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Notation

Stimulus (field)
Response
Property
electric current
electric field
electric polarization
Strain
Stress (or conductivity)
Resistivity
piezoelectric tensor
elastic stiffness
elastic compliance

a transformation matrix
W work done (energy)
dW work increment

I identity matrix

O symmetry operator (matrix)
Y Young’s modulus

0 Kronecker delta

e axis (unit) vector

T tensor

a direction cosine
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Objective

The objective of this lecture is to provide a mathematical framework
for the description of properties, especially when they vary with
direction.

A basic property that occurs in almost applications is elasticity.
Although elastic response is linear for all practical purposes, it is often
anisotropic (composites, textured polycrystals etc.).

Why do we care about elastic anisotropy? In composites, especially
fibre composites, it is easy to design in substantial anisotropy by
varying the lay-up of the fibres. See, for example:
http://www.jwave.vt.edu/crcd/kriz/lectures/Geom_3.html

Geologists are very familiar with elastic anisotropy and exploit it for
understanding seismic results.
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In Class Questions

Why is plastic yielding a non-linear property, in contrast to elastic
deformation?

What is the definition of a tensor?

Why is stress is 2"-rank tensor?

Why is elastic stiffness a 4t"-rank tensor?

What is “matrix notation” (in the context of elasticity)?

What are the relationships between tensor and matrix coefficients for
stress? Strain? Stiffness? Compliance?

Why do we need factors of 2 and 4 in some of these conversion factors?

How do we use crystal symmetry to decrease the number of coefficients
needed to describe stiffness and compliance?

How many independent coefficients are needed for stiffness (and
compliance) in cubic crystals? In isotropic materials?

How do we express the directional dependence of Young’s modulus?
What is Zener’s anisotropy factor?
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e The practical applications of anisotropy of
composites, especially fiber-reinforced
composites are numerous.

e The stiffness of fiber composites varies
tremendously with direction. Torsional rigidity is
very important in car bodies, boats, aeroplanes
etc.

e Even in monolithic polymers (e.g. drawn

polyethylene) there exists large anisotropy
because of the alignment of the long-chain
molecules.
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Application example: quartz oscillators
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Piezoelectric quartz crystals are commonly used for frequency control
in watches and clocks. Despite having small values of the
piezoelectric coefficients, quartz has positive aspects of low losses
and the availability of orientations with negligible temperature
sensitivity. The property of piezoelectricity relates strain to electric
field, or polarization to stress.

€ij = dijkEk
PZT, lead zirconium titanate PbZr, Ti O, is another commonly used
piezoelectric material.
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Examinable

Piezoelectric Devices

* The property of piezoelectricity relates strain to electric field, or
polarization to stress.

&; = dipEy
* PZT, lead zirconium titanate PbZr, Ti O, is another commonly used
piezoelectric material.

Piezo printer

s
- 50-500N

. 5-20 um

Note: Newnham consistently
uses vector-matrix notation,
rather than tensor notation.
We will explain how this works
later on.

100N-10N

‘1 2 Yare L lavw, artine =
20-100 m Fig. 12.12 Ceramic multilayer actuators

consist of thin layers of piezoelectric ceramic
and metal electrodes. In contrast to traditional
piczoelectrics, even low voltages produce
large forces and substantial displacements.
A tradeoff exists between force and dis-
placement. The multilayer stack utilizing the
ds; coefficient give kilonewton forces cap-
able of pushing heavy weights through small
distances. Bimorph benders make use of the
smaller transverse of di; coefficients to give
larger displacements in the millimeter range,
but only small forces.
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How is it that crystals can be piezoelectric?

The answer is that the bonding must be ionic to some
degree (i.e. there is a net charge on the different
elements) and the arrangement of the atoms must be
non-centrosymmetric.

PZT is a standard piezoelectric material. It has Pb atoms
at the cell corners (a~44), O on face centers, and a Ti or
Zr atom near the body center. Below a certain
temperature (Curie T), the cell transforms from cubic
(high T) to tetragonal (low T). Applying stress distorts
the cell, which changes the electric displacement in
different ways (see figure).

Although we can understand the effect at the single
crystal level, real devices (e.g. sonar transducers) are
polycrystalline. The operation is much complicated
than discussed here, and involves “poling” to maximize
the response, which in turns involves motion of domain
walls.

PbTiO,
Symmetry 4mm
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Fig. 12.11 Structure—property relations for
the intrinsic piezoelectric effect in PbTiO3.
In the unstressed state there is an electric
dipole associated with the off-center shift of
the titanium atom. Under stress, this dipole
can be increased (d33), decreased (d3;), or
tilted (d5).

[INewnham)]
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Mathematical Descriptions

Mathematical descriptions of properties are available.

Mathematics, or a type of mathematics provides a
quantitative framework. It is always necessary, however,
to make a correspondence between mathematical
variables and physical quantities.

In group theory one might say that there is a set of
mathematical operations & parameters, and a set of
physical quantities and processes: if the mathematics is a
good description, then the two sets are isomorphous.

This lecture makes extensive use of tensors. A tensor is a
guantity that can be transformed from one set of axes to
another via the tensor transformation rule (next slide).
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In order for a quantity to “qualify” as a tensor it has to
obey the axis transformation rule, as discussed in the

previous slides.

