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2	 Lecture Objectives 
•  Explain	how	to	compute	intensiCes	in	a	discrete	OD	from	

counts	of	grains,	points	or	volumes.	
•  Define	volume	frac:on	as	the	fracCon	of	material	whose	

orientaCon	lies	within	a	specified	range	of	orientaCons.	
•  Explain	how	to	calculate	volume	fracCons	given	a	discrete	

orientaCon	distribuCon.	
•  Describe	the	calculaCon	of	orienta:on	distance	as	a	subset	of	

the	calculaCon	of	misorienta:ons.		Also	discuss	how	to	apply	
symmetry,	and	some	of	the	piKalls.	

•  Illustrate	the	binning	scheme	used	for	5-parameter	grain	
boundary	descripCon,	as	part	of	the	discussion	of	how	to	
obtain	MRD	values	for	specific	examples.	



3	 Notation 
 g -  orientation 
 f(g) - orientation distribution 
 O   - symmetry operator 
 O432 - 432 point group 
 OC - crystal symmetry operator 
 OS - sample symmetry operator 
 tr  - trace of a matrix 
 ∆g - misorientation 
 Vf – physical volume fraction of grain, material, orientation 
 φ1, Φ, φ2 - Euler angles 
 Ω,  ∆Ω - Volume of orientation space, increment of volume 
popLA – preferred orientation package Los Alamos, a software 

package written in the early 1990s to analyze texture data, 
based on the DOS operating system. 

	



In Class Questions 

•  How	do	we	compute	intensiCes	
from	volume	fracCons?	

•  What	is	the	difference	between	
cell-edge	and	cell-centered	
coordinates?	

•  What	do	we	mean	by	the	volume	
frac:on	of	a	texture	component?	

•  How	do	we	compute	the	volume	
fracCon	of	a	component?	

•  What	is	a	capture	angle	or	
tolerance	angle	or	capture	radius?	

•  What	is	a	par::on	map?	

•  Why	is	the	density	of	randomly	
chosen	orientaCons	(in	Euler	
space)	not	uniform?	

•  Describe	two	ways	to	compute	
orienta:on	distance.	

•  Why	is	misorienta:on	useful	for	
compuCng	orientaCon	distance?	

•  How	do	we	apply	symmetry	to	
compute	misorientaCon?	

•  Why	do	different	components	
(e.g.	cube	vs.	S)	have	different	
volume	fracCons	in	a	random	
texture?	
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5	 Intensity from Volume Fractions 
ObjecCve:	given	informaCon	on	volume	fracCons	(e.g.	
numbers	of	grains	of	a	given	orientaCon),	how	do	we	
calculate	the	intensity	in	the	OD?			
•		General	relaConships:	

Reminder	on	units	of	the	OD:	the	way	that	normalizaCon	is	performed	means	
that	the	units	of	the	OD	are	MulCples	of	a	Random	Density	(MRD).		If	there	is	no	
texture	or	preferred	orientaCon	then	the	value	of	“f”	is	one	everywhere.	Note	
that	the	formulae	given	here	differ	from	those	in	Bunge	(who	has	very	li)le	to	
say	about	this	topic).		His	correspond	to	a	strict	probability	density	formulaCon.	

Vf (g) =
1

⌦

Z
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volume	fracCon: 

DifferenCate	volume	
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Discrete vs. Continuous Distributions 6	

•  These	notes	emphasize	the	use	of	discrete	distribuCons	for	
obtaining	volume	fracCons.	

•  If	a	conCnuous	distribuCon	is	available,	e.g.,	from	fiZng	generalized	
spherical	harmonics	(from	the	“series	expansion”	method)	then	
other	ways	of	integraCng	over	orientaCon	space	are	used.		Brief	
notes	about	how	to	use	this	approach	are	provided	at	the	end.	

•  For	data	obtained	as	discrete	points,	e.g.,	from	EBSD	maps,	
performing	calculaCons	directly	on	the	data	makes	the	least	
assumpCons	about	the	material.		On	the	other	hand,	prior	
knowledge	may	provide	a	jusCficaCon	for	using	a	parCcular	fi)ed	
funcCon.	



7	

Intensity from Vf , contd. 
•  For	each	cell,	we	assign	an	intensity	equal	to	the	volume	fracCon	in	

that	cell,	∆V,	divided	by	the	volume	of	orientaCon	space	associated	
with	that	cell,	∆Ω	and	mulCplied	by	the	total	volume	of	orientaCon	
space	.	

•  If	we	have	points	with	equal	area	or	volume	(e.g.	EBSD	data)	the	
volume	fracCon,	∆Vi,	is	simply	the	number	of	points	in	the	ith	cell,	ni,	
divided	by	the	total	number	of	points,	N:	∆Vi=ni/N.	

•  For	5x5x5° discreCzaCon	in	a	90x90x90°	space,	we	parCcularize	to:	

Vf (g) = 18100°2 f (g)sinΦdΦdϕ1 dϕ2∫

f (g) = 1
V
dV (g)
dg

=Ω
ΔVf

ΔΩ g

= 8100°2
ΔVf

25°2 cos Φ− 2.5°[ ]− cos Φ+ 2.5°[ ]( )

Vf (g) =
1

⌦

Z

�⌦
f(g)dg



8	 Discrete OD 
•  NormalizaCon	also	required	for	discrete	OD	
•  NormalizaCon	depends	on	the	size	of	the	
sub-space	of	orientaCon,	and	on	the	
measure	used	(radians	versus	degrees).	

•  Sum	the	intensiCes	over	all	the	cells.	
•  0≤φ1	≤2π,	0≤Φ	≤π,	0≤φ2	≤2π	
	
	
0≤φ1	≤90°,	0≤Φ	≤90°,	0≤φ2	≤90°	
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9	 Volume fraction calculations 

•  Choice	of	cell	size	determines	size	of	the	
volume	increment,	which	depends	on	the	
value	of	the	second	angle	(Φ	or	Θ).	

•  Some	grids	start	at	the	specified	value.	
• More	typical	for	the	specified	value	to	be	in	
the	center	of	the	cell.	

•  popLA:	grids	are	cell-centered.	



10	 Discrete ODs 

0°	 10°	 20°	 90°	

90°	

80°	

80°	

10°	
20°	

0°	

∆ Φ=10°	

φ1	

Φ	

∆ φ1 =10°	

dA=sinΦdΦdφ1:�
∆A=∆(cosΦ)∆φ1	

Section at φ2= 30°�
∆φ2=10°	

f(10,10,30)	

f(10,0,30)	

f(10,80,30)	

Each layer: ∆Ω = Σ∆A∆φ2 = 90(°)	

Total:�
Ω =�
8100(°)2	

Cell	edge	discre+za+on	



11	 Centered Cells 

0°	 10°	 20°	 90°	

90°	
80°	

10°	
20°	

0°	
∆ Φ=10°	

φ1	

Φ	

∆ φ1 =10°	

dA=sinΦdΦdφ1:�
∆A=∆(cosΦ)∆φ1	

….	
∆ Φ=5°	

∆ φ1 =5°	

Different treatment of end and corner cells to exclude 
volume outside the subspace	

f(10,10,30)	

f(10,0,30)	

f(10,90,30)	

Cell	centered	discre+za+on	



12	 Discrete orientation information 

# WorkDirectory 	 	/usr/OIM/rollett	
# OIMDirectory 	 	/usr/OIM	
………...	
# 	
   4.724    0.234    4.904     0.500     0.866     1.0   1.000  0      0	
   4.491    0.024    5.132     7.500     0.866     1.0   1.000  0      0	
   4.932    0.040    4.698    19.500     0.866     1.0   1.000  0      0	
   4.491    0.024    5.132    20.500     0.866     1.0   1.000  0      0	
   4.491    0.024    5.132    21.500     0.866     1.0   1.000  0      0	
   4.932    0.040    4.698    22.500     0.866     1.0   1.000  0      0	
   4.932    0.040    4.698    23.500     0.866     1.0   1.000  0      0	
   4.932    0.040    4.698    24.500     0.866     1.0   1.000  0      0	

