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Notation

p Intensity in pole figure

o, p angles in pole fig.

Y. 0,p Euler angles (Roe/Kocks)

I' integration variable

Y,., Spherical harmonic function

P Associated Legendre polynomial

Q Coefficient on Legendre polynomial
[m,n integer indices for polynomials
Z,., Jacobi polynomials

W Coefficient on Jacobi polynomial

E, m polar coordinates pole (hkl) in crystal coordinates

Fou odd part of the orientation distribution function
]”e even part of the orientation distribution function



Notation: 2

I = no. pole figures
M = multiplicity
N = normalization

y = connectivity matrix between pole figures and
orientation distribution space

f = intensity in the orientation distribution
p = pole figure intensity
m = pole figure index



Objectives

* To explain what is being done in popLA,
Beartex, and other software packages when

pole figures are used to calculate Orientation
Distributions

* To explain how the two main methods of
solving the “fundamental equation of texture”
that relates intensity in a pole figure, p, to
intensity in the OD, f.

1 27
Py (O, P) = o fo f(¥,0,¢)dI’




In-Class Questions

Does the WIMV method fit a function to pole figure data, or
calculate a discrete set of OD intensity values that are
compatible with the input? Answer: discrete ODs.

Why is it necessary to iterate with the harmonic method with
typical reflection-method pole figures? Answer: because the
pole figures are incomplete and iteration is required to fill in the
missing parts of the data.

What is the significance of the “order” in harmonic fitting?
Answer: the higher the order, the higher the frequency that is
used. In general there is a practical limit around [=32.

What is a “WIMV matrix”? Answer: this is a set of relationships
between intensities at a point in a pole figure and the
corresponding set of points in orientation space, all of which
contribute to the intensity at that point in the pole figure.

What is the “texture strength®? This is the root-mean-square
value of the OD.



Methods

« Two main methods for reconstructing an
orientation distribution function based on pole
figure data.

o Standard harmonic method fits coefficients of
spherical harmonic functions to the data.

« Second method calculates the OD directly in
discrete representation via an iterative
process (e.g. WIMV method).



History

Original proposals for harmonics method:
Pursey & Cox (1954), Phil. Mag. 45 295-302;
also Viglin (1960), Fiz. Tverd. Tela 2 2463-2476.

Complete methods worked out by Bunge and Roe: “Zur
Darstellung Allgemeiner Texturen”, Bunge (1965), Z.
Metall., 56 872-874; “Description of crystallite orientation in
polycrystalline materials. Ill. General solution to pole figure
inversion”, Roe (1965): J. Appl. Phys., 36 2024-2031.

WIMV method:
Matthies & Vinel (1982): Phys. Stat. Solid. (b), 112
K111-114.

MTex method: “A novel pole figure inversion method:
specification of the MTEX algorithm”, Hielscher & Schaeben
(2008): J. Appl. Cryst. 41 1024-1037.



Harmonics

Spherical harmonics, Y,

An infinite series of orthogonal functions that can be used to
describe data (intensities) that depend on (two) spherical angles
(but not radius). Analogous to Fourier series. Legendre
polynomials are a special case of spherical harmonics. Used to
fit pole figure (PF) data (intensities). Also used extensively in
gquantum mechanics. See http://en.wikipedia.org/wiki/

Spherical _harmonics.

Generalized spherical harmonics:

An infinite series of orthogonal functions that can be used to
describe data that depend on (three) Euler angles (like spherical
angles plus an extra longitude angle). Used to fit Orientation
Distribution data (intensities).

Orthogonal functions:

Two functions, fand g, are orthogonal when their inner product
is zero (analogous to the dot product between two vectors being
zero when they are orthogonal/perpendicular). See http://
en.wikipedia.org/wiki/Orthogonal_functions.
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Series Expansion %,
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The harmonic method is a E f’ “
two-step method. PO ok Iriasr
First step: fitting coefficients E g © <

to the available PF data, where TO.OF  IW0oF  Wieef  IBe.oF
p is the intensity at an

angular position; «a, S, are the declination and
azimuthal angles, Q are the coefficients, P are the
associated Legendre polynomials and / and m are
iIntegers that determine the shape of the function.

Useful URLSs:

— geodynamics.usc.edu/~becker/teaching-sh.html
— http://commons.wikimedia.org/wiki/Spherical _harmonic
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Pole Figure (spherical) angles

D

3: azimuth

declination: o0 .. \
RD

ND

You can also think of these angles as longitude ( = azimuth) and co-latitude ( =
declination, i.e. 90° minus the geographical latitude)
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00 [ .
pa.p =Y 30" cosaye™

l=0m=—l\

coefficients to be determined

Notes:

p: intensity in the pole figure

P: associated Legendre polynomial

[: order of the spherical harmonic function
[, m: govern shape of spherical function

Q: can be complex, typically real
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Coefficients of Sph. Harmonics

The functions are orthogonal, which allows
integration to find the coefficients. Notice how the

equation for the Q values is now explicit and based
on the intensity values in the pole figures!