The transformation rule defines relationships between
transformed and untransformed tensors of various ranks.

Vector: Vi =a,V,
nd ! =
2" rank Iy = aga;Ty
rd P =
3" rank Tijk - ailaimaknTlmn
th o=
4™ rank Tijkl - aimainakoalmeHOP

This rule is a critical piece of information, which
you must know how to use.
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Non-Linear properties, example

e Another important example of non-linear anisotropic properties is
plasticity, i.e. the irreversible deformation of solids.
| * Atypical description of the response at plastic yield

Sl EEaE (what happens when you load a material to its yield stress)
Linear is elastic-perfectly plastic. In other "
Ferro- words, the material responds “ :
magnets elastically until the yield stress is e
Non-linear reached, at which point the stress j
properties remains constant (strain rate T —
Flectie unlimited). @ v
Conduct.

e A more realistic description is a power-law with a
Tensors large exponent, n~50. The stress is scaled by the crss, o
Elasticity and be expressed as either shear stress- € =
Symmetry shear s'train rate [graph], or tensile stress-tensile strain o'yl_eld

[equation].

[Kocks]
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Linear properties

e Certain properties, such as elasticity in most
cases, are linear which means that we can
simplify even further to obtain

R=R,+PF
orifR,=0,
R = PF.

stiffness
e.g. elasticity: o= Ce/

In tension, C = Young’s modulus, Y or E.
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Elasticity

Elasticity: example of a property that requires tensors to
describe it fully.

Even in cubic metals, a crystal is quite anisotropic. The
[111] in many cubic metals is stiffer than the [100]
direction.

Even in cubic materials, 3 numbers/coefficients/moduli
are required to describe elastic properties; isotropic
materials only require 2.

Familiarity with Miller indices, suffix notation, Einstein
convention, Kronecker delta, permutation tensor, and
tensors is assumed.
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Elastic Anisotropy: 1

e First we restate the linear elastic relations for the
properties Compliance, written S, and Stiffness,
written C (admittedly not very logical choice of
notation), which connect stress, o, and strain, €.
We write it first in vector-tensor notation with “:”
signifying inner product (i.e. add up terms that
have a common suffix or index in them):

o=Cze¢
€=35:0

e |n component form (with suffices),
Oj; = Cjjla€i

€ = 910kl
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Elastic Anisotropy: 2

The definitions of the stress and strain tensors mean
that they are both symmetric (second rank)
tensors. Therefore we can see that

€23 = 92311011

€32 = 93211011 = €33
which means that,

52311 = 33211
and in general,

Sijkl = Yjikl

We will see later on that this reduces considerably
the number of different coefficients needed.
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Stiffness in sample coords.

Consider how to express the elastic properties of a single
crystal in the sample coordinates. In this case we need to
rotate the (4t rank) tensor stiffness from crystal
coordinates to sample coordinates using the orientation
(matrix), a :

'—
Cijki = dimd,;

im ]nakoalpc

mnop

Note how the transformation matrix appears four times
because we are transforming a 4t rank tensor!

The axis transformation matrix, a, is sometimes also
written as A, also as the transpose of the orientation
matrix g’.
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Young’s modulus from
compliance

e Young's modulus as a function of direction can be
obtained from the compliance tensor as:
E=1/s"1111
Using compliances and a stress boundary
condition (only 0;,#0) is most straightforward. To
obtain s';,,,, we simply apply the same
transformation rule,

S ijkl = Ui ajn Uy, alpSmnop
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“Voigt” or “matrix” notation

e |tis useful to re-express the three quantities
involved in a simpler format. The stress and
strain tensors are vectorized, i.e. converted into
a 1x6 notation and the elastic tensors are reduced

to 6x6 matrices.
/(711 O, (713\ /(71 O (75\

021 022 023 06 02 O-4

\O3, O3, Oj; \Os O, O

~—(0,,0,,0,,0,,05,0)
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“matrix notation”, contd.

e Similarly for strain:

1 1
/811 €, &) /81 5 & 365\
1 I
Eri €0 Exs| ST 366 €, 7€y
1 1
€31 &3, &4 &€ &€ &

@9(81,82,83,84,85,86)

The particular definition of shear strain used in the
reduced notation happens to correspond to that used in
mechanical engineering such that ¢, is the change in angle
between direction 2 and direction 3 due to deformation.
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Work conjugacy, matrix inversion
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e The more important consideration is that the
reason for the factors of two is so that work
conjugacy is maintained.

dW = o:de = 0;: deg;; = O » dg,

Also we can combine the expressions

o = (Ce and € = SO to give:
o = CSo, which shows:
[=CS, or, C =51
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Tensor conversions: stiffness

e Lastly we need a way to convert the tensor
coefficients of stiffness and compliance to the

Objectivel  matrix coefficients. For stiffness, it is very simple
Linear because one substitutes values according to the
ff;;ﬁ;}ts following table, such that matrxC, , = tensorC. . for
Non-linear examp le.

properties

Electric.

