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Lecture Objectives

Explain how to compute intensities in a discrete OD from
counts of grains, points or volumes.

Define volume fraction as the fraction of material whose
orientation lies within a specified range of orientations.

Explain how to calculate volume fractions given a discrete
orientation distribution.

Describe the calculation of orientation distance as a subset of
the calculation of misorientations. Also discuss how to apply
symmetry, and some of the pitfalls.

lllustrate the binning scheme used for 5-parameter grain
boundary description, as part of the discussion of how to
obtain MRD values for specific examples.



Notation

g - orientation

f(2) - orientation distribution

O - symmetry operator

0,3, - 432 point group

O - crystal symmetry operator

O - sample symmetry operator

tr - trace of a matrix

Ag - misorientation

V.— physical volume fraction of grain, material, orientation
¢;, D, ¢,- Euler angles

Q, - Volume of orientation space, increment of volume

popL A — preferred orientation package Los Alamos, a software
package written in the early 1990s to analyze texture data,
based on the DOS operating system.



In Class Questions

How do we compute intensities
from volume fractions?

What is the difference between
cell-edge and cell-centered
coordinates?

What do we mean by the volume
fraction of a texture component?

How do we compute the volume
fraction of a component?

What is a capture angle or

tolerance angle or capture radius?

What is a partition map?

Why is the density of randomly
chosen orientations (in Euler
space) not uniform?

Describe two ways to compute
orientation distance.

Why is misorientation useful for
computing orientation distance?

How do we apply symmetry to
compute misorientation?

Why do different components
(e.g. cube vs. S) have different
volume fractions in a random
texture?



Intensity from Volume Fractions

Objective: given information on volume fractions (e.g.
numbers of grains of a given orientation), how do we

calculate the intensity in the OD?

e General relationships: 1
Integrate odf to get Vf (g) — f(g)dg
volume fraction: () AQ

_ 0 dV(g) _0 AV
V  dg A

Differentiate volume d
fraction to get odf : (g) 9

Reminder on units of the OD: the way that normalization is performed means
that the units of the OD are Multiples of a Random Density (MRD). If there is no
texture or preferred orientation then the value of “f”" is one everywhere. Note
that the formulae given here differ from those in Bunge (who has very little to
say about this topic). His correspond to a strict probability density formulation.



6 ° ° ° ° °
Discrete vs. Continuous Distributions

These notes emphasize the use of discrete distributions for
obtaining volume fractions.

If a continuous distribution is available, e.g., from fitting generalized
spherical harmonics (from the “series expansion” method) then
other ways of integrating over orientation space are used. Brief
notes about how to use this approach are provided at the end.

For data obtained as discrete points, e.g., from EBSD maps,
performing calculations directly on the data makes the least
assumptions about the material. On the other hand, prior

knowledge may provide a justification for using a particular fitted
function.



Intensity from V,, contd.

e For each cell, we assign an intensity equal to the volume fraction in
that cell, AV, divided by the volume of orientation space associated
with that cell, A2 and multiplied by the total volume of orientation
space .

e |f we have points with equal area or volume (e.g. EBSD data) the
volume fraction, AV, is simply the number of points in the " cell, n,
divided by the total number of points, N: AV,=n,/N.

e For 5x5x5° discretization in a 90x90x90° space, we particularize to:

. 1
Vi(g)=1 1007 f f(@sin®dddep dp, Ve =g [ iwis
1 dv AV
fig=- T8t
V dg AQ|
: AV
=8100 " /

2572 (cos[CI) ~2.5°]-cos[ D+ 2.5°])



Discrete OD

e Normalization also required for discrete OD

e Normalization depends on the size of the
sub-space of orientation, and on the
measure used (radians versus degrees).

e Sum the intensities over all the cells.
* O=¢, <21, 0=sP =<1, O=¢, <211

- 53 i -22) o+ 22)

0=¢, <90°, 0=P <90°, O=¢h, <90°
8100222f¢1 D; qbz)AqblA(/)z(cos((I) —ATCD) cos(CD +A§))

o1 P ¢



Volume fraction calculations

Choice of cell size determines size of the
volume increment, which depends on the
value of the second angle (® or ©).

Some grids start at the specified value.

More typical for the specified value to be in
the center of the cell.

poplLA: grids are cell-centered.



o Discrete ODs

Each layer: ACQ =

dA=sin@dDdy,:

AA A, = 90(°) AA=A(cos P)AP,

Total: . P, Cell edge discretization
o 0° 10° 20°  80° 90°
8100(°)2 | 0°
£(10,0,30)
(I) v 100 )
10,10[30) > A D=10
20°
Section at ¢p,= 30°
A¢2:]00
80° f(10,80,30)
90°

~— A, =10°



v Centered Cells

Different treatment of end and corner cells to exclude
volume outside the subspace

20° 7

30°

O, R (I)o lloo 2{00

0° 7

R (I0,080) ]

10° 7

- {10,10,30)

90°

({10,59,39)

A, =5°

P~ A¢, =10°

dA=sin@dDPdg,;:
AA=A(cosD)A¢,

./
j

A P=5°
A P=10°

Cell centered discretization



. Discrete orientation information

Typical text data.ANG file from TSL EBSD system
(e.g. SmallIN100/Slice _1.ang available in SmallIN100.zip):

