector	Wield,	response	
•  If	we	have	a	vector	response,	R,	that	we	can	write	
in	component	form,	a	vector	field,	F,	that	we	can	
also	write	in	component	form,	and	a	property,	P,	
that	we	can	write	in	matrix	form	(with	nine	
coefficients)	then	the	linearity	of	the	property	
means	that	we	can	write	the	following	(R0	=	0):	
	

	 	 	Ri	=	PijFj	
	

•  A	scalar	(e.g.	pressure)	can	be	called	a	zero-rank	
tensor.		

•  A	vector	(e.g.	electric	current)	is	also	known	as	a	
first-rank	tensor.	
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Linear	anisotropic	property	

•  This	means	that	each	component	of	the	response	is	
linearly	related	to	each	component	of	the	field	and	that	
the	propor]onality	constant	is	the	appropriate	coefficient	
in	the	matrix.	Example:		
																					R1	=	P13F3,		
which	says	that	the	first	component	of	the	response	is	
linearly	related	to	the	third	field	component	through	the	
property	coefficient	P13.			

F3	R1	

x1	

x3	
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Example:	electrical	conductivity	

•  An	example	of	such	a	linear	anisotropic	(second	
order	tensor,	discussed	in	later	slides)	property	is	
the	electrical	conduc]vity	of	a	material:	

• Field:	Electric	Field,	E	
• Response:		Current	Density,	J	
• Property:		Conduc]vity,	σ	
• Ji	=	σij	Ej	
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Anisotropic	electrical	conductivity	

•  We	can	illustrate	anisotropy	with	Nye’s	example	of	
electrical	conduc]vity,	σ:	

Stimulus/	Field:		E1≠0,	E2=E3=0	
Response:	j1=σ11E1,	j2=σ21E1,	j3=σ31E1,	

O	
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Changing	the	Coordinate	System	

•  Many	different	choices	are	possible	for	the	orthonormal	base	vectors	
and	origin	of	the	Cartesian	coordinate	system.		A	vector	is	an	example	
of	an	en]ty	which	is	independent	of	the	choice	of	coordinate	system.		
Its	direc]on	and	magnitude	must	not	change	(and	are,	in	fact,	
invariants),	although	its	components	will	change	with	this	choice.			

•  Why	would	we	want	to	do	something	like	this?		For	example,	
although	the	proper:es	are	conveniently	expressed	in	a	crystal	
reference	frame,	experiments	oden	place	the	crystals	in	a	non-
symmetric	posi]on	with	respect	to	an	experimental	frame.		Therefore	
we	need	some	way	of	conver]ng	the	coefficients	of	the	property	into	
the	experimental	frame.	

•  Changing	the	coordinate	system	is	also	known	as	axis	transforma:on.	
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Motivation	for	Axis	Transformation	
•  One	mo]va]on	for	axis	transforma]ons	is	the	need	to	

solve	problems	where	the	specimen	shape	(and	the	
s]mulus	direc]on)	does	not	align	with	the	crystal	axes.		
Consider	what	happens	when	you	apply	a	force	parallel	to	
the	sides	of	this	specimen	…	

66	

[100]	

[110]	

The	direction	parallel	to	the	
long	edge	does	not	line	up	with	
any	simple,	low	index	crystal	
direction.		Therefore	we	have	to	
[ind	a	way	to	transform	the	
properties	that	we	know	for	the	
material	into	the	frame	of	the	
problem	(or	vice	versa).	

Image	of	Pt	surface	from	www.cup.uni-muenchen.de/pc/wintterlin/IMGs/pt10p3.jpg	

Applied	stress	
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•  Consider	a	new	orthonormal	system	consis]ng	of	right-
handed	base	vectors:	
These	all	have	the	same	origin,	o,		
associated	with	
	

•  The	vector	v	is	clearly	expressed	equally	well	in	either	
coordinate	system:	
	
	
	
Note	-	same	physical	vector	but	different	values	of	the	
components.			

•  We	need	to	find	a	rela]onship	between	the	two	sets	of	
components	for	the	vector.		