φ1	 Φ	 φ2	

(Euler angles, radians)	

x	 y	

Typical	text	data.ANG	file	from	TSL	EBSD	system		
(e.g.	SmallIN100/Slice_1.ang	available	in	SmallIN100.zip):	

Each	dataset	may	
have	millions	of	points	

(spatial coordinates, microns)	



13	 Binning individual orientations 
in a discrete OD 

0°	 10°	 20°	 90°	

90°	

80°	

80°	

10°	
20°	

0°	

∆ Φ=10°	

φ1	

Φ	

∆ φ1 =10°	

Section at φ2= 30°	
individual�
orientation	



14	 Example of 
random 

orientation 
distribution in 

Euler space 
Note	the	smaller	densiCes	of	points	(arbitrary	scale)	near	Φ 

=	0°.		When	converted	to	intensi:es,	however,	then	the	
result	is	a	uniform,	constant	value	of	the	OD	(because	of	
the	effect	of	the	volume	element	size,	sinΦdΦdφ1dφ2).		
If	a	material	had	randomly	oriented	grains	all	of	the	
same	size	then	this	is	how	they	would	appear,	as	
individual	points	in	orientaCon	space.	

[Bunge]	



15	 OD from discrete points:  
pseudo-code 

1.  Compute	the	volume	of	the	chosen	orientaCon	space,	e.g.	Euler	
space,	e.g.	90°	x	90°	x	90°	⇒	Ω =∫dg = 8100	°2.	Also	compute	the	
volume	of	each	cell;	in	this	case		
dΩ(φ1,Φ,φ2) = ∆(cosΦ)∆φ1∆φ2	

2.  Bin	each	orientaCon	into	a	cell	in	the	OD	
3.  Sum	number	(or	weight,	if	each	orientaCon	represents	a	different	

physical	volume)	in	each	cell	
4.  Divide	the	number	(or	physical	volume)	in	each	cell	by	the	total	

number	of	grains	(or	total	physical	volume)	to	obtain	Vf 
5.  Convert	from		

Vf	to	f(g):	
	f(g) =Vf*Ω/dΩ = 8100 Vf / {∆(cosΦ)∆φ1∆φ2} 

dΩ =cell volume	Ω =∫dg 



16	 Discrete OD from points 
•  The	same	Vf	near	Φ=0°	will	have	much	larger	f(g)	than	

cells	near	Φ	=90°.	
•  Unless	large	number	(>104,	texture	dependent)	of	grains	

are	measured,	the	resulCng	OD	will	be	noisy,	i.e.	large	
variaCons	in	intensity	between	cells.	

•  Typically,	smoothing	is	used	to	facilitate	presentaCon	of	
results:	always	do	this	last	and	as	a	visual	aid	only!	

•  An	alternaCve	to	smoothing	an	ODF	plot	is	to	replace	
individual	points	by	Gaussians	and	then	evaluate	the	
texture.		This	is	parCcularly	helpful	(and	commonly	
applied)	when	performing	a	series	expansion	fit	to	a	set	of	
individual	orientaCon	measurements,	such	as	OIM	data.	



17	 Volume fraction calculation 

•  In	its	simplest	form:	sum	up	the	intensiCes	
mulCplied	by	the	value	of	the	volume	
increment	(invariant	measure)	for	each	cell.	

•  Check	that	when	you	compute	this	sum	for	
the	enCre	space	the	result	is	equal	to	one	
(else	the	normalizaCon	is	not	correct).	



18	 Simple results 
•  What	if	all	the	orientaCons/grains/

sets_of_Euler_angles	fall	in	one	cell?	
•  Answer:	the	intensity	(in	units	of	MulCples	of	a	

Random	Density,	MRD)	in	that	cell	depends	on	
its	locaCon	in	the	space	(assuming	uniformly	
divided	space	by	angle),	and	the	intensity	in	all	
other	cells	is	exactly	zero.	

•  Example:	cell-edge	coordinates	with	10°	
increments	in	a	90x90x90	space	(total	volume,	Ω	
=	8100	(°2);	
	each	cell	has	volume		
	∆Ω(g)  =	100x∆cos(Φ)).			
Note	that	the	sum	of	the	second	column	is	one,	
as	it	must	be	for	the	integral	of	sin(Φ)	over	the	
interval	[0..π/2].	

•  More	exactly:	f(g) =	Ω / ∆Ω(g) 
•  The	magnitude	of	the	peak	depends	on	the	cell	

size	in	relaCon	to	the	volume,	not	on	the	
measure	(degrees	versus	radians). 

Φ (°)	 ∆cosΦ(g) Intensity	
(MRD)	

0	 0.0152	 5331	

10	 0.0451	 1795	

20	 0.0737	 1100	

30	 0.1	 810	

40	 0.1233	 657	

50	 0.1428	 567	

60	 0.1580	 512	

70	 0.1684	 481	

80	 0.1736	 466	



19	 Simple results: 2 
•  What	if	all,	say,	9/10ths	of	the	grains	fall	in	

one	cell	and	the	rest	are	randomly	
distributed?	

•  Answer:	the	intensity	in	that	cell	once	
again	depends	on	its	locaCon	in	the	space	
(assuming	uniformly	divided	space	by	
angle),	and	the	intensity	in	all	other	cells	is	
fixed	at	0.1/{remaining	volume},	where	the	
“remaining	volume”	is	the	total	volume	
minus	the	volume	of	the	individual	cell	that	
contains	9/10ths	of	the	volume.	

•  Example:	cell-edge	coordinates	with	10°	
increments	in	a	90x90x90	space	(total	
volume	=	8100;	each	cell	has	volume	
100x∆cos(Φ)).		Note	that	the	sum	of	the	
second	column	is	one.	

•  More	exactly	(in	the	single	cell):		
		f(g) = 0.9 Ω / ∆Ω(g), -	“peak”	
or elsewhere, since ∫f(g) = Ω 
	f(g) = 0.1 Ω / (Ω - ∆Ω(g)) -	“random”	

Φ (°)	 ∆cosΦ(g) Intensity	in	
Cell	(MRD)	

f(g)	elsewhere	
(10-5	MRD)	

0	 0.0152	 4779	 0.10002	

10	 0.0451	 1615	 0.10006	

20	 0.0737	 990	 0.10009	

30	 0.1	 729	 0.10012	

40	 0.1233	 591	 0.10015	

50	 0.1428	 510	 0.10017	

60	 0.1580	 461	 0.10019	

70	 0.1684	 433	 0.10020	

80	 0.1736	 420	 0.10021	



Grain Boundary Space 
•  As	a	preview	to	dealing	with	grain	boundaries,	we	explain	the	binning	scheme	and	

show	how	to	compute	intensiCes	and	expected	area	fracCons.	
•  A	grain	boundary	requires	five	(5)	macroscopic	parameters	to	describe	its	

crystallographic	character	(which	ignores	translaConal	parameters	at	the	atomic	
scale).	

•  Generally,	it	is	convenient	to	separate	these	parameters	into	the	disorientaCon	
and	the	normal	of	the	boundary	plane.	

•  For	the	purposes	of	this	lecture,	assume	that	the	disorientaCon	is	the	difference	
in	orientaCon	across	the	boundary,	reduced	to	a	fundamental	zone	(FZ).		Assume	
that	the	normal	is	a	unit	vector	described	by	two	spherical	angles,	which	can	be	
referred	to	either	one	of	the	two	crystal	laZces	(orientaCons).	

•  Assume	a	binning	scheme	in	which	the	disorientaCon	is	expressed	as	Euler	angles	
thus	(φ1,	cos(Φ),	φ2);	each	dimension	is	divided	into	equal	size	cells.		The	use	of	
the	cosine	provides	cells	of	equal	volume.		We	bin	the	normal	according	to	(β,	
cos(α)),	where	alpha	is	the	co-laCtude	and	beta	the	longitude.	

