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Notation	  
p    Intensity in pole figure 
α, β  angles in pole fig. 
Ψ,Θ,φ  Euler angles (Roe/Kocks) 
Γ    integration variable 
Ylmn  Spherical harmonic function 
P    Associated Legendre polynomial 
Q   Coefficient on Legendre polynomial 
l,m,n  integer indices for polynomials 
Zlmn  Jacobi polynomials 
W   Coefficient on Jacobi polynomial 
ξ, η	  polar coordinates pole (hkl)	  in crystal coordinates 
        odd part of the orientation distribution function 
        even part of the orientation distribution function 
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Notation:	  2	  

I	  = no. pole figures  
M	  = multiplicity  
N	  = normalization 
y	  = connectivity matrix between pole figures and 

orientation distribution space 
f	  = intensity in the orientation distribution 
p	  = pole figure intensity 
m	  = pole figure index 
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Objectives	  
•  To explain what is being done in popLA, 

Beartex, and other software packages when 
pole figures are used to calculate Orientation 
Distributions 

•  To explain how the two main methods of 
solving the “fundamental equation of texture” 
that relates intensity in a pole figure, p, to 
intensity in the OD, f. 

€ 

p(hkl )(α,β) =
1
2π

f (Ψ,Θ,φ)dΓ
0

2π
∫



In-‐Class	  Questions	  
•  Does the WIMV method fit a function to pole figure data, or 

calculate a discrete set of OD intensity values that are 
compatible with the input?  Answer: discrete ODs. 

•  Why is it necessary to iterate with the harmonic method with 
typical reflection-method pole figures?  Answer: because the 
pole figures are incomplete and iteration is required to fill in the 
missing parts of the data. 

•  What is the significance of the “order” in harmonic fitting? 
Answer: the higher the order, the higher the frequency that is 
used.  In general there is a practical limit around l=32. 

•  What is a “WIMV matrix”? Answer: this is a set of relationships 
between intensities at a point in a pole figure and the 
corresponding set of points in orientation space, all of which 
contribute to the intensity at that point in the pole figure. 

•  What is the “texture strength”?  This is the root-mean-square 
value of the OD. 
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Methods	  

•  Two main methods for reconstructing an 
orientation distribution function based on pole 
figure data.   

•  Standard harmonic method fits coefficients of 
spherical harmonic functions to the data. 

•  Second method calculates the OD directly in 
discrete representation via an iterative 
process (e.g. WIMV method). 
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History	  
•  Original proposals for harmonics method: 

Pursey & Cox (1954), Phil. Mag. 45 295-302; 
also Viglin (1960), Fiz. Tverd. Tela 2 2463-2476. 

•  Complete methods worked out by Bunge and Roe: “Zur 
Darstellung Allgemeiner Texturen”, Bunge (1965), Z. 
Metall., 56 872-874; “Description of crystallite orientation in 
polycrystalline materials. III.  General solution to pole figure 
inversion”, Roe (1965): J. Appl. Phys., 36 2024-2031. 

•  WIMV method: 
Matthies & Vinel (1982): Phys. Stat. Solid. (b), 112 
K111-114. 

•  MTex method: “A novel pole figure inversion method: 
specification of the MTEX algorithm”, Hielscher & Schaeben 
(2008): J. Appl. Cryst. 41 1024–1037. 



Harmonics	  
•  Spherical harmonics, Ylmn: 

An infinite series of orthogonal functions that can be used to 
describe data (intensities) that depend on (two) spherical angles 
(but not radius). Analogous to Fourier series.  Legendre 
polynomials are a special case of spherical harmonics.  Used to 
fit pole figure (PF) data (intensities).  Also used extensively in 
quantum mechanics.  See http://en.wikipedia.org/wiki/
Spherical_harmonics. 

•  Generalized spherical harmonics: 
An infinite series of orthogonal functions that can be used to 
describe data that depend on (three) Euler angles (like spherical 
angles plus an extra longitude angle). Used to fit Orientation 
Distribution data (intensities).  

•  Orthogonal functions: 
Two functions, f and g, are orthogonal when their inner product 
is zero (analogous to the dot product between two vectors being 
zero when they are orthogonal/perpendicular).  See http://
en.wikipedia.org/wiki/Orthogonal_functions. 
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Series	  Expansion	  
Method	  

•  The harmonic method is a  
two-step method.   