  

€ 

 v = vi ˆ e i = " v i ˆ " e i
€ 

ˆ " e 1,  ˆ " e 2 and ˆ " e 3

New	Axes	

€ 

ˆ " e 1,  ˆ " e 2 and ˆ " e 3
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Anisotropy	in	Composites	

•  The	same	methods	developed	here	for	describing	
the	anisotropy	of	single	crystals	can	be	applied	to	
composites.	

•  Anisotropy	is	important	in	composites,	not	
because	of	the	intrinsic	proper]es	of	the	
components	but	because	of	the	arrangement	of	
the	components.	

•  As	an	example,	consider	(a)	a	uniaxial	composite	
(e.g.	tennis	racket	handle)	and	(b)	a	flat	panel	
cross-ply	composite	(e.g.	wing	surface).	
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Fiber	Symmetry	

x	

y	

z	
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Fiber	Symmetry	
•  We	will	use	the	same	matrix	nota:on	for	stress,	
strain,	s]ffness	and	compliance	as	for	single	
crystals.	

•  The	compliance	matrix,	s,	has	5	independent	
coefficients.	

€ 

s11 s12 s13 0 0 0
s12 s11 s13 0 0 0
s13 s13 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s44 0
0 0 0 0 0 2 s11 − s12( )
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Relationships	

•  For	a	uniaxial	stress	along	the	z	(3)	direc]on,	
	
	

•  This	stress	causes	strain	in	the	transverse	plane:	
e11	=	e22	=	s12σ33.		Therefore	we	can	calculate	
Poisson’s	ra]o	as:	
	
	

•  Similarly,	stresses	applied	perpendicular	to	z	give	
rise	to	different	moduli	and	Poisson’s	ra]os.	
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E3 =
σ 3
ε3

=
1
s33

=
σ zz

εzz
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ν13 =
e1
e3

=
s13
s33

=
exx
ezz
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E1 =
σ1
ε1

=
1
s11
, ν 21 =

−s12
s11

, ν 31 =
−s13
s11
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Relationships,	contd.	
•  Similarly	the	torsional	modulus	is	related	to	
shears	involving	the	z	axis,	i.e.	yz	or	xz	shears:	

	 	 	 					s44	=	s55	=	1/G	
	

•  Shear	in	the	x-y	plane	(1-2	plane)	is	related	to	the	
other	compliance	coefficients:	

	 	 	 				s66	=	2(s11-s12)	=	1/Gxy	
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Plates:	Orthotropic	Symmetry	
•  Again,	we	use	the	same	matrix	nota:on	for	stress,	strain,	

s]ffness	and	compliance	as	for	single	crystals.	
•  The	compliance	matrix,	s,	has	9	independent	coefficients.	
•  This	corresponds	to	othorhombic	sample	symmetry:	see	

the	following	slide	with	Table	from	Nye’s	book.	
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s11 s12 s13 0 0 0
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s13 s23 s33 0 0 0
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Plates:	0°	and	90°	plies	
•  If	the	composite	is	a	laminate	composite	with	fibers	laid	in	at	0°	and	

90°	in	equal	thicknesses	then	the	symmetry	is	higher	because	the	x	
and	y	direc]ons	are	equivalent.	

•  The	compliance	matrix,	s,	has	6	independent	coefficients.	
•  This	corresponds	to	(tetragonal)	4mm	sample	symmetry:	see	the	

following	slide	with	Table	from	Nye’s	book.	
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Effect	of	Symmetry	on	the	
Elasticity	Tensors,	S,	C	
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General	Anisotropic	Properties	

•  Many	different	proper]es	of	crystals	can	be	
described	as	tensors.	

•  The	rank	of	each	tensor	property	depends,	
naturally,	on	the	nature	of	the	quan]]es	related	
by	the	property.	
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Examples	of	Materials	Properties	as	
Tensors	

•  Table	1	shows	a	series	of	tensors	that	are	of	importance	for	material	
science.	The	tensors	are	grouped	by	rank,	and	are	also	labeled	(in	the	
last	column)	by	E	(equilibrium	property)	or	T	(transport	property).	The	
number	following	this	le<er	indicates	the	maximum	number	of	
independent,	nonzero	elements	in	the	tensor,	taking	into	account	
symmetries	imposed	by	thermodynamics.		