•  For	cubic	materials,	we	can	use	a	90°x90°x90°	space	for	disorientaCon	(which	
contains	mulCple	copies	of	the	FZ)	and	a	90°x360°	space	for	the	normal	(which	
has	only	one	copy	of	the	FZ).	

20	



Area Fractions of Grain Boundaries 
•  A	reasonable	discreCzaCon	uses	9	intervals	(cells)	in	all	dimensions	except	we	

use	36	for	the	longitude	of	the	normal.		This	provides	an	approximate	10°	
resoluCon.	

•  MulCplying	out	the	dimensions,	9*9*9*9*36	=	288,684.		Crystal	symmetry	
provides	a	reducCon	of	a	factor	of	36	(1152/96,	the	number	of	copies	of	the	
FZ	in	the	disorientaCon	space),	down	to	8,019	independent	cells.		This	means	
that,	if	we	want	an	average	of	ten	data	points	per	bin	(on	average)	then	we	
need	of	order	80,000	points.	

•  Consider	the	intensity	associated	with	coherent	twin	boundaries	in	an	fcc	
metal,	such	as	copper	or	silver.		This	GB	type	corresponds	to	a	single	
disorientaCon	(S3,	explained	elsewhere)	and	a	single	normal,	(111).		If	1/3	of	
the	boundaries	are	of	this	type	(i.e.	the	area	fracCon	is	1/3)	then	all	the	
corresponding	data	points	fall	into	a	single	bin/cell.		Therefore	the	intensity	
associated	with	that	cell	is	the	area	fracCon	divided	by	the	fracCon	of	bins	for	
that	type,	but	there	is	only	1	cell.		Therefore	the	intensity	in	units	of	MRD	is	
8019/3	=	2,673	(“Cmes	random”).	
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22	
Texture Component Fractions: 
Partitioning by Misorientation 

•  Now	we	discuss	how	to	compute	the	volume	frac+on	of	material	
associated	with	a	par+cular	texture	component.	

•  The	physical	analogy	is,	how	many	(equal	sized)	grains	will	we	find	in	a	
material	that	correspond	to	a	parCcular	texture	component?	

•  The	simplest	way	to	think	about	volume	fracCons	is	to	consider	that	all	cells	
within	a	certain	angle	of	the	locaCon	of	the	posiCon	of	the	texture	
component	of	interest	belong	to	that	component.	

•  Although	we	will	need	to	use	the	concept	of	orientaCon	distance	
(equivalent	to	misorientaCon),	for	now	we	can	use	a	fixed	angular	distance	
or	acceptance	angle	to	decide	which	component	a	parCcular	cell	belongs	to.	

•  This	la)er	approach	introduces	the	concept	of	orienta:on	distance,	or	the	
difference	between	two	rotaCons/orientaCons,	which	is	itself	a	rotaCon	or	
misorienta:on.		Note	that	rotaCons	are	not	Cartesian	vectors	and	so	we	
cannot	use	Euclidean	distance;	however,	the	angle	associated	with	the	
difference	in	orientaCon	(misorientaCon	angle)	provides	a	suitable	measure	
of	orientaCon	distance.		Symmetry	has	to	be	included	in	order	to	find	the	
smallest	possible	misorientaCon	angle.	



23	 Acceptance Angle Schematic 

•		In	principle,	one	might	
want	to	weight	the	
intensity	in	each	cell	as	a	
funcCon	of	distance	from	
the	component	locaCon.	
•		For	now,	however,	we	
will	assign	equal	weight	to	
all	cells	included	in	the	
volume	fracCon	esCmate.	



24	 Illustration of Acceptance Angle 

•  As	a	basic	approach,	include	all	cells	within	
10°	of	a	central	locaCon.	

√	
√	 √	 √	

√	 √	 •	 √	 √	
√	 √	 √	

√	

Φ	

φ1	



25	 Copper component example 

CUR80-2 6/13/88            35 Bwimv iter: 2.0%FON=  0 13-APR-** strength= 2.43!
 CODK  5.0 90.0  5.0 90.0 1 1 1 2 3  100      phi= 45.0!
   15  12   8   3   3   6  14  42  89  89  89  42  14   6   3   3   8  12  15!
    5   5   5   6   8  20  43  53  57  65  65  45  21  14  12  10   8   9   7!
   12  11  10  14  20  30  60 118 136  84  49  16   2   1   1   1   2   4   5!
   22  21  32  49  68  81 100 123 132 108  37  12   6   3   3   3   3   2   1!
  321 284 228 185 172 190 207 178 109  48  19   7   5   5   4   3   3   1   1!
  955 899 770 575 389 293 223 131  55  12   3   2   2   1   1   1   0   0   0!
 173015471100 652 382 233 132  62  23   7   2   1   1   1   1   0   1   0   0!
 15131342 881 436 191  90  53  29  17   6   2   1   0   0   1   0   0   0   0!
  137 135 109  77  59  41  24  10   4   2   1   0   0   0   0   0   0   0   0!
    1   0   1   3   5  10  13  14  10   3   1   1   0   0   0   0   0   0   0!
    0   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0   0   0   0!
    0   0   0   1   1   1   1   1   1   1   0   0   0   0   0   1   1   1   1!
    0   0   0   0   1   0   1   2   2   1   1   1   2   2   3   4   5   6   7!
    0   0   0   0   1   1   2   4   5   5   5   4   3   6   8   6   6   7   5!
    2   2   2   2   2   2   2   2   4   3   3   3   4   7   9   6  12  17  16!
    3   4   4   4   4   7  33  80  86  66  42  29  29  31  33  40  51  46  40!
    7   7   9  14  31  71 144 179 145  81  31  11   7   7  10  17  25  23  23!
  203 190 188 193 224 304 417 486 410 249 109  51  36  26  16  12  12  12   8!
  301 315 404 559 752100511801140 861 494 237 132  65  42  29  26  31  30  30!
!

15° acceptance angle; location of �
maximum intensity 5° off ideal position	

Φ	

φ1	



26	 Partitioning Orientation Space 
•  Problem!	
•  If	one	chooses	too	
large	an	acceptance	
angle,	overlap	occurs	
between	different	
components	

•  SoluCon:	
•  It	is	necessary	to	go	

through	the	enCre	space	
and	par::on	the	space	
into	separate	regions	with	
one	subregion	for	each	
component.		Each	cell	is	
assigned	to	the	“nearest”	
component.	

Brass(#1)	

Copper(#3)	

35.66o	

19.41o	

S(#5)	19.41o	



27	 Distance in Orientation Space 
•  What	does	“distance”	

mean	in	orientaCon	
space?	

•  Note:	distance	is	not		the	
Cartesian	distance	
(Pythagorean,	
√{∆x2+∆y2+∆z2})	

•  This	is	an	issue	because	
the	volume	increment	
varies	with	[the	sine	of	
the]	the	2nd	Euler	angle.	

•  Answer:	
•  Distance	in	orientaCon	

space	is	measured	by	
misorienta:on.	

•  This	provides	a	be)er	
method	for	parCConing	
the	space.	

•  MisorientaCon	distance	is	
the	minimum	available	
rota:on	angle	between	a	
pair	of	orientaCons.	

•  Symmetry	must	be	
included.	



28	 Misorientation Calculation 
•  Compute	misorientaCon	by	“reversing”	one	orientaCon	and	then	applying	the	

other	orientaCon.		More	precisely	stated,	compose	the	inverse	of	one	
orientaCon,	gA,	with	the	other	orientaCon,	gB.	