Conduct. Tensor 11 [ 22 (33 |23 |32 | 13|31 | 12|21
Tensorsg Matrix 1 2 3 4 4 5 5 6 6
Elasticity

Symmetryf
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Tensor conversions: compliance

e For compliance some factors of two are required

and so the rule becomes:
Objective

Linear

Ferro- pSl]kl = Smn

magnets

1 m.AND.n €1,2,3
2 m XORn €1,2,3
4 m.AND.n€(4,5,6 ]

Non-linear
properties

P
Electric. p
P

Conduct.

Tensors

Elasticity

Symmetryf
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Cin terms of S

Some additional useful relations between coefficients for
cubic materials are as follows. Symmetrical relationships
exist for compliances in terms of stiffnesses (next slide).

Cy1 = (S11+S12)/{(S11-512) (511+2S45)}
Cip =-S12/{(511-S12) (511 +251,)}

Cia=1/544
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Sinterms of C

The relationships for S in terms of C are symmetrical to those
for stiffnesses in terms of compliances (a simple exercise
in algebra).

S11 = (C11+C15) H(Cy4-C15) (Cy1+2C ) }
S12 = -C12/{(C11-C12)(C11+2Cy,)}

S44=1/Cyy.
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Neumann's Principle

e A fundamental natural law: Neumann's Principle:
the symmetry elements of any physical property
of a crystal must include the symmetry elements
of the point group of the crystal. The property
may have additional symmetry elements to those
of the crystal (point group) symmetry. There are
32 crystal classes for the point group symmetry.

e F.E. Neumann 1885.
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Neumann, extended

If a crystal has a defect structure such as a dislocation
network that is arranged in a non-uniform way then the
symmetry of certain properties may be reduced from the
crystal symmetry. In principle, a finite elastic strain in one
direction decreases the symmetry of a cubic crystal to
tetragonal or less. Therefore the modified version of
Neumann's Principle: the symmetry elements of any
physical property of a crystal must include the symmetry
elements that are common to the point group of the
crystal and the defect structure contained within the
crystal.
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Effect of crystal symmetry

e Consider an active rotation of the crystal, where O is the
symmetry operator. Since the crystal is
indistinguishable (looks the same) after applying the
symmetry operator, the result before, R, and the
result after, R(?J, must be identical:

RV = pF
R? = oro' F}
) =, p2)

N

y

The two results are indistinguishable and therefore
equal. It is essential, however, to express the property
and the operator in the same (crystal) reference frame.
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Symmetry, properties, contd.

Expressed mathematically, we can rotate, e.g. a second rank property tensor
thus:

P'= OPOT = P, or, in coefficient notation,
IS u = 0,0,Py

where O is a symmetry operator.

Since the rotated (property) tensor, P’, must be the same as the original
tensor, P, then we can equate coefficients:

Py =Py
If we find, for example, that P’,; = -P,,then the only value of P,, that
satisfies this equality is P,; = 0.
Remember that you must express the property with respect to a particular
set of axes in order to use the coefficient form. In everything related to single
crystals, always use the crystal axes as the reference frame!

Homework question: based on cubic crystal symmetry, work out why a
second rank tensor property can only have one independent coefficient.
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e Why do we need to look at the effect of symmetry? For a
cubic material, only 3 independent coefficients are needed
as opposed to the 81 coefficients in a 4th rank tensor. The
reason for this is the symmetry of the material.

e What does symmetry mean? Fundamentally, if you pick
up a crystal, rotate [mirror] it and put it back down, then a
symmetry operation [rotation, mirror] is such that you
cannot tell that anything happened.

e From a mathematical point of view, this means that the

property (its coefficients) does not change. For example,
if the symmetry operator changes the sign of a coefficient,
then it must be equal to zero.
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Znd Rank Tensor Properties & Symmetry
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The effect of crystal symmetry on properties represented by

TABLE 3

second-rank tensors

symmetrical

1 Nature of repre- | Number | Tensor referred
Optical { ! Characteristic | sentation quadric | of inde- to axes in the
classi- symmetry and 1its pendent conventional
fication System (see p. 280)t orientation coefficients | orientation]
Isotropic | Cubic 4 3-fold axes | Sphere 1 S 0 0 7
(anaxial) 0 S 0
o o S U
Tetragonal | 1 4-fold axis Quadric of revo- 2 S, O 0 7
Uniaxial{| Hexagonal | 1 6-fold axis lution about the o S 0
Trigonal 1 3-fold axis principal sym- LO 0 S;
metry axis
(23)(2)
Orthorhom- | 3 mutually General quadric 3 S, 0 0 7
bic perpendicular| with axes 0 S, 0
2-fold axes; (24, x4, z4) || to LO 0 S, |
no axes of the diad axes
higher order (z, ¥, 2)
Monoclinic | 1 2-fold axis General quadric 4 S, 0 Sy
Biaxial with one axis 0 S, 0 }
(x,) |l to the S5, O Sss
diad axis (y) ‘
Triclinic A centre of General quadric. 6 'Sy Sz Sa
symmetry or | No fixed rela- Sis Sas S,,]
no symmetry | tion to crystal- [ S5 Si Sas

lographic axes

1t Axes of symmetry may be rotation axes or inversion axes.
1 The setting of the reference axes z,, Z,, ; in column 6 in relation to the crystallo-
graphic axes z, y, z and to the symmetry elements is that shown in column 4. For
further notes on axial conventions, see Appendix B.

The table from Nye shows the number of independent, non-zero coefficients allowed in

a 2nd rank tensor according to the crystal symmetry class.