•  First step: fitting coefficients  
to the available PF data, where  
p is the intensity at an  
angular position; α, β, are the declination and 
azimuthal angles, Q are the coefficients, P are the 
associated Legendre polynomials and l and m are 
integers that determine the shape of the function. 

•  Useful URLs: 
–  geodynamics.usc.edu/~becker/teaching-sh.html 
–  http://commons.wikimedia.org/wiki/Spherical_harmonic 

akbar.marlboro.edu 
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Pole	  Figure	  (spherical)	  angles	  

α	  

β	  

declination:	  

:	  azimuth	  

RD	  

TD	  

ND	  

You can also think of these angles as longitude ( = azimuth) and co-latitude ( = 
declination, i.e. 90° minus the geographical latitude) 
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p(α, β) = QlmPl
m(cosα)eimβ

m=−l

l
∑

l=0

∞

∑

coefBicients	  to	  be	  determined	  

Notes:	  	  
p:	  intensity	  in	  the	  pole	  Bigure	  
P:	  associated	  Legendre	  polynomial	  
l:	  order	  of	  the	  spherical	  harmonic	  function	  
l,m:	  govern	  shape	  of	  spherical	  function	  
Q:	  can	  be	  complex,	  typically	  real	  
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The functions are orthogonal, which allows 
integration to find the coefficients.  Notice how the 
equation for the Q values is now explicit and based 
on the intensity values in the pole figures! 

Qlm = p(α ,β )Pl
m(cosα )e−imβ sinαdβdα

0
2π
∫0

π
∫

“Orthogonal” has a precise mathematical meaning, similar to orthogonality or 
perpendicularity of vectors.  To test whether two functions are orthogonal, integrate the 
inner product of the two functions over the range in which they are valid.  This is a very 
useful property because, to some extent, sets of such functions can be treated as 
independent units, just like the unit vectors used to define Cartesian axes. In this case 
we must integrate over the applicable ranges of the angles. 

CoefPicients	  of	  Sph.	  Harmonics	  
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Orientation	  Distribution	  Expansion	  

f (Ψ,Θ,φ) =

WlmnZlmn(cosΘ)eimΨeimφn=−l
l∑m=−l

l∑l=0
∞∑

Notes: 
Zlmn	  are Jacobi polynomials 
Objective: find values of coefficients, W, that fit 
the pole figure data (Q coefficients). 

The expressions in Roe angles are similar, but some 
of the notation, and the names change. 
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Fundamental	  Equation	  

€ 

p(001)(α,β) =
1
2π

f (α,β,φ)dφ
0

2π
∫

p(hkl )(α,β) =
1
2π

f (Ψ,Θ,φ)dΓ
0

2π
∫

If, and only if (hkl)	  =	  (001), then integrate 
directly over 3rd angle, φ:	  

For a general pole, there is a complicated  
relationship between the integrating parameter, 
Γ, and the Euler angles. 
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Solution	  Method	  

Qlm = WlmnPl
n(cosξ)e−inηn=−l

l∑
•	  	  Obtained by inserting the PF and OD equations  
the Fundamental Equation relating PF and OD.	  
•	  	  ξ	  and η	  are the polar coordinates of the pole (hkl)	  	  
in crystal coordinates. 
•  Given several PF data sets (sets of Q) this gives 
a system of linear simultaneous equations, solvable 
for W.	  

coefBicients	  to	  
be	  determined	  
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Order	  of	  Sph.	  Harm.	  Functions	  

•  Simplifications: cubic crystal symmetry 
requires that W2mn=0, thus Q2m=0. 

•  All independent coefficients can be 
determined up to l=22 from 2 PFs. 

•  Sample (statistical) symmetry further reduces 
the number of independent coefficients. 

•  Given W, other, non-measured PFs can be 
calculated, also Inverse Pole Figures. 
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Incomplete	  Pole	  Figures	  
•  Lack of data (from the standard reflection 

method for measuring PFs) at the edges of 
PFs requires an iterative procedure. The 
reason is that the integration (summation) 
described before only applies (directly) if the 
PFs are complete. 

•  1: estimate PF intensities at edge by 
extrapolation; 
2: make estimate of W	  coefficients; 
3: re-calculate the edge intensities; 
4: replace negative values in the OD by zero; 
5: iterate until criterion satisfied. 