•  |∆g| = minij{ cos-1( { tr([Oi
xtalgAOj

sample]gB
T) -1}/2 )} 

•  The	symbol	“tr()”	means	the	trace	of	(sum	of	leading	diagonal	entries)	of	the	
matrix	within	the	parentheses.	The	minimum	funcCon	indicates	that	one	
chooses	the	parCcular	combinaCon	of	crystal	symmetry	operator,	Oi∈O432,	and	
sample	symmetry	operator,	Oj∈O222,	that	results	in	the	smallest	angle	(for	
cubic	crystals,	computed	for	all	24	proper	rotaCons	in	the	crystal	symmetry	
point	group).		Thus	i=1..24	and	j=1..4.	

•  Superscript	T	indicates	(matrix)	transpose	which	gives	the	inverse	rotaCon.		
Subscripts	A	and	B	denote	first	and	second	component.		For	this	purpose,	the	
order	of	the	rotaCons	does	not	ma)er	(but	it	will	ma)er	when	the	rotaCon	axis	
is	important!).	

•  Note	that	including	the	symmetry	operators	allows	points	near	the	edges	of	
orientaCon	space	to	be	close	to	each	other,	even	though	they	may	be	at	
opposite	edges	of	the	space.	

•  Including	sample	symmetry	ensures	that	a	given	cell	in	orientaCon	space	is	
associated	with	the	nearest	of	any	variant	of	a	given	component.	

•  More	details	provided	in	later	slides.	



29	

Partitioning by Misorientation 

•  For	each	point	(cell)	in	the	orientaCon	space,	compute	the	
misorientaCon	of	that	point	with	every	component	of	
interest	(including	all	3	variants	of	that	component	within	
the	space);	this	gives	a	list	of,	say,	six	misorientaCon	
values	between	the	cell	and	each	of	the	six	components	of	
interest.	

•  Assign	the	point	(cell)	to	the	component	with	which	it	has	
the	smallest	misorientaCon,	provided	that	it	is	less	than	
the	acceptance	angle.	

•  If	a	point	(cell)	does	not	belong	to	a	parCcular	component	
(because	it	is	not	close	enough),	label	it	as	“other”	or	
“random”.	



30	 Partition Map, COD, φ2 = 0° 
 Acceptance angle (degrees) =   15. 
AL       3/08/02           99 WIMV iter: 1.2%,Fon=  0 20-MAY-** strength= 3.88 
 CODB  5.0 90.0  5.0 90.0 1 1 1 2 3    0 6859Phi2=  0.0 
    1   1   1   4   4   4   4   0   0   0   0   0   4   4   4   4   1   1   1 
    1   1   1   4   4   4   4   0   0   0   0   0   4   4   4   4   1   1   1 
    2   2   2   4   4   4   4   0   0   0   0   0   4   4   4   4   5   5   5 
    2   2   2   2   4   0   0   0   0   0   0   0   0   0   0   0   5   5   5 
    2   2   2   0   0   0   0   0   0   0   0   0   0   0   0   0   5   5   5 
    2   2   2   0   0   0   9   9   9   0   0   0   0   0   0   0   0   0   0 
    3   3   3   7   0   9   9   9   9   9   0   0   0   0   0   0   0   0   0 
    3   3   3   7   7   9   9   9   9   9   0   0   0   0   0   0   0   0   0 
    3   3   7   7   7   7   8   8   8   8   0   0   0   0   0   0   0   0   0 
    3   7   7   7   7   7   8   8   8   8   0   0   0   0   0   0   0   0   0 
    3   3   7   7   7   7   8   8   8   8   0   0   0   0   0   0   0   0   0 
    3   3   3   7   7   9   9   9   9   9   0   0   0   0   0   0   0   0   0 
    3   3   3   7   0   9   9   9   9   9   0   0   0   0   0   0   0   0   0 
    2   2   2   0   0   0   9   9   9   0   0   0   0   0   0   0   0   0   5 
    2   2   2   0   0   0   0   0   0   0   0   0   0   0   0   0   5   5   5 
    2   2   2   0   4   0   0   0   0   0   0   0   0   0   0   0   5   5   5 
    2   2   2   4   4   4   4   0   0   0   0   0   4   4   4   4   5   5   5 
    1   1   1   4   4   4   4   0   0   0   0   0   4   4   4   4   1   1   1 
    1   1   1   4   4   4   4   0   0   0   0   0   4   4   4   4   1   1   1 
 

Cube	 Cube	

Cube	 Cube	

Brass	

The number in each cell indicates which component it belongs to.  0 = 
“random”; 8 = Brass; 1 = Cube.	



31	 Partition Map, COD, φ2 = 45° 
AL       3/08/02           99 WIMV iter: 1.2%,Fon=  0 20-MAY-** strength= 3.88 
 CODB  5.0 90.0  5.0 90.0 1 1 1 2 3    0 6859Phi2= 45.0 
    0   0   4   4   4   4   4   1   1   1   1   1   4   4   4   4   4   0   0 
    0   0   0   4   4   4   4   1   1   1   1   1   4   4   4   4   0   0   0 
    0   0   0   4   4   4   4   6   6   6   6   6   4   4   4   4   0   0   0 
    0   0   0   0   0   0   6   6   6   6   6   6   6   0  11  11  12  12  12 
    0   0   0   0   0   0   0   6   6   6   6   6   0  11  11  11  12  12  12 
    0   0   0   0   0   0   0   6   6   6   6   6   0  11  11  11  12  12  12 
    0   0   0   0   0   0   0   0   0   6   0   0   0  11  11  11  12  12  12 
    0   0   0   0   0   0   0   0   0   0   0   0   0  11  11  11  12  12  12 
    0   0   0   0   0   0   0   0   0   0   0   0   0   0  11  11  12  12  12 
    0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 
    0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 
    0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 
    0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 
    0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 
    0   0   0   0   0   0   0   0   0   0  10  10   0   0   0   0   0   0   0 
    0   0   0   0   0   0   0   0   0  10  10  10  10   0   0   0   0   0   0 
    0   0   0   0   0   0   0   0   0   9   9   9   9   9   7   7   7   7   3 
    0   0   0   0   0   0   0   0   0   8   8   8   8   7   7   7   7   7   3 
    0   0   0   0   0   0   0   0   8   8   8   8   8   7   7   7   7   7   3 

Brass	

Copper	

Component numbers: 0:=random; 8:=Brass; 11:= Dillamore; 12:=Copper.	



32	

Component 
Volumes: fcc 
rolling texture 
•  These	contour	
maps	of	individual	
components	in	
Euler	space	are	
drawn	for	an	
acceptance	angle	
of	~12°.	

brass	 copper	

S	 Goss	

Cube	



33	

How to calculate misorientation? 

•  The	next	set	of	slides	describe	how	to	calculate	misorientaCons,	how	
to	deal	with	crystal	symmetry	and	sample	symmetry,	and	some	of	the	
piKalls	that	can	arise.	

•  For	orienta:on	distance,	only	the	magnitude	of	the	difference	in	
orientaCon	needs	to	be	calculated.		Therefore	some	of	the	details	
that	follow	go	beyond	what	you	need	for	volume	fracCon.		
Nevertheless,	you	need	to	be	aware	of	these	issues	so	that	you	do	not	
become	confused	in	subsequent	exercises.	

•  This	misorientaCon	calculaCon	is	not	available	in	popLA	but	is	
available	in	TSL/HKL	so~ware.		It	is	completely	reliable	but	does	not	
allow	you	to	control	the	applicaCon	of	symmetry.	



34	 Objective 

•  To	make	clear	how	it	is	possible	to	express	a	
misorientaCon	in	more	than	(physically)	
equivalent	fashion.	

•  To	allow	researchers	to	apply	symmetry	correctly;	
mistakes	are	easy	to	make!	

•  It	is	essen:al	to	know	how	a	rotaCon/orientaCon/
texture	component	is	expressed	in	order	to	know	
how	to	apply	symmetry	operaCons.	