Effect of symmetry on stiffness matrix

e Following Reid, p.66 et seq.:
Apply a 90° rotation about the crystal-z axis (axis 3),
- c’..=0.0.0,0,C

Objective ijkl im~jn“~ ko Ip~mnop

| C = (0 =1 0)
Linear 7
Ferro- 04 =1 0 0
magnets \O 0 1/
Non-linear Cyp G Cp Cys -Gy —Cy
properties C C C C _C _C
Electric. 21 11 13 15 14 16
Conduct. ' C23 C13 C33 C35 —C34 _C36
Tensors [ Cs G5 G35 Css —Csy —Csg
>ymimetry -G —Ce -C36 —-Cs6 Cu6  Coe |
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Effect of symmetry, 2

e Using P’ = P, we can equate coefficients and find
Objective that:
Linear C11=Cyy, C13=C23 C44=Css, C16:'C26,
Ferro- C14=C15 = Cpy=Cps = C34 = C35 = C35 = Cys = Cyp =
magnets C.. =0
. 56 — VY
Non-linear
properties C11 C12 C13 0 0 C16
Electric. ¢, C, C; O 0 -C,
Conduct.
onauet lc, ¢, ¢, 0 0 0
Tensors C =
Elasticity 0 0 0 Cu 0 0
Symmetry/ 0 0 0 0 C, C,
i C16 _C16 0 0 C46 C66
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Effect of symmetry, 3

e Thus by repeated applications of the symmetry
operators, one can demonstrate (for cubic crystal
symmetry) that one can reduce the 81
coefficients down to only 3 independent
guantities. These become two in the case of
iIsotropy.

G Cp Cp 0 0

Cr G G 0 O

Co Cp G 0 0

0 0 0 Cy O
0 0 0 0 Cy O
0 0 0 0 0 Cy
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Cubic crystals: anisotropy factor
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e |f one applies the symmetry elements of the
cubic system, it turns out that only three
independent coefficients remain: C,,, C,, and
C,4, (similar set for compliance). From these
three, a useful combination of the first two is

C'=(Cy1-C1p)/2

e See Nye, Physical Properties of Crystals
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Zener's anisotropy factor

e ("=(C{;-C,)/2 turns out to be the stiffness
associated with a shear in a <110> direction on a
plane. In certain martensitic transformations, this
modulus can approach zero which corresponds to
a structural instability. Zener proposed a
measure of elastic anisotropy based on the ratio
C,,/C'. Thisturns out to be a useful criterion for
identifying materials that are elastically
anisotropic.
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Rotated compliance (matrix)

e Given an orientation a,], we transform the
compliance tensor, using cubic point group

symmetry, and find that:

! 2 4 4
1= 11(“11"'“12"‘ 013)

) ) ) )
+ 25\ aa3 + aa1, + a0y 3

g ) 2 2 )
+ 4461126113"'6111“12"'“116113
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Rotated compliance (matrix)

This can be further simplified with the aid of the standard
relations between the direction cosines, a;a; = 1 for i=j;

a;a;, = 0 for i), (a,a;, = 0;) to read as follows.
Si1 =S —

S
2s . —5., -2

11 12
2

By definition, the Young’s modulus in any direction is
given by the reciprocal of the compliance, E=1/5";;.

{OCOC +OCOC +OCOC}
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Anisotropy in cubic materials

e Thus the second term on the RHS is zero for <100>

directions and, for C,,/C'>1, a maximum in <111>

directions (conversely

a minimum for C,,/C'<1).
The following table shows
that most cubic metals have
positive values of Zener's
coefficient so that <100>

is soft and <111> is hard,
with the exceptions of V
and NacCl.

Material C,/C' E\/E\g
Cu 3.21 2.87
Ni 2.45 2.18
Al 1.22 1.19
Fe 241 2.15
Ta 1.57 1.50
W (2000K) 1.23 1.35
W (R.T.) 1.01 1.01
\4 0.78 0.72
Nb 0.55 0.57
B-CuZn 18.68 8.21
spinel 2.43 2.13
MgO 1.49 1.37

NaCl

0.69

0.74
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Stiffness coefficients, cubics

Ca Cp - Cu Anisotropy ratio
Material class Material (10 N/m?) (10'° N/m?) (10°N/m?)  (Cyy — C2)2C,,
Objective Metals Ag 12.4 9.3 4.6 0.34
_ Al 10.8 6.1 2.9 0.81
Linear Au 18.6 15.7 42 0.35
Cu 16.8 12.1 7.5 0.31
Ferro- a-Fe 23.7 14.1 11.6 0.41
Mo 46.0 17.6 11.0 1.29
magnets Na 0.73 0.63 0.42 0.12
Non-l; Ni 24.7 14.7 12.5 0.40
on-linear Pb 5.0 42 1.5 0.27
properties w 50.1 19.8 15.1 1.00
Bl . Covalent Si 16.6 6.4 8.0 0.64
ectric. solids Diamond 107.6 12.5 57.6 0.83
Conduct. TiC 51.2 11.0 17.7 1.14
T Tonic solids LiF 11.2 4.6 6.3 0.52
€nsors MgO 29.1 9.0 15.5 0.65
Elasticit NaCl 4.9 1.3 1.3 1.38
y
Table 2.2
Symmetry Stiffness coefficients for selected cubic materials
|Courtney]
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Anisotropy in terms of moduli

e Another way to write the above equation is to
insert the values for the Young's modulus in the
soft and hard directions, assuming that the
<100> are the most compliant direction(s).
(Courtney uses a, 3, and y in place of my o, a.,,
and a;.) The advantage of this formula is that
moduli in specific directions can be used directly.