O1m =jgﬁ)2np(a,/3)le(cos a)e_imﬁ sin odfd o

“Orthogonal” has a precise mathematical meaning, similar to orthogonality or
perpendicularity of vectors. To test whether two functions are orthogonal, integrate the
inner product of the two functions over the range in which they are valid. This is a very
useful property because, to some extent, sets of such functions can be treated as
independent units, just like the unit vectors used to define Cartesian axes. In this case
we must integrate over the applicable ranges of the angles.

T 2 , B i )
/9 ; / ; },..,:m },..t‘:'n * dsz — ()“, (-)mm"_-
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Orientation Distribution Expansion

The expressions in Roe angles are similar, but some
of the notation, and the names change.

f(q’9®, ¢) =
00 ] ] | |
El=0 2m=_l 2n=_l Vvlnglmn(COS @)elm‘llelmqb

Notes:

Z,.., are Jacobi polynomials

Objective: find values of coefficients, W, that fit
the pole figure data (Q coefficients).
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Fundamental Equation

If, and only if (hkl) = (001), then integrate
directly over 3rd angle, ¢:

1 27
Poon(@:B) =—— | " f(er.p.9)d¢

1 27
—J, Fwe.g)ar
JU

For a general pole, there is a complicated
relationship between the integrating parameter,
I', and the Euler angles.

p(hkl)(a’ﬁ) -
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coefficients to

Solution Method be determined
] /

Oim = E,Z:_ZWZmnPln (cos g)e_lnn

e Obtained by inserting the PF and OD equations
the Fundamental Equation relating PF and OD.

e £ and n are the polar coordinates of the pole (hkl)
in crystal coordinates.

* Given several PF data sets (sets of Q) this gives
a system of linear simultaneous equations, solvable
for W.
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Order of Sph. Harm. Functions

Simplifications: cubic crystal symmetry
requires that W, =0, thus Q,, =0.

All independent coefficients can be
determined up to =22 from 2 PFs.

Sample (statistical) symmetry further reduces
the number of independent coefficients.

Given W, other, non-measured PFs can be
calculated, also Inverse Pole Figures.
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Incomplete Pole Figures

« Lack of data (from the standard reflection

method for measuring PFs) at the edges of
PFs requires an iterative procedure. The
reason is that the integration (summation)
described before only applies (directly) if the
PFs are complete.

1: estimate PF intensities at edge by
extrapolation;

2: make estimate of W coefficients;

3: re-calculate the edge intensities;

4: replace negative values in the OD by zero;
5: iterate until criterion satisfied.
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Series Expansion Advantages

« Set of coefficients (for each generalized
spherical harmonic) is a compact
representation of texture.

« Rapid calculation of anisotropic properties
possible; this is particularly true of elastic
anisotropy where one only needs coefficients
up to /=4.

« Automatic smoothing of OD from truncation at

finite order (equivalent to limiting frequency
range in Fourier analysis).
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 Distribution of poles on a sphere, as in a PF,
IS centro-symmetric.
« Sph. Harmonic Functions are

centrosymmetric for [=even but antisymmetric
for I=odd. Therefore the Q=0 when [=odd.

« Coefficients W for I=odd can take a range of

values provided that PF intensity=0 (i.e. the
iIntensity can vary on either side of zero in the

OD).
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Ghosts, contd.

f=F+]

= feven + fodd fl—even T fl =odd

* Need the odd part of the OD to obtain correct
peaks and to avoid negative values in the OD
(which is a probability density).

« Can use zero values in PF to find zero values
in the OD: from these, the odd part can be
estimated, Bunge & Esling, J. de Physique
Lett. 40, 627(1979).
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Example of ghosts

Quartz sample;

[ pole figures;

WIMV calculation;
harmonic expansions

If only the even part
IS calculated, ghost
peaks appear - fig (b)

Fig.3. Harmonic expansion of an OD that had been calculated using WIMV from
seven pole figures of a quarlz sample: (a) using even and odd functions (max.
normalized density: 19/minimum 0); (b) even functions (14/1.8); (c) odd functions

(6/-4.3). ‘Ghosts’ are best visible as negative re gions in the odd expansion. Expansion
is to order 22. Contour interval 1 m.r.d., negative regions dotted [WENK &AL. 1994b}.

[Kocks Tomé Wenk]
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Discrete Methods: History

Williams (1968): J. Appl. Phys., 39, 4329.

Ruer & Baro (1977). Adv. X-ray Analysis, 20,
187-200.

Matthies & Vinel (1982): Phys. Stat. Solid. (b),
112, K111-114.