35	 Worked Example 
•  In	this	example,	we	take	a	pair	of	orientaCons	that	were	chosen	

to	have	a	60°<111>	misorientaCon	between	them	(rotaCon	axis	
expressed	in	crystal	coordinates).		In	fact	the	pair	of	
orientaCons	are	the	two	sample	symmetry	related	variants	of	
the	Copper	component.		The	Copper	component	can	be	wri)en	
with	Miller	indices	as	(112)[11-1].	

•  We	calculate	the	3x3	RotaCon	matrix	for	each	orientaCon,	gA	
and	gB,	and	then	form	the	misorientaCon	matrix,	∆g=gBgA

-1.	
•  From	the	misorientaCon	matrix,	we	calculate	the	angle,		

=	cos-1(trace(∆g)-1)/2),	and	the	rotaCon	axis.	
•  In	order	to	find	the	smallest	possible	misorientaCon	angle,	we	

have	to	apply	crystal	symmetry	operators,	O,	to	the	
misorientaCon	matrix,	O∆g,	and	recalculate	the	angle	and	axis.	

•  First,	let’s	examine	the	result….	



36	 Worked Example 
 angles..    90.  35.2599983  45.!
 angles..    270.  35.2599983  45.!
!
 1st Grain: Euler angles:   90.  35.2599983  45.!
 2nd Grain: Euler angles:   270.  35.2599983  45.!
!
 1st matrix:!
[    -0.577     0.707     0.408 ]!
[    -0.577    -0.707     0.408 ]!
[     0.577     0.000     0.817 ]!
!
 2nd matrix:!
[     0.577    -0.707     0.408 ]!
[     0.577     0.707     0.408 ]!
[    -0.577     0.000     0.817 ]!
!
 Product matrix for gA X gB^-1:!
[    -0.667     0.333     0.667 ]!
[     0.333    -0.667     0.667 ]!
[     0.667     0.667     0.333 ]!
 MISORI: angle=   60. axis=  1 1 -1!
!

+	

{100}	pole	figures	

As	it	happens,	the	result	is	60°[11-1],	which	looks	reasonable,	
but	is	it,	in	fact,	the	smallest	angle?	



37	 Output with Symmetry Applied 
 1st matrix:	
[    -0.691     0.596     0.408 ]	
[    -0.446    -0.797     0.408 ]	
[     0.569     0.100     0.817 ]	
	
 2nd matrix:	
[     0.691    -0.596     0.408 ]	
[     0.446     0.797     0.408 ]	
[    -0.569    -0.100     0.817 ]	
	
  Symmetry operator number  1	
 Product matrix for gA X gB^-1:	
[    -0.667     0.333     0.667 ]	
[     0.333    -0.667     0.667 ]	
[     0.667     0.667     0.333 ]	
 Trace =  -1.	
  angle =   180.	
	
  Symmetry operator number  2	
 Product matrix for gA X gB^-1:	
[    -0.667     0.333     0.667 ]	
[    -0.667    -0.667    -0.333 ]	
[     0.333    -0.667     0.667 ]	
 Trace =  -0.666738808	
  angle =   146.446426	
	
  Symmetry operator number  3	
 Product matrix for gA X gB^-1:	
[    -0.667     0.333     0.667 ]	
[    -0.333     0.667    -0.667 ]	
[    -0.667    -0.667    -0.333 ]	
 Trace =  -0.333477736	
  angle =   131.815857	
	
  Symmetry operator number  4	
 Product matrix for gA X gB^-1:	
[    -0.667     0.333     0.667 ]	
[     0.667     0.667     0.333 ]	
[    -0.333     0.667    -0.667 ]	
 Trace =  -0.666738927	
  angle =   146.446442	
	
	
	

Symmetry operator number  5	
 Product matrix for gA X gB^-1:	
[    -0.667    -0.667    -0.333 ]	
[     0.333    -0.667     0.667 ]	
[    -0.667     0.333     0.667 ]	
 Trace =  -0.666738987	
  angle =   146.446442	
	
  Symmetry operator number  6	
 Product matrix for gA X gB^-1:	
[     0.667     0.667     0.333 ]	
[     0.333    -0.667     0.667 ]	
[     0.667    -0.333    -0.667 ]	
 Trace =  -0.666738987	
  angle =   146.446442	
	
  Symmetry operator number  7	
 Product matrix for gA X gB^-1:	
[     0.667    -0.333    -0.667 ]	
[     0.333    -0.667     0.667 ]	
[    -0.667    -0.667    -0.333 ]	
 Trace =  -0.333477974	
  angle =   131.815872	
	
  Symmetry operator number  8	
 Product matrix for gA X gB^-1:	
[     0.667    -0`.333    -0.667 ]	
[    -0.333     0.667    -0.667 ]	
[     0.667     0.667     0.333 ]	
 Trace =   1.66695571	
  angle =   70.5199966	
	
  Symmetry operator number  9	
 Product matrix for gA X gB^-1:	
[     0.333    -0.667     0.667 ]	
[     0.667    -0.333    -0.667 ]	
[     0.667     0.667     0.333 ]	
 Trace =   0.333477855	
  angle =   109.46682	
	
  Symmetry operator number  10	
 Product matrix for gA X gB^-1:	
[    -0.333     0.667    -0.667 ]	
[    -0.667     0.333     0.667 ]	
[     0.667     0.667     0.333 ]	
 Trace =   0.333477855	
  angle =   109.46682	

Symmetry operator number  11	
 Product matrix for gA X gB^-1:	
[    -0.333     0.667    -0.667 ]	
[     0.667     0.667     0.333 ]	
[     0.667    -0.333    -0.667 ]	
 Trace =  -0.333261013	
  angle =   131.807526	
	
  Symmetry operator number  12	
 Product matrix for gA X gB^-1:	
[     0.667     0.667     0.333 ]	
[     0.667    -0.333    -0.667 ]	
[    -0.333     0.667    -0.667 ]	
 Trace =  -0.333261073	
  angle =   131.807526	
	
  Symmetry operator number  13	
 Product matrix for gA X gB^-1:	
[    -0.333     0.667    -0.667 ]	
[    -0.667    -0.667    -0.333 ]	
[    -0.667     0.333     0.667 ]	
 Trace =  -0.333261013	
  angle =   131.807526	
	
  Symmetry operator number  14	
 Product matrix for gA X gB^-1:	
[    -0.667    -0.667    -0.333 ]	
[    -0.667     0.333     0.667 ]	
[    -0.333     0.667    -0.667 ]	
 Trace =  -1.	
  angle =   180.	
	
  Symmetry operator number  15	
 Product matrix for gA X gB^-1:	
[     0.333    -0.667     0.667 ]	
[    -0.667    -0.667    -0.333 ]	
[     0.667    -0.333    -0.667 ]	
 Trace =  -1.	
  angle =   180.	
	
  Symmetry operator number  16	
 Product matrix for gA X gB^-1:	
[    -0.667    -0.667    -0.333 ]	
[     0.667    -0.333    -0.667 ]	
[     0.333    -0.667     0.667 ]	
 Trace =  -0.333260953	
  angle =   131.807526	

Symmetry operator number  17	
 Product matrix for gA X gB^-1:	
[     0.333    -0.667     0.667 ]	
[     0.667     0.667     0.333 ]	
[    -0.667     0.333     0.667 ]	
 Trace =   1.66652203	
  angle =   70.533165	
	
  Symmetry operator number  18	
 Product matrix for gA X gB^-1:	
[     0.667     0.667     0.333 ]	
[    -0.667     0.333     0.667 ]	
[     0.333    -0.667     0.667 ]	
 Trace =   1.66652203	
  angle =   70.533165	
	
  Symmetry operator number  19	
 Product matrix for gA X gB^-1:	
[     0.333    -0.667     0.667 ]	
[    -0.667     0.333     0.667 ]	
[    -0.667    -0.667    -0.333 ]	
 Trace =   0.333044171	
  angle =   109.480003	
	
  Symmetry operator number  20	
 Product matrix for gA X gB^-1:	
[     0.667    -0.333    -0.667 ]	
[     0.667     0.667     0.333 ]	
[     0.333    -0.667     0.667 ]	
 Trace =   2.	
  angle =   60.	
	