1 1 1 1 2 2 2 2 2 2
— — 3- — oo, + o505 oo
L E100 \Eloo E111J
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2.11 a Sketch a (001) plane in a face-centered cubic material and an arbitrary vector within it
making an angle 8 with the [100] direction. Piot the Young's modulus for copper as a function of 6 for

directions between [110] and {100].
b Sketch a (110) plane in Cu and a vector in the plane making an angle a with the [110] direction. Plot E

vs. a for directions between [110] and [001].

Looi}

Solution: (a) The plane is illustrated to the right.
Use Eq. (3.22).

1/E|mu1 = 1/Ei00> -3{1/E.100> -1/Eci1153(C (a®B® + ay? + B2 'Yz)

where « is the cosine of the angle between the
direction [100] and [hkl], B is the cosine of the _
angle between [010] and [hKI], and v is the like ij e
cosine between [001] and [hkl]. From the sketches

provided we see that a = cosf, B = cos(90°-6) i E)lo:]

= sin 8 and y =0. Employing moduli in units of ‘
1‘ Lol

10" N/m?, with E_yee, = 6.7, ELyyq, =11.2 the
Cnk
Log oked

above equation becomes
Should be E_,,.= 18.89

1/Epy = 0.149 - 0.2915c0s20sin%6

The table below presents results obtained with the

Elasticity

Symmetry

above formula; the figure to the right graphs these 15 ¢ T T T T
results. C ]
8(°) cos?sin’® __E (10'°N/m?) 3

0 0 6.7 0

5 0.0075 6.81 E (10" N/m?) g

10 0.0292 7.12

15 0.0625 7.65 5 b P
20 0.1033 8.41 r ]
25 0.1467 9.41

30 0.1875 10.6 b

35 0.2207 11.82 s Y S NP B ISP R
40 0.2425 12.77 0 10 20 30 40
45 (=[110}) 0.25 13.14 (100] 80 n

|Courtney]
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Alternate Vectorization

-1 0 0
bW=1L]0 -1 ol; b®=
© 0 0 2
0 01
bY=—1{0 0 of; b=

751 0 0

=
V2

1

V2

(-1 0 0 000
0 lO;b‘3)=71_—001
L0 0 0 2lo 1 o0
(0 1 0 1 00
1oo;b‘6’=%—010
0 0 0 3lo 01

An alternate vectorization, discussed by Tomé on p287 of the Kocks et al.
textbook, is to use the above set of eigentensors. For both stress and strain,
one can matrix multiply each eigentensor into the stress/strain tensor in turn
and obtain the coefficient of the corresponding stress/strain vector. Work
conjugacy is still satisfied. The first two eigentensors represent shears in the
{110} planes; the next three are simple shears on {110}<110> systems, and the
last (6%") is the hydrostatic component. The same vectorization can be used
for plastic anisotropy, except in this case, the sixth, hydrostatic component is

(generally) ignored.
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Summary

e We have covered the following topics:

Linear properties

Non-linear properties

Examples of properties

Tensors, vectors, scalars, tensor transformation law.

Elasticity, as example as of higher order property, also
as example as how to apply (crystal) symmetry.
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Supplemental Slides

e The following slides contain some useful material
for those who are not familiar with all the
detailed mathematical methods of matrices,
transformation of axes, tensors etc.
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Einstein Convention

e The Einstein Convention, or summation rule for

suffixes looks like this:

4; =By (;
where “1” and “}” both are integer indexes whose
range is {1,2,3}. So, to find each “i""” component
of A on the LHS, we sum up over the repeated
index, “j”, on the RHS:

Ay =By;C; + B,Ch + By3Cs

Ay =By,C; + B0 + Byss

Az =B3,C; + B3yCy + B33l

owu:n
1
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Matrix Multiplication

e Take each row of the LH matrix in turn and
multiply it into each column of the RH matrix.

* In suffix notation, a;; = by

ac+bd+cy aB+be+cu ay + bp+cv
da+eo+ fy dB+ec+ fu dy +ed+ fv

loa+mo+ny If+me+nu ly+me+nv)

a b c| [a B v
=|d e f|x|0 € ¢
[ m n| |A u v|
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Properties of Rotation Matrix

e The rotation matrix is an orthogonal matrix, meaning that
any row is orthogonal to any other row (the dot products
are zero). In physical terms, each row represents a unit
vector that is the position of the corresponding (new) old
axis in terms of the (old) new axes.

e The same applies to columns: in suffix notation -

a |b|c
d |e
[ |m || n|

Ud;idy; = Ojjo a;;d;) = Oj

} ad+be+cf =0

" bc+eftmn =0
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Direction Cosines,
contd.

e That the set of direction cosines are not independent is

L evident from the following construction:
Objective

A Ay A A
Linear €, 6]- = aikajlek €, = aikajlékl - aikajk - 51]

Ferro- Thus, there are six relationships (i takes values from 1 to

magnets . .

e | 3, and j takes values from 1 to 3) between the nine
Nﬁ;”;ﬁif‘; direction cosines, and therefore, as stated above, only
pl RS three are independent, exactly as expected for a rotation.
Electric.