18	  

Series	  Expansion	  Advantages	  

•  Set of coefficients (for each generalized 
spherical harmonic) is a compact 
representation of texture. 

•  Rapid calculation of anisotropic properties 
possible; this is particularly true of elastic 
anisotropy where one only needs coefficients 
up to l=4. 

•  Automatic smoothing of OD from truncation at 
finite order (equivalent to limiting frequency 
range in Fourier analysis). 
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Ghosts	  

•  Distribution of poles on a sphere, as in a PF, 
is centro-symmetric. 

•  Sph. Harmonic Functions are 
centrosymmetric for l=even but antisymmetric 
for l=odd.  Therefore the Q=0 when l=odd. 

•  Coefficients W for l=odd	  can take a range of 
values provided that PF intensity=0 (i.e. the 
intensity can vary on either side of zero in the 
OD). 
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Ghosts,	  contd.	  

•  Need the odd part of the OD to obtain correct 
peaks and to avoid negative values in the OD 
(which is a probability density). 

•  Can use zero values in PF to find zero values 
in the OD: from these, the odd part can be 
estimated, Bunge & Esling, J. de Physique 
Lett. 40, 627(1979). 

f = ˜ f + ˜ ˜ f 

= ˜ f even + ˜ ˜ f odd = ˜ f l=even + ˜ ˜ f l=odd
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Example	  of	  ghosts	  

Quartz sample;  
7 pole figures;  
WIMV calculation;  
harmonic expansions 
 
If only the even part 
is calculated, ghost 
peaks appear - fig (b) 

[Kocks Tomé Wenk] 
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Discrete	  Methods:	  History	  

•  Williams (1968): J. Appl. Phys., 39, 4329. 
•  Ruer & Baro (1977): Adv. X-ray Analysis, 20, 

187-200. 
•  Matthies & Vinel (1982): Phys. Stat. Solid. (b), 

112, K111-114. 
•  The idea behind the discrete methods was to 

construct intensity values for a discrete form 
of the Orientation Distribution (OD) directly 
from pole figure data, with no function being 
fitted. 
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Discrete	  Methods	  

•  Establish a grid of cells in both PF and OD 
space; e.g. 5°x5° and 5°x5°x5°. 

•  Calculate a correspondence or pointer matrix 
between the two spaces, i.e. y(g).  Each cell 
in a pole figure is connected to multiple cells 
in orientation space (via the equation above). 
More specifically, the intensity in each pole 
figure cell is the summation of the intensities 
in the associated OD cells. 

•  Corrections needed for cell size, shape. 

€ 

p(hkl )(y) =
1
N

f y g( )( )i=1

N
∑
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Initial	  Estimate	  of	  OD	  

•  Initial Estimate of the Orientation Distribution: 

€ 

f (0)(ϕ,θ,φ) = N phi
exptl(ymi

)
1
IM i

mi =1

M

∏
i=1

I

∏

I	  = no. pole figures;  
M	  = multiplicity;  
N	  = normalization;  
f	  = intensity in the orientation distribution;  
p	  = pole figure intensity;  
m	  = pole figure index 
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Iteration	  on	  OD	  values	  

•  Iteration to Refine the Orientation Distribution: 

f (n+1)(ϕ,θ,φ ) =

N(n) f (n)(ϕ,θ,φ) f (0)(ϕ,θ ,φ)

Phi
calc (ymi )

1
IMi

mi=1

M
∏

i=1

I
∏

Note: the correction is squared in the second iteration (in the WIMV 
program), provided that the intensity is to be increased.  This sharpens the 
distribution. 
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Flow	  
Chart	  

[Kocks	  Tomé	  Wenk,	  Ch.	  4]	  
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“RP” Error!

•  RP: RMS value of relative error (∆P/P) 
- not defined for f=0. 

•  Note: this definition of the RP error, which is 
output by the WIMV code (part of popLA) in 
each iteration, was updated to reflect the 
actual code, Sept. 2011. 

€ 

RP =100% ×
f (0)(g)−recalcf (g)

f (0)(g)
$ 

% 
& 

' 

( 
) 

g
∑
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Discrete	  Method:	  Advantages	  

•  Ghost problem automatically avoided by 
requirement of f	  >0 in the solution. 