  Symmetry operator number  21	
 Product matrix for gA X gB^-1:	
[     0.667     0.667     0.333 ]	
[    -0.333     0.667    -0.667 ]	
[    -0.667     0.333     0.667 ]	
 Trace =   2.	
  angle =   60.	
	
  Symmetry operator number  22	
 Product matrix for gA X gB^-1:	
[     0.667    -0.333    -0.667 ]	
[    -0.667    -0.667    -0.333 ]	
[    -0.333     0.667    -0.667 ]	
 Trace =  -0.666522205	
  angle =   146.435211	

  Symmetry operator number  23	
 Product matrix for gA X gB^-1:	
[    -0.667    -0.667    -0.333 ]	
[    -0.333     0.667    -0.667 ]	
[     0.667    -0.333    -0.667 ]	
 Trace =  -0.666522026	
  angle =   146.435196	
	
  Symmetry operator number  24	
 Product matrix for gA X gB^-1:	
[    -0.333     0.667    -0.667 ]	
[     0.667    -0.333    -0.667 ]	
[    -0.667    -0.667    -0.333 ]	
 Trace =  -0.999999881	
  angle =   179.980209	
 MISORI: angle=   60. axis=  1 1 	
	
MISORI: angle=   60. axis=  1 1 -1-1	
	

This	set	of	tables	
shows	each	
successive	result	as	a	
different	symmetry	
operator	is	applied	
to	∆g.		Note	how	the	
angle	and	the	axis	
varies	in	each	case!		
Note	that	#20	is	the	
one	that	gives	a	60°	
angle.	

Pajarito.materials.cmu.edu/rollett/texture_subroutines : look for rexgbs-[date].f90 



38	 Misorientations 

• MisorientaCons:	
	∆g=gBgA

-1	

transform	from	crystal	axes	of	grain	A	
back	to	the	reference	axes,	and	then	
transform	to	the	axes	of	grain	B.	

•  Note	that	this	use	of	“g”	is	based	on	the	
standard	Bunge	definiCon	
(transformaCon	of	axes)	



39	 Notation 
•  In	some	texts,	misorientaCon	formed	
from	axis	transformaCons	is	wri)en	
with	a	Clde.	
	

•  Standard	A->B	transformaCon	is	
expressed	in	crystal	axes.		The	reason	
for	this	is	that	we	generally	want	to	
know	the	common	axis	between	the	
two	crystals	in	terms	of	crystal	
coordinates.	

Δ ˜ g 



40	 Misorientation +Symmetry 
•  ∆g =�

(Oc gB)(Oc gA)-1�

= OcgBgA
-1Oc

-1.	

•  Note	the	presence	of	symmetry	
operators	pre-	&	post-mulCplying	

•  Note	that	removing	the	parentheses	
from	the	term	with	the	inverse	swaps	
the	order	of	the	two	matrices.	



41	 Symmetry: how many equivalent 
representations of misorientation? 

•  Axis	transformaCons:	
24	independent	operators	(for	cubic)	present	on	
either	side	of	the	misorientaCon.		Two	
equivalents	from	switching	symmetry,	i.e.	the	
fact	that	there	is	no	(physical)	difference	
between	passing	from	grain	A	to	grain	B,	versus	
passing	from	grain	B	to	grain	A.	

•  Number	of	equivalents	=	24x24x2=1152.	



42	 When to include Sample Symmetry? 

•  Answer:	only	for	volume	fracCons	
•  The	rule	is	simple:	
•  For	calculaCng	orientaCon	distances	for	the	
purpose	of	parCConing	orientaCon	space,	you	do	
include	sample	symmetry.		You	only	have	to	apply	
the	sample	symmetry,	however,	to	either	the	
component	or	the	cell	being	tested	but	not	both.	

•  For	calculaCng	misorientaCons	for	the	purpose	of	
characterizing	grain	boundaries,	you	do	not	
include	sample	symmetry.	



43	 Practical Help with Volume Fractions 
•  To	calculate	volume	fracCons	directly	from	popLA	.SOD	files	

(orientaCon	distribuCons	in	popLA	format),	use	sod2vf.f	(a	
Fortran	77	code)	

•  To	calculate	volume	fracCons	from	a	list	of	discrete	orientaCons	
in	.WTS	format,	use	wts2pop[-latest_revision_date].f,	which	also	
bins	the	orientaCons	into	an	SOD	as	well	as	pole	figures	and	
inverse	pole	figures.		Look	at	any	.WTS	file	to	learn	about	the	
format	(or	read	the	popLA	manual).		You	can	find	these	
programs	at		
pajarito.materials.cmu.edu/rolleG/texture_subrou+nes	

•  If	your	data	source	is	a	*.ANG	orientaCon	map	(from	TSL,	or,	a	
*.CTF	from	HKL)	then	first	use	OIM2WTS.f	to	convert	it	to	
the	.WTS	format.		If	your	material	has	hexagonal	symmetry	be	
very	careful	about	how	the	Cartesian	x-axis	is	aligned	with	the	
crystal	axes	(TSL	and	HKL	are,	typically,	different).	



44	 Volume fractions from Random? 

•  Based	on	a	list	of	20,000	random	orientaCons	and	
a	15°	acceptance	angle,	you	should	expect	this	set	
of	volume	fracCons:	
	

•  {001}<100> cube    vol. frac.=    2.175 %  
{001}<110> NDcube  vol. frac.=    2.144 %  
{011}<100> Goss    vol. frac.=    2.310 %  
{110}<112> brass   vol. frac.=    4.116 %  
        Dillamore  vol. frac.=    3.030 %  
{211}<111> Copper  vol. frac.=    3.721 %  
{231}<124> S       vol. frac.=    8.475 %!

•  Remember	that	more	orientaCons	are	required	for	
greater	precision	(more	significant	figures).!



45	 Volume fractions from Random? 
•  Based	on	a	list	of	20,000	random	orientaCons	and	a	10°	acceptance	angle,	you	

should	expect	this	set	of	volume	fracCons:	
For component cube    vol. frac.=    0.575 %  
For component NDcube  vol. frac.=    0.690 %  
For component Goss    vol. frac.=    0.715 %  
For component brass   vol. frac.=    1.310 %  
For component Dillam  vol. frac.=    1.103 %  
For component Copper  vol. frac.=    1.382 %  
For component 231124  vol. frac.=    2.775 %!

•  Note	how	the	volume	fracCons	have	decreased	markedly	with	the	decrease	in	
acceptance	angle.	

•  EliminaCng	the	Dillamore	component,	which	is	only	about	10°	from	Copper,	
the	following	set	is	found:	note	that	Copper	has	increased	but	not	by	a	factor	
of	2.	
For component cube    vol. frac.=    0.575 %  
For component NDcube  vol. frac.=    0.690 %  
For component Goss    vol. frac.=    0.715 %  
For component brass   vol. frac.=    1.310 %  
For component Copper  vol. frac.=    1.710 %  
For component 231124  vol. frac.=    2.775 %!



More Random/Uniform Volume 
Fractions by Component 

Taken	from	unpublished	work	by	Creuziger,	Hu	&	Rolle)	(2010).	
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Variations in Random Vf 
•  Why	do	the	volume	fracCons	vary	with	component	

locaCon?	
•  Answer:	mainly	because	of	variaCons	in	how	close	they	lie	

to	symmetry	planes	in	orientaCon	space.	
•  Assume	cubic-orthorhombic	(crystal+sample)	symmetry	
•  An	orientaCon	such	as	Goss	lies	on	one	edge,	so	despite	

including	3	symmetry-related	locaCons,	its	volume	is	only	
about	1/4th	of,	say,	the	S	component.	