Conduct. | ® Another way to look at a rotation: combine an axis
(described by a unit vector with two parameters) and a

Tensors .
rotation angle (one more parameter, for a total of 3).

Elasticity

Symmetryf
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Orthogonal Matrices

e Note that the direction cosines can be arranged
into a 3x3 matrix, A, and therefore the relation
above is equivalent to the expression

AN =1

where A T denotes the transpose of A. This
relationship identifies A as an orthogonal matrix,
which has the properties

Ao AT det A = =1
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Relationships

When both coordinate systems are right-handed, det(A)=
+1 and A is a proper orthogonal matrix. The
orthogonality of A also insures that, in addition to the
relation above, the following holds:

Vo /\,

Combining these relations leads to the following inter-
relationships between components of vectors in the two
coordinate systems:
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Transformation Law

e These relations are called the laws of transformation for
the components of vectors. They are a consequence of,
and equivalent to, the parallelogram law for addition of
vectors. That such is the case is evident when one
considers the scalar product expressed in two coordinate
systems:

- / /
uv=uy. = ajl.u].akivk =

l

5 /I ./ /I ../ ../

1 1
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Invariants

Thus, the transformation law as expressed preserves the
lengths and the angles between vectors. Any function of
the components of vectors which remains unchanged
upon changing the coordinate system is called an
invariant of the vectors from which the components are
obtained. The derlvatlons illustrate the fact that the
scalar product 74+ V is an invariant of U and V Other
examples of invariants include the vector product of two
vectors and the triple scalar product of three vectors. The
reader should note that the transformation law for
vectors also applies to the components of points when
they are referred to a common origin.



55

Objective
Linear

Ferro-
magnets

Non-linear

properties

Electric.
Conduct.

Tensors

Elasticity

Symmetryf

Orthogonality

e A rotation matrix, A, is an orthogonal matrix,

however, because each row is mutually
orthogonal to the other two.

ity = 51']'» Aipd jp = 51']'

e Equally, each column is orthogonal to the other
two, which is apparent from the fact that each
row/column contains the direction cosines of the
new/old axes in terms of the old/new axes and
we are working with [mutually perpendicular]
Cartesian axes.
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Anisotropy

Anisotropy as a word simply means that something varies with direction.
Anisotropy is from the Greek: aniso = different, varying; tropos = direction.

Almost all crystalline materials are anisotropic; many materials are
engineered to take advantage of their anisotropy (beer cans, turbine blades,
microchips...)

Older texts use trigonometric functions to describe anisotropy but tensors
offer a general description with which it is much easier to perform
calculations.

For materials, what we know is that some properties are anisotropic. This
means that several numbers, or coefficients, are needed to describe the
property - one number is not sufficient.

Elasticity is an important example of a property that, when examined in single
crystals, is often highly anisotropic. In fact, the lower the crystal symmetry,
the greater the anisotropy is likely to be.

Nomenclature: in general, we need to use tensors to describe fields and
properties. The simplest case of a tensor is a scalar which is all we need for
isotropic properties. The next “level” of tensor is a vector, e.g. electric
current.
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Scalars, Vectors, Tensors

e Scalar:= quantity that requires only one number, e.g.
density, mass, specific heat. Equivalent to a zero-rank
tensor.

e Vector:= quantity that has direction as well as
magnitude, e.g. velocity, current, magnetization;
requires 3 numbers or coefficients (in 3D). Equivalent to
a first-rank tensor.

e Tensor:= quantity that requires higher order
descriptions but is the same, no matter what
coordinate system is used to describe it, e.g. stress,
strain, elastic modulus; requires 9 (or more, depending
on rank) numbers or coefficients.
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Vector field, response

e |f we have a vector response, R, that we can write
in component form, a vector field, F, that we can
also write in component form, and a property, P,
that we can write in matrix form (with nine
coefficients) then the linearity of the property
means that we can write the following (R, = 0):

R; = PyF,

e Ascalar (e.g. pressure) can be called a zero-rank
tensor.

o A vector (e.g. electric current) is also known as a
first-rank tensor.
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Linear anisotropic property

This means that each component of the response is
linearly related to each component of the field and that
the proportionality constant is the appropriate coefficient
in the matrix. Example:

R, = P5F,,
which says that the first component of the response is
linearly related to the third field component through the
property coefficient P,,.