•  Zero range in PFs (i.e. an intensity value  = 0) 
automatically leads to zero range in the OD. 

•  Much more efficient for lower symmetry 
crystal classes: useful results obtainable for 
only three measured PFs. 



29	  

Discrete	  Method:	  Disadvantages	  
•  Susceptible to noise (filtering possible). 
•  Normalization of PF data is critical (harmonic 

analysis helps with this). 
•  Depending on OD resolution, large set of 

numbers required for representation (~5,000 
points for 5x5x5 grid in Euler space), although 
the speed and memory capacity of modern 
PCs have eliminated this problem. 

•  Pointer matrix is also large, e.g. 5.105 points 
required for OD ↔ {111}, {200} & {220} PFs. 



MTex	  method	  
•  From the 2008 paper, the method uses 

advanced numerical analysis to find a best-fit 
ODF from pole figure data. 

•  “…is the approximation by finite linear 
combinations of radially symmetric functions, 
i.e. by functions of the form:” 

30	   3.2. Discretization

Solving the minimization problem [equation (45)] numeri-
cally requires a discretization of the parameter space, i.e. of
the space of all ODFs. In the traditional harmonic method
(Bunge, 1969) the ODF is approximated by its truncated
Fourier series. The drawback of this discretization is that it is
hard to ensure the non-negativity constraint. Another
approach is the approximation by piecewise constant or linear
ODFs (Bernier et al., 2006). In this case, ensuring non-nega-
tivity is straightforward, but the calculation of the corre-
sponding PDF is mathematically more involved and
numerically slower in comparison to the Fourier series
approach.

A compromise between the two approaches is the approx-
imation by finite linear combinations of radially symmetric
functions, i.e. by functions of the form

f ðgÞ ¼
PM

m¼1

cm ðgg$1
m Þ; ð46Þ

where

 ðgÞ ¼ ~  ðffgÞ ¼
P1

l¼0

 ̂ ðlÞU2l ½cosðffg=2Þ'; g 2 SOð3Þ ð47Þ

is a non-negative radially symmetric function and g1; . . . ; gM is
a set of nodes in the domain of rotations. Approximation by
radially symmetric functions is a well known technique in
approximation theory on the sphere and other manifolds. The
resulting functions are smooth given the Ansatz function  is
smooth and the non-negativity of the coefficients cm, m =
1, . . . , M, immediately implies the non-negativity of f.

In order to consider crystal symmetry, we look for
approximations of the ODF by linear combinations

f ðgÞ ¼
PM

m¼1

cm GLaue
ðgg$1

m Þ ð48Þ

of symmetrized radially symmetric functions

 GLaue
ðqÞ ¼ 1

jGLauej
X

q02GLaue

 ðqq0Þ: ð49Þ

If the nodes g ¼ g1; . . . ; gM are almost uniformly distributed
in the domain of orientations with resolution !, and the Ansatz
function  is fairly well localized in spatial and in frequency
domain with halfwidth ð3=2Þ!, then any sufficiently smooth
ODF can be approximated by a function of the form of
equation (48) at resolution !. A family of such Ansatz func-
tions is formed by the de la Vallée Poussin kernel as intro-
duced in Example 2. If the ODF is known to be concentrated
in a certain region of the domain of orientations, then
restricting the nodes g ¼ g1; . . . ; gM to this region may largely
improve the computational performance of the discretization.
Such a region might be automatically computed by the zero
range method (Bunge & Esling, 1979).

The first notable property of the function f is that its Radon
transform is the linear combination of radially symmetric
functions on the sphere and can be computed using the fast
spherical Fourier transform. Assume that the Ansatz function

 has a finite Fourier expansion with bandwidth L 2 N0. Then
we obtain from equations (38) and (37) the Fourier expansion

Rf ðh; rÞ ¼ R
XM

m¼1

cm GLaue
ð(g$1

m Þ
" #

ðh; rÞ

¼
XM

m¼1

cm

jGLauej
X

q2GLaue

R ðgmqh; rÞ

¼
XM

m¼1

cm

jGLauej
X

q2GLaue

XL

l¼0

 ̂ ðlÞ 4"

2l þ 1

Xl

k¼$l

Yk
l ðgmqhÞYk

l ðrÞ

¼
XL

l¼0

Xl

k¼$l

 ̂ ðlÞ 4"

2l þ 1
Yk

l ðrÞ
X

q2GLaue

XM

m¼1

cm

jGLauej
Yk

l ðgmqhÞ: ð50Þ

Identifying the left-hand sum as a spherical Fourier transform
and the right-hand sum as an adjoint spherical Fourier trans-
form, we derive the following result.