The idea behind the discrete methods was to
construct intensity values for a discrete form
of the Orientation Distribution (OD) directly
from pole figure data, with no function being
fitted.
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Discrete Methods

I «n
Py (V) = Nzi=1f()’<g))

« Establish a grid of cells in both PF and OD
space; e.g. 5°x5° and 5°x5°x5°.

« Calculate a correspondence or pointer matrix
between the two spaces, i.e. y(g). Each cell
In a pole figure is connected to multiple cells
In orientation space (via the equation above).
More specifically, the intensity in each pole
figure cell is the summation of the intensities
in the associated OD cells.

« Corrections needed for cell size, shape.
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Initial Estimate of OD

* |nitial Estimate of the Orientation Distribution:

fV(@.0,9)=N ]_[ anj‘p“(ymi )%Mf

I = no. pole figures;

M = multiplicity;

N = normalization;

f=intensity in the orientation distribution;
p = pole figure intensity;

m = pole figure index
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Iteration on OD values

e |teration to Refine the Orientation Distribution:

£ (@,0,0) =

w0
N £ (0.60.0)— f (®,0.9)

]___[ ]-—-[P]/cl:alc m, /M

l=1m =]

Note: the correction is squared in the second iteration (in the WIMV
program), provided that the intensity is to be increased. This sharpens the

distribution.



Experimental data

Flow :

First estimate of OD

Chart |

> Estimated OD

Calculate
correction factors

Recalculate
pole figures

A |

Comparison of

_ recalculated
unsatisfactory | with experimental data

satisfactory

OD output

[Kocks Tomé Wenk, Ch. 4]



27

“RP” Error

/ (0) _recalc \
RP =100% x 3| ((ch)(m( /{8)
T\ g2) )

 RP: RMS value of relative error (AP/P)
- not defined for f=0.

* Note: this definition of the RP error, which is
output by the WIMV code (part of popLA) in
each iteration, was updated to reflect the
actual code, Sept. 2011.
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Discrete Method: Advantages

« Ghost problem automatically avoided by
requirement of f>0 in the solution.

« Zero range in PFs (i.e. an intensity value = 0)
automatically leads to zero range in the OD.

* Much more efficient for lower symmetry
crystal classes: useful results obtainable for
only three measured PFs.
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Discrete Method: Disadvantages

« Susceptible to noise (filtering possible).

* Normalization of PF data is critical (harmonic
analysis helps with this).

* Depending on OD resolution, large set of
numbers required for representation (~5,000
points for 5x5x5 grid in Euler space), although
the speed and memory capacity of modern
PCs have eliminated this problem.

« Pointer matrix is also large, e.g. 5.10° points
required for OD « {111}, {200} & {220} PFs.



30

MTex method

 From the 2008 paper, the method uses
advanced numerical analysis to find a best-fit

ODF from pole figure data.

« “...Iis the approximation by finite linear
combinations of radially symmetric functions,
l.e. by functions of the form:”

@) =3 ciggs) (46)

m=1

where

W(g) = Y(/g) = 2@(1) Uy [cos(/g/2)]. g € SOB)  (47)

Y is a non-negative radially symmetric function and g,,..., gy IS
a set of nodes in the domain of rotations.
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Texture index, strength

Second moment of the OD provides a scalar measure of the
randomness, or lack of it in the texture:

Texture Index = <f2>

Texture Strength = V<f2>

Random: texture index & strength = 1.0
Any non-random OD has texture strength > 1.

If textures are represented with lists of discrete orientations (e.g. as in
* WTS files) then weaker textures require longer lists.

One can also compute the entropy of an OD as S=-2fg)In(f{(g)). There
is an apparent problem about what to do with zero values. However, in
the case of p(x,) = 0 for some i, the value of the corresponding entropy
term [0 log(0)] is taken to be 0, which is consistent with the well-known
limit: imit{p — 0%} pIn(p) = 0. Strong textures will exhibit large entropies
and a perfectly uniform (random) texture will have an entropy of zero.

Some methods of pole figure reduction are based on entropy
maximization.



32 ap. 3 Determination of the OD from Pole Figure Data 123

F AT — ;11 P 200 220

Example: Rolled Cu
a) Experimental

b) Rotated

c) Edge Completed
(Harmonic analyis)

d) Symmetrized

e) Recalculated (WIMV)

f) Difference PFs
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Summary

« The two main methods of calculating an Orientation

Distribution from Pole Figure data have been
reviewed.

Series expansion method is akin to the Fourier
transform: it uses orthogonal functions in the 3 Euler
angles (generalized spherical harmonics) and fits
values of the coefficients in order to fit the pole figure
data available.

Discrete methods calculate values on a regular grid in
orientation space, based on a comparison of
recalculated pole figures and measured pole figures.
The WIMV method, e.g., uses ratios of calculated and

measured pole figure data to update the values in the
OD on each iteration.