X
3 4 <
R,~— F,

v
<
~
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e An example of such a linear anisotropic (second
order tensor, discussed in later slides) property is
the electrical conductivity of a material:

e Field: Electric Field, E

e Response: Current Density, |
e Property: Conductivity, o
*Ji= 0y k;

l
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Anisotropic electrical conductivity

e We can illustrate anisotropy with Nye’s example of
- electrical conductivity, o:
Objective
0y
Linear .
- J
Ferro- ~ -
magnets | j WAL
-li ‘ .=0;1Et
Non hne?r / ! 0} L7 —
properties / x;
Electric. a b ) j,=0'E1
e relati etween the electric current / ne
C Onduct. dF;rG1s1:.)'l j ;I‘x:ld th;aslgcl:ltxt';ctf‘;ql?l f‘j ir?_ (a) a.r:1 ilsogop?c X,
conductor and (b) an anisotropic conauctor. .
1ensors e e ron o held s applied along Oz
Elasticity
symmetry Stimulus/ Field: E;=0, E,=E;=0
Response: j,=0,,E,, j,=0,,E,, j;=05,E,,
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Many different choices are possible for the orthonormal base vectors
and origin of the Cartesian coordinate system. A vector is an example
of an entity which is independent of the choice of coordinate system.
Its direction and magnitude must not change (and are, in fact,
invariants), although its components will change with this choice.

Why would we want to do something like this? For example,
although the properties are conveniently expressed in a crystal
reference frame, experiments often place the crystals in a non-
symmetric position with respect to an experimental frame. Therefore
we need some way of converting the coefficients of the property into
the experimental frame.

Changing the coordinate system is also known as axis transformation.
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Tensor: definition, contd.

In order for a quantity to “qualify” as a tensor it has to
obey the axis transformation rule, as discussed in the

previous slides.

The transformation rule defines relationships between
transformed and untransformed tensors of various ranks.

Vector:
2" rank
3 rank
4th rank

Vi =a,V;

) —
Iy = aga;Ty
Tijk = ailaimaknTlmn

) —
T gkl — aimainakoalp Tmnop

This rule is a critical piece of information, which
you must know how to use.
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e One motivation for axis transformations is the need to
solve problems where the specimen shape (and the
stimulus direction) does not align with the crystal axes.
Consider what happens when you apply a force parallel to
the sides of this specimen ...

[100]
The direction parallel to _

the long edge does not Appll@d stress
line up with any simple,
low index crystal
direction. Therefore we
have to find a way to
transform the properties
that we know for the
material into the frame of
the problem (or vice
versa).

[110]

Image of Pt surface from www.cup.uni-muenchen.de/pc/wintterlin/IMGs/pt10p3.jpg
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New Axes

Consider a new orthonormal system consisting of right-
handed base vectors: él', é’z and 5’3

These all have the same origin, o,

associated with él', é'z and ég

The vector vis clearly expressed equally well in either
coordinate system:

Note - same physical vector but different values of the
components.

We need to find a relationship between the two sets of
components for the vector.
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Anisotropy in Composites

e The same methods developed here for describing
the anisotropy of single crystals can be applied to
composites.

e Anisotropy is important in composites, not
because of the intrinsic properties of the
components but because of the arrangement of
the components.

e As an example, consider (a) a uniaxial composite
(e.g. tennis racket handle) and (b) a flat panel
cross-ply composite (e.g. wing surface).
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Fiber Symmetry
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Fiber Symmetry

e We will use the same matrix notation for stress,
strain, stiffness and compliance as for single
crystals.

e The compliance matrix, s, has 5 independent
coefficients.

o O O O
o O O O
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Relationships

For a uniaxial stress along the z (3) direction,

E3=O3 _ 1 (=O'ZZ)

€3 833 €z

This stress causes strain in the transverse plane:
€11= €22 = 512033 Therefore we can calculate
Poisson’s ratio as:
e S e
Vi = 1 _ *I3 (=ﬂ)
€3 833\ €

Similarly, stresses applied perpendicular to z give
rise to different moduli and Poisson’s ratios.
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Relationships, contd.

e Similarly the torsional modulus is related to
shears involving the z axis, i.e. yz or xz shears:

Sga=S5:=1/G

e Shear in the x-y plane (1-2 plane) is related to the
other compliance coefficients:

Se6 = 2(S117S12) = 1/ny
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Plates: Orthotropic Symmetry

e Again, we use the same matrix notation for stress, strain,
stiffness and compliance as for single crystals.

e The compliance matrix, s, has 9 independent coefficients.

e This corresponds to othorhombic sample symmetry: see
the following slide with Table from Nye’s book.

e

N

A

N

N

G

N

W

-
o O O O
o O O O O

0 0 0 0 0 s
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Plates: 0° and 90° plies

If the composite is a laminate composite with fibers laid in at 0° and
90° in equal thicknesses then the symmetry is higher because the x
and y directions are equivalent.

The compliance matrix, s, has 6 independent coefficients.

This corresponds to (tetragonal) 4mm sample symmetry: see the
following slide with Table from Nye’s book.

e

W

e

0

A

N

@

-
oo O O
o O O O O

0 0 0 0 0 s
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TABLE 9
Form of the (s;;) and (c;;) matrices

KEY TO NOTATION
*  zero component
® non-zero component
®—@ equal components
@—o0 components numerically equal, but opposite in sign

Effect of Symmetry on the
Elasticity Tensors, S, C

Classe;s 4,4, 4/m
NIl
® - .