•  Similarly	the	Copper	component,	only	includes	1/2th	of	the	
space	of	the	S	component.	

•  The	rest	of	the	variaCon	is	related	to	locaCon	with	respect	
to	the	second	Euler	angle.		See	the	next	slide	for	
illustraCons	of	the	above	points.	
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3D Views 
a) Brass     b) Copper     c) S       d) 
Goss     e) Cube   �
f) combined texture 	
1: {35, 45, 90}, Brass,       	
2: {55, 90, 45}, Brass	
3: {90, 35, 45}, Copper,    	
4: {39, 66, 27}, Copper	
5: {59, 37, 63}, S,     	
6: {27, 58, 18}, S,         	
7: {53, 75, 34}, S  	
8: {90, 90, 45}, Goss              �
9: {0, 0, 0}, cube*                        
10: {45, 0, 0}, rotated cube	
*	Note	that	the	cube	exists	as	a	line	between	
(0,0,90)	and	(90,0,0)	because	of	the	linear	
dependence	of	the	1st	and	3rd	angles	when	the	
2nd	angle	=	0.	

Figure courtesy of Jae-hyung Cho, KIMS, Korea	
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Scaling by Random Vf 

•  It	has	been	argued	that	volume	fracCons	are	more	reliable	
than	intensiCes	partly	because	they	reflect	the	physical	
makeup	of	the	material	more	accurately.		For	example,	the	
intensity	at	the	cube	posiCon	rises	to	very	high	values	once	
the	volume	fracCon	of	orientaCons	near	cube	rises	much	
above	25%,	which	is	not	true	of	other	orientaCons.	

•  Given	that	the	volume	fracCon	varies	significantly	with	
posiCon	in	the	space,	especially	for	components	near	
symmetry	planes,	it	has	also	been	argued	that	volume	
fracCons	should	be	reported	as	a	mulCple	of	the	fracCon	
associated	with	a	random	(uniform)	texture.	
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Volume fractions from 
continuous distributions 

•  Using	texture	components	in	crystal	plasCcity	finite	element	simulaCons,	D.	Raabe,	F.	Roters,	
InternaConal	Journal	of	PlasCcity,	20,	339–361	(2004),	doi:10.1016/S0749-6419(03)00092-5.	[look	
in	Box	folder]	

•  The	iteraCve	series-expansion	method	for	quanCtaCve	texture	analysis.	I.	General	outline,	M.	
Dahms	and	H.	J.	Bunge,	J.	Appl.	Cryst.	(1989).	22,	439-447,	doi:10.1107/S0021889889005261	

•  DiscreCzaCon	techniques	for	orientaCon	distribuCon	funcCons,	LS	Toth	&	P	van	Hou)e,	Textures	&	
Microstructures	(1992).	[look	in	Box	folder]	

•  SecCon	3.4	(p	70)	in	OrientaCons	&	RotaCons	by	A.	Morawiec.	
•  Chapter	13	in	QuanCtaCve	Texture	Analysis,	edited	by	HJ	Bunge	and	C	Esling	(1982).	
•  The	first	paper	by	Raabe	&	Roters	is	based	on	the	concept	of	represenCng	each	component	by	a	

Gaussian	peak	in	orientaCon	space.		The	simplest	mathemaCcal	form	is	this:	
												f(g)	=	S0	exp(-ω2/ω0

2)	
•  In	fact,	the	von	Mises-Fisher	distribuCon	(q.v.	wikipedia)	is	more	correct	for	spherical	parameters,	

which	is	discussed	by	Morawiec	and	others.	
•  If	a	series	expansion	fit	for	a	texture	is	available,	and	the	posiCons	of	a	set	of	texture	components	

has	been	idenCfied	(e.g.,	by	inspecCon	of	the	OD),	then	volume	fracCons	can	be	obtained	via	a	
procedure	that	minimizes	the	difference	between	the	fi)ed	Gaussian	peak	and	the	local	values	of	
f(g),	using	the	coefficients	of	the	ODF.	
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Summary 
•  Methods	for	calculaCng	volume	fracCons	from	discrete	

orientaCon	distribuCons	reviewed.	
•  Complementary	method	of	calculaCng	the	OD	from	

informaCon	on	discrete	orientaCons	(e.g.	OIM)	provided.	
•  Method	for	calculaCng	orienta:on	distance	(equivalent	to	

misorienta:on)	given,	with	illustraCons	of	the	importance	of	
how	to	apply	symmetry	operators.	

•  For	further	discussion:	in	some	cases,	it	is	useful	to	compare	
volume	fracCons	in	a	textured	material	to	the	volume	
fracCons	that	would	be	expected	in	a	randomly	oriented	
material.	

•  Different	programs	may	well	yield	different	volume	fracCon	
values	because	of	differences	in	the	procedure	(e.g.	how	the	
space	is	parCConed).	



52	 Supplemental Slides 
•  The	following	slides	illustrate	what	happens	with	misorientaCons	if	you	

deal	with	ac:ve	rota:ons,	instead	of	the	standard	axis	transforma:ons	
(passive	rotaCons)	used	in	materials	science.	

•  This	material	is	useful	in	case	you	have	experience	with	solid	mechanics,	
or	you	cannot	get	a	misorientaCon	calculaCon	to	work	properly.	

•  Note:	it	does	not	ma)er	whether	you	use	passive	or	acCve	rotaCons	for	
compuCng	the	rotaCon	angle;	it	only	makes	a	difference	to	the	rotaCon	
axis,	i.e.	the	skew-symmetric	part	of	the	misorientaCon	matrix.	

•  CauCon:	if	you	calculate	the	misorientaCon	for	a	grain	boundary	with	
acCve	rotaCons,	the	axis	will	be	expressed	in	the	sample	frame.		This	is	
not	what	you	want,	generally	speaking,	if	one	is	interested	in	the	
crystallographic	character	of	the	boundary.		



53	 Passive vs. Active Rotations 

•  Passive	RotaCons	
• Materials	Science	
•  g describes	an	axis	
transforma:on	
from	sample	to	
crystal	axes	

•  AcCve	RotaCons	
•  Solid	mechanics	
•  g	describes	a	
rota:on	of	a	crystal	
from	ref.	posiCon	
to	its	orientaCon.	

Passive Rotations (Axis Transformations) 	 	 	Active (Vector) Rotations	

These	next	few	slides	describe	the	differences	between	dealing	with	
passive	rotaCons	(=	transformaCons	of	axes)	and	acCve	rotaCons	
(fixed	coordinate	system)	



54	 Matrices 
g	=	Z2XZ1	=	

	
	
	
	
	

g	=	gφ1001gΦ100gφ2001	=	
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Passive Rotations (Axis Transformations) 	 	 	Active (Vector) Rotations	

Note	transpose	
relaConship	
between	the	two	
matrices.	



55	 Texture +Symmetry 
Symmetry	Operators:	

Osample	≡	Os	
Ocrystal	≡	Oc	
	
	
	
	
Note	that	the	crystal	
symmetry	post-mulCplies,	
and	the	sample	symmetry	
pre-mulCplies.	

	
	
	
	
	
	
Note	the	reversal	in	
order	of	applicaCon	of	
symmetry	operators!	

€ 

" g = OcgOs

" g =← → % g

€ 

" g = OsgOc

" g =← → % g

Passive Rotations (Axis Transformations) 	 	 	Active (Vector) Rotations	



56	 Groups: Sample +Crystal Symmetry 

•  Oc∈O(432);	
proper	rotaCons	of	
the	cubic	point	group.	

•  Os∈O(222);	
	proper	rotaCons	of	
the	orthorhombic	
point	group.	

•  Think	of	applying	the	
symmetry	operator	in	
the	appropriate	
frame:	thus	for	acCve	
rotaCons,	apply	
symmetry	to	the	
crystal	before	you	
rotate	it.	