Proposition 3. The Radon transform of the function f can be
represented as the composition of a direct and an adjoint
spherical Fourier transform,

Rf ðh; rÞ ¼ Fr;L

!
v*

X

q2GLaue

FH
gqh;L c

"
; vlk ¼

4"

2l þ 1
 ̂ ðlÞ; ð51Þ

where v is a (2L + 1)-dimensional vector and * denotes the
componentwise multiplication.

A second notable property of the function f is that its
Fourier series can be calculated by an adjoint discrete SO(3)
Fourier transform FH

g;L of the coefficients cm, m = 1, . . . , M.
More precisely, we obtain from equations (32) and (36) the
following equality.

Proposition 4. The Fourier coefficients of the function f can be
computed by

f̂flkk0 ¼ w* FH
g;L c; wlkk0 ¼

4"2

l þ 1
2

 ̂ ð2lÞ; ð52Þ

where w is a ð1=3Þ(L + 1)(2L + 1)(2L + 3)-dimensional vector.

Since the Sobolev norm k f kH½SOð3Þ' in equation (45) is just
the ‘2 norm k!* f̂f k2 of the Fourier coefficients of f with
weights !lkk0, l = 0, . . . , 1, k, k0 = $l, . . . , l, given by the
Sobolev space H[SO(3)] (Freeden et al., 1998; Hielscher,
2007), we obtain the following representation in terms of the
coefficients cm, m = 1, . . . , M,

k f kH½SOð3Þ' ¼ kw* FH
L;g ck2; wlkk0 ¼

4"2

l þ 1
2

!lkk0  ̂ ð2lÞ: ð53Þ

Next we are going to restrict the estimator [equation (45)] to
the finite-dimensional space of functions of the form of
equation (48).

Proposition 5. The restriction of the estimator [equation (45)]
to functions of the form of equation (48) is equivalent to the
minimization problem

research papers

1030 Hielscher and Schaeben + A novel pole figure inversion method J. Appl. Cryst. (2008). 41, 1024–1037

Ψ is a non-negative radially symmetric function and g1,..., gM is 
a set of nodes in the domain of rotations. 
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Texture	  index,	  strength	  
•  Second moment of the OD provides a scalar measure of the 

randomness, or lack of it in the texture: 
 
Texture Index = <f2> 
 
Texture Strength = √<f2> 
 

•  Random: texture index & strength = 1.0 
•  Any non-random OD has texture strength > 1. 
•  If textures are represented with lists of discrete orientations (e.g. as in 

*.WTS files) then weaker textures require longer lists. 
•  One can also compute the entropy of an OD as S=-‐Σf(g)ln(f(g)).  There 

is an apparent problem about what to do with zero values. However, in 
the case of p(xi)  =  0 for some i, the value of the corresponding entropy 
term [0  log(0)] is taken to be 0, which is consistent with the well-known 
limit: limit{p  →  0+} pln(p)  =  0.  Strong textures will exhibit large entropies 
and a perfectly uniform (random) texture will have an entropy of zero. 

•  Some methods of pole figure reduction are based on entropy 
maximization. 
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Example:	  Rolled	  Cu	  
a) Experimental 
 
b) Rotated 
 
c) Edge Completed 
(Harmonic analyis) 
 
d) Symmetrized 
 
e) Recalculated (WIMV) 
 
f) Difference PFs 
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Summary	  
•  The two main methods of calculating an Orientation 

Distribution from Pole Figure data have been 
reviewed. 

•  Series expansion method is akin to the Fourier 
transform: it uses orthogonal functions in the 3 Euler 
angles (generalized spherical harmonics) and fits 
values of the coefficients in order to fit the pole figure 
data available. 

•  Discrete methods calculate values on a regular grid in 
orientation space, based on a comparison of 
recalculated pole figures and measured pole figures.  
The WIMV method, e.g., uses ratios of calculated and 
measured pole figure data to update the values in the 
OD on each iteration. 