TETRAGONAL

Classes 4mm, 42m,t 422, 4/mmm
N1
® . -

(7) o/ (6)

For s ® twice the numerical equal of the heavy dot component to which it is
joined
Forc @ the numerical equal of the heavy dot component to which it is joined
Fors X  2(s3—3y,)
Fore X 3cp—¢ia)
All the matrices are symmetrical about the leading diagonal.
TRICLINIC
Both classes
o o o 0 0 0
® &0 00
o0 0 0
® o0
e o
®/ (@1
MONOCLINIC
All classes
Diad ||z, * N
(standard e - o °
orientation) ° PY PY

o 00 - . Diad ||z, e o0 - -
[ . o e - -
o - . . .
e - 0 0 -
. . o -
e/ (13) e/ (13)

Classes 3, 3

1

TRIGONAL _
Classes 32, 3m, 3m

N

ORTHORHOMBIC

All classes
o O® - - -
e e - - .

- e/ (9) (3)

HeExAGOoNAL

All classes
N1
® . -

IsoTrROPIC
x .
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e Many different properties of crystals can be
described as tensors.

e The rank of each tensor property depends,
naturally, on the nature of the quantities related
by the property.



75

Examples of Materials Properties as

Objective
Linear

Ferro-
magnets

Non-linear

properties

Electric.
Conduct.

Tensors
Elasticity

Symmetry

Tensors

Table 1 shows a series of tensors that are of importance for material science.
The tensors are grouped by rank, and are also labeled (in the last column) by
E (equilibrium property) or T (transport property). The number following this
letter indicates the maximum number of independent, nonzero elements in
the tensor, taking into account symmetries imposed by thermodynamics.

The Field and Response columns contain the following symbols: AT =
temperature difference, AS = entropy change, E. = electric field components,
H; = magnetic field components, &; = mechanical strain, D, = electric
displacement, B; = magnetic induction, O; = mechanical stress, A/J’ij = change
of the impermeability tensor, j; = electrical current density, VT = temperature
gradient, h, = heat flux, Vjc = concentration gradient, m, = mass flux, p? = anti-
symmetric part of resistivity tensor, p°, = symmetric part of resistivity tensor,
Ap; = change in the component jj of the resistivity tensor, /; = direction
cosines of wave direction in crystal, G = gyration constant,
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Property Svmbol Field Response | Tvpe#
Tensors of Rank 0 (Scalars)
Specific Heat C AT T'AS El
Tensors of Rank 1 (Vectors)
Electrocaloric D; E; AS E3
Magnetocaloric q; H; AS E3
Pvroelectric P, AT D; E3
Pyromagnetic q. AT B; E3
Tensors of Rank 2
Thermal expansion oy AT €ij E6
Piezocaloric effect aiJ T AS E6
Dielectric permittivity Kij E; D; E6
Magnetic permeability [Lij H; B; E6
Optical activity Gij lil; G E6
Magnetoelectric polarization Aij H; D; E9
Converse magnetoelectric polarization Al E; B; E9
Electrical conductivity (resistivity) aij (pij) E; (j;) ji (E;) | 'T6
Thermal conductivity K;; VT h; T6
Diffusivity D;; Ve m; T6
Thermoelectric power 2ij VT E; T9
Hall effect R;; B; Py 19
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Tensors of Rank 3

Piezoelectricity ;i Tk D; E18
Converse piezoelectricity ﬁjk E; €ij E18
Piezomagnetism Qijk Tk B; E18
Converse piezomagnetisim Q' ik H, €ij E1R
Electro-optic effect Tiik E; ABij E18
Nernst tensor Yiik V1 By, E; 127
Tensors of Rank 4
Elasticity Sijit (Cijkt) | Okt (€xt) €ij (o) | E21
Electrostriction Vijkl ELE,; €ij E36
Photoelasticity ijki Ol ABij E36
Kerr effect Dijkl ELE, Af3; j E36
Magnetoresistance &ijkl B B, Pij 136
Piezoresistance 11,58 Ol Apij 136
Magnetothermoelectric power ikl V1 By By E; 154
Second order Hall effect Pijkl B; By By pf 130
Tensors of Rank 6
Third order elasticity Cijklmn €L1€mn T E56

Courtesy of Prof. M. De Graef
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magnets

Non-linear Principal Effects Courtesy of Prof. M. De Graef

roperties : :

orop Electrocaloric = pyroelectric

Electric. _ _

Conduct. Magnetocalorlc - pyromagnetlc

Tensors Thermal expansion = piezocaloric

Hligsiaey Magnetoelectric and converse magnetoelectric

Symmetry : : : :
Piezoelectric and converse piezoelectric
Piezomagnetic and converse piezomagnetic




AS
D,

= p; AT -
B, =
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Note how many fewer independent coefficients there are!

properties, such as pyroelectricity

- Note how the center of symmetry eliminates many of the
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Stimuli and responses of interest are, in general, not scalar quantities but
tensors. Furthermore, some of the properties of interest, such as the plastic
properties of a material, are far from linear at the scale of a polycrystal.
Nonetheless, they can be treated as linear at a suitably local scale and then an
averaging technique can be used to obtain the response of the polycrystal.
The local or microscopic response is generally well understood but the
validity of the averaging techniques is still controversial in many cases. Also,
we will only discuss cases where a homogeneous response can be reasonably
expected.

There are many problems in which a non-homogeneous response to a
homogeneous stimulus is of critical importance. Stress-corrosion cracking, for
example, is a wildly non-linear, non-homogeneous response to an
approximately uniform stimulus which depends on the mechanical and
electro-chemical properties of the material.