Passive Rotations (Axis Transformations) 	 	 	Active (Vector) Rotations	



57	 Misorientations 
•  MisorientaCons:	

	∆g=gBgA
-1;	

transform	from	crystal	
axes	of	grain	A	back	to	the	
reference	axes,	and	then	
transform	to	the	axes	of	
grain	B.	

•  Note	that	this	use	of	“g”	is	
based	on	the	standard	
Bunge	definiCon	
(transformaCon	of	axes)	

•  MisorientaCons:	
	∆g=gBgA

-1;	
the	net	rotaCon	from	A	to	B	is:	
rotate	first	back	from	the	
posiCon	of	grain	A	and	then	
rotate	to	the	posiCon	of	grain	
B.		

•  Note	that	this	use	of	“g”	is	
based	on	the	a	definiCon	in	
terms	of	an	acCve	rotaCon	(the	
“g”	is	the	inverse,	or	transpose	
of	the	one	on	the	le~).	

Passive Rotations (Axis Transformations) 	 	 	Active (Vector) Rotations	



58	 Notation 
•  In	some	texts,	
misorientaCon	
formed	from	axis	
transformaCons	is	
wri)en	with	a	Clde.	
	

•  Standard	A->B	
transformaCon	is	
expressed	in	crystal	
axes.	

•  You	must	verify	from	
the	context	which	
type	of	misorientaCon	
is	discussed	in	a	text!	

•  Standard	A->B	
rotaCon	is	expressed	
in	sample	axes.	

Δ ˜ g 

Passive Rotations (Axis Transformations) 	 	 	Active (Vector) Rotations	



59	 Misorientation +Symmetry 

•  ∆g=�
(Oc gB)(Oc gA)-1�

= OcgBgA
-1Oc

-1.	
•  Note	the	presence	
of	symmetry	
operators	pre-	&	
post-mulCplying	

•  ∆g=gBgA
-1;�

 (gBOc)(gAOc)-1�

 = gBOcOc
-1gA

-1 �

= gBOc’gA
-1.	

•  Note	the	reducCon	to	
a	single	symmetry	
operator	because	the	
symmetry	operators	
belong	to	the	same	
group!	

Passive Rotations (Axis Transformations) 	 	 	Active (Vector) Rotations	



60	
Symmetry: how many equivalent 

representations of misorientation? 
•  Axis	transformaCons:	
24	independent	operators	
(for	cubic)	present	on	
either	side	of	the	
misorientaCon.		Two	
equivalents	from	switching	
symmetry.	

•  Number	of	equivalents=	
24x24x2=1152.	

•  AcCve	rotaCons:	
Only	24	independent	
operators	present	
“inside”	the	
misorientaCon.		2	from	
switching	symmetry.	

•  Number	of	equivalents=	
24x2=48.	

Passive Rotations (Axis Transformations) 	 	 	Active (Vector) Rotations	



61	 Passive ↔ Active 
Just	as	is	the	case	for	rotaCons,	and	texture	components,	

	
gpassive(θ,n)	=	gT

acCve(θ,n),	
	
so	too	for	misorientaCons,	
	

       ∆gpassive(θ,n)	=	∆gT
acCve(θ,n).	

	
However,	please	be	careful	about	the	frame.		The	discussion	given	here	

(with	the	excepCon	of	the	example	that	illustrated	how	the	
misorientaCon	axis	moved	with	the	bi-crystal)	is	based	on	using	the	
“local”	or	“crystal”	frame,	not	the	reference	frame.			

The	relaConship	between	the	misorientaCon	calculated	in	the	local	frame	
and	the	misorientaCon	calculated	in	the	reference	frame	is	not	at	all	
simple.		For	dealing	with	grain	boundaries,	I	strongly	suggest	that	you	
sCck	to	the	local/crystal	frame.	



62	 Worked example: active rotations 
•  So	what	happens	when	we	

express	orientaCons	as	acCve	
rotaCons	in	the	sample	
reference	frame?	

•  The	result	is	similar	(same	
minimum	rotaCon	angle)	but	
the	axis	is	different!	

•  The	rotaCon	axis	is	the	sample	
[100]	axis,	or	x-axis,	which	
happens	to	be	parallel	to	a	
crystal	<111>	direcCon	
because	the	Copper	
component	is	(112)[11-1].	

{100}	pole	figures	

60°	rotaCon	
about	RD	



63	
Active rotations 

example 
 Symmetry operator number  1!
 Product matrix for gB X gA^-1:!
[    -1.000     0.000     0.000 ]!
[     0.000    -1.000     0.000 ]!
[     0.000     0.000     1.000 ]!
 Trace =  -1.!
  angle =   180.!
!
  Symmetry operator number  2!
 Product matrix for gB X gA^-1:!
[    -0.333     0.000     0.943 ]!
[     0.816    -0.500     0.289 ]!
[     0.471     0.866     0.167 ]!
 Trace =  -0.666738927!
  angle =   146.446442!
!
  Symmetry operator number  3!
 Product matrix for gB X gA^-1:!
[     0.333     0.817     0.471 ]!
[     0.817     0.000    -0.577 ]!
[    -0.471     0.577    -0.667 ]!
 Trace =  -0.333477914!
  angle =   131.815872!
!
…………..!

Note:	same	angle,	different	axis,	now	in	sample	frame	

 angles..     90.  35.2599983  45.!
 angles..    270.  35.2599983  45.!
!
 1st Grain: Euler angles:   90.  35.2599983  

45.!
 2nd Grain: Euler angles:   270.  

35.2599983  45.!
!
 1st matrix:!
[    -0.577     0.707     0.408 ]!
[    -0.577    -0.707     0.408 ]!
[     0.577     0.000     0.817 ]!
!
 2nd matrix:!
[     0.577    -0.707     0.408 ]!
[     0.577     0.707     0.408 ]!
[    -0.577     0.000     0.817 ]!
!
MISORInv: angle=   60. axis=  1 0 0!



64	 Active rotations 

•  What	is	stranger,	at	first	
sight,	is	that,	as	you	rotate	
the	two	orientaCons	
together	in	the	sample	
frame,	the	misorientaCon	
axis	moves	with	them,	if	
expressed	in	the	
reference	frame	(acCve	
rotaCons).	

•  On	the	other	hand,	if	
one	uses	passive	
rotaCons,	so	that	the	
result	is	in	crystal	
coordinates,	then	the	
misorientaCon	axis	
remains	unchanged,	
as	you	rotate	the	pair	
of	cr.	



65	 Active rotations 
example 

Add 10° to the first Euler angle so that 
both crystals move together:!

 angles..    100.  35.2599983  45.!
 angles..    280.  35.2599983  45.!
!
  1st matrix:!
[    -0.691     0.596     0.408 ]!
[    -0.446    -0.797     0.408 ]!
[     0.569     0.100     0.817 ]!
!
 2nd matrix:!
[     0.691    -0.596     0.408 ]!
[     0.446     0.797     0.408 ]!
[    -0.569    -0.100     0.817 ]!
!
MISORInv: angle=   60. axis=  6 1 0!
!
Note the change in the misorientation axis 

from 100 to 610!!

 Symmetry operator number  1!
 Product matrix for gB X gA^-1:!
[    -1.000     0.000     0.000 ]!
[     0.000    -1.000     0.000 ]!
[     0.000     0.000     1.000 ]!
 Trace =  -1.!
  angle =   180.!
!
  Symmetry operator number  2!
 Product matrix for gB X gA^-1:!
[    -0.478     0.004     0.878 ]!
[     0.820    -0.355     0.448 ]!
[     0.314     0.935     0.167 ]!
 Trace =  -0.666738808!
  angle =   146.446426!
!
  Symmetry operator number  3!
 Product matrix for gB X gA^-1:!
[     0.044     0.824     0.564 ]!
[     0.824     0.289    -0.487 ]!
[    -0.564     0.487    -0.667 ]!
 Trace =  -0.333477765!
  angle =   131.815857!
…………..!