•  The	Field	and	Response	columns	contain	the	following	symbols:	∆T	=	
temperature	difference,	∆S	=	entropy	change,	Ei	=	electric	field	
components,	Hi	=	magne]c	field	components,	εij	=	mechanical	strain,	
Di	=	electric	displacement,	Bi	=	magne]c	induc]on,	σij	=	mechanical	
stress,	∆βij	=	change	of	the	impermeability	tensor,	ji	=	electrical	
current	density,	∇jT	=	temperature	gradient,	hi	=	heat	flux,	∇jc	=	
concentra]on	gradient,	mi	=	mass	flux,	ρai	=	an]-symmetric	part	of	
resis]vity	tensor,	ρsi	=	symmetric	part	of	resis]vity	tensor,	∆ρij	=	
change	in	the	component	ij	of	the	resis]vity	tensor,	li	=	direc]on	
cosines	of	wave	direc]on	in	crystal,	G	=	gyra]on	constant,	
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Courtesy	of	Prof.	M.	De	Graef	
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Principal	Effects	
Electrocaloric	=	pyroelectric	
Magnetocaloric	=	pyromagnetic	
Thermal	expansion	=	piezocaloric	
Magnetoelectric	and	converse	magnetoelectric	
Piezoelectric	and	converse	piezoelectric	
Piezomagnetic	and	converse	piezomagnetic	

Courtesy	of	Prof.	M.	De	Graef	
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Principal	Effects	

1st	rank	cross	effects	

2nd	rank	cross	effects	

3rd	rank	cross	effects	

Courtesy	of	Prof.	M.	De	Graef	
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General	crystal	symmetry	shown	above.	

Courtesy	of	Prof.	M.	De	Graef	
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Point	group	4	

Courtesy	of	Prof.	M.	De	Graef	
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Point	group	m3m	
Note	how	many	fewer	independent	coef[icients	there	are!	
Note	how	the	center	of	symmetry	eliminates	many	of	the	
properties,	such	as	pyroelectricity	

Courtesy	of	Prof.	M.	De	Graef	
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Homogeneity	
•  S]muli	and	responses	of	interest	are,	in	general,	not	scalar	quan]]es	but	

tensors.		Furthermore,	some	of	the	proper]es	of	interest,	such	as	the	
plas]c	proper]es	of	a	material,	are	far	from	linear	at	the	scale	of	a	
polycrystal.		Nonetheless,	they	can	be	treated	as	linear	at	a	suitably	local	
scale	and	then	an	averaging	technique	can	be	used	to	obtain	the	response	
of	the	polycrystal.		The	local	or	microscopic	response	is	generally	well	
understood	but	the	validity	of	the	averaging	techniques	is	s]ll	controversial	
in	many	cases.		Also,	we	will	only	discuss	cases	where	a	homogeneous	
response	can	be	reasonably	expected.			

•  There	are	many	problems	in	which	a	non-homogeneous	response	to	a	
homogeneous	s]mulus	is	of	cri]cal	importance.	Stress-corrosion	cracking,	
for	example,	is	a	wildly	non-linear,	non-homogeneous	response	to	an	
approximately	uniform	s]mulus	which	depends	on	the	mechanical	and	
electro-chemical	proper]es	of	the	material.	
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Use	of	MuPAD	inside	Matlab	
•  Note	that	the	6x6	transforma]on	matrix	can	be	
programmed	inside	Matlab	just	as	a	3x3	can.	

•  In	order	to	apply	a	transforma]on	(e.g.	a	
symmetry	operator)	to	a	6x6	s]ffness	or	
compliance	matrix,	the	formula	is	the	same	as	
before,	i.e.:	
																											C’= O C OT
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-	

Matrix 
representation of 
the  
rotation point 
groups 

What is a group?  A group is a set of 
objects that form a closed set: if you 
combine any two of them together, the 
result is simply a different member of 
that same group of objects.  Rotations in 
a given point group form closed sets - try 
it for yourself!	

Note: the 3rd matrix in the 1st 
column (x-diad) is missing a “-” on 
the 33 element; this is corrected in 
this slide.  Also, in the 2nd from the 
bottom, last column: the 33 element 
should be +1, not -1. In some 
versions of the book, in the last 
matrix (bottom right corner) the 33 
element is incorrectly given as -1; 
here the +1 is correct. 	

Kocks, Tomé & Wenk:�
 Ch. 1 Table II	
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