# WorkDirectory
# OIMDirectory

#

4.724
4491
4932
4491
4491
4932
4932
4932

D

0.234
0.024
0.040
0.024
0.024
0.040
0.040
0.040

P,
4.904
5.132
4.698
5.132
5.132
4.698
4.698
4.698

fust/OIM/rollett  Each dataset may

/usr/OIM have millions of points

X y
0500 0.866 | 1.0 1000 0 O
7500 0866 1.0 1000 0 O
19500 0.866| 1.0 1000 0 O
20500 0866 | 1.0 10000 O
21500 0866 1.0 1000 0 O
22500 0866 1.0 1000 0 O
23500 0866 1.0 1000 0 O
24500 0866 1.0 1000 0 O

(Euler angles, radians) (spatial coordinates, microns)



. Binning individual orientations

in a discrete OD

OO
o b 10°
20°

Section at ¢p,= 30°

30°
90°

¢,
0° 10° 20° 80° 90°
®
o o® ®
o o’ A D=10°
individual
o % e | Orientation

~— A¢, =10°



« Example of

gQ°
random N
. . W B
orientation — °o 7 P
: : : : T
distribution in il
RIS

E l/l l e r S p ac e Figure 2.25 On the definition of the invariant measures by a random

distribution in the EULER space ¢, Do,

Note the smaller densities of points (arbitrary scale) near @
= 0°. When converted to intensities, however, then the
result is a uniform, constant value of the OD (because of

the effect of the volume element size, sin@d @d¢ d¢.).

If a material had randomly oriented grains all of the
same size then this is how they would appear, as
individual points in orientation space.
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OD from discrete points.:
pseudo-code

Compute the volume of the chosen orientation space, e.g. Euler
space, e.2.90° x 90° x 90° = Q2 =fdg = 8100 °2. Also compute the
volume of each cell; in this case

d

Bin each orientation into a cell in the OD

Sum number (or weight, if each orientation represents a different
physical volume) in each cell

Divide the number (or physical volume) in each cell by the total
number of grains (or total physical volume) to obtain V;

Convert from
Vito f(g):
f(g) =V*dQ = 8100 V,/ {A(cos y

N %
Q=[dg  JQ =cell volume
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Discrete OD from points

The same V;near @=0° will have much larger f(g) than
cells near @ =90°.

Unless large number (>10%, texture dependent) of grains
are measured, the resulting OD will be noisy, i.e. large
variations in intensity between cells.

Typically, smoothing is used to facilitate presentation of
results: always do this last and as a visual aid only!

An alternative to smoothing an ODF plot is to replace
individual points by Gaussians and then evaluate the
texture. This is particularly helpful (and commonly
applied) when performing a series expansion fit to a set of
individual orientation measurements, such as OIM data.
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Volume fraction calculation

e Inits simplest form: sum up the intensities
multiplied by the value of the volume
increment (invariant measure) for each cell.

e Check that when you compute this sum for
the entire space the result is equal to one
(else the normalization is not correct).
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Simple results

What if all the orientations/grains/
sets_of Euler_angles fall in one cell?

Answer: the intensity (in units of Multiples of a
Random Density, MRD) in that cell depends on
its location in the space (assuming uniformly
divided space by angle), and the intensity in all
other cells is exactly zero.

Example: cell-edge coordinates with 10°

increments in a 90x90x90 space (total volume, Q2

= 8100 (°2);

each cell has volume

A 100xAcos(dD)).

Note that the sum of the second column is one,
as it must be for the integral of sin(®) over the
interval [0..1/2].

More exactly: f{g) = Q / AQ(g)

The magnitude of the peak depends on the cell
size in relation to the volume, not on the
measure (degrees versus radians).

0 (0) Acos®(g) | Intensity

(MRD)
0 0.0152 5331
10 0.0451 1795
20 0.0737 1100
30 0.1 810
40 0.1233 657
50 0.1428 567
60 0.1580 512
70 0.1684 481
80 0.1736 466
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Simple results. 2

What if all, say, 9/10ths of the grains fall in
one cell and the rest are randomly
distributed?

Answer: the intensity in that cell once
again depends on its location in the space
(assuming uniformly divided space by
angle), and the intensity in all other cells is
fixed at 0.1/{remaining volume}, where the
“remaining volume” is the total volume
minus the volume of the individual cell that
contains 9/10ths of the volume.

Example: cell-edge coordinates with 10°
increments in a 90x90x90 space (total
volume = 8100; each cell has volume
100xAcos(@)). Note that the sum of the
second column is one.

More exactly (in the single cell):

f(g) =0.9 Q/AQ(g), - “peak”
or elsewhere, since If(g) =Q

f(e) =0.1 Q/(Q-AQL(g)) - “random”

@ () [oesoto [ T s
0 0.0152 4779 0.10002
10 0.0451 1615 0.10006
20 0.0737 990 0.10009
30 0.1 729 0.10012
40 0.1233 591 0.10015
50 0.1428 510 0.10017
60 0.1580 461 0.10019
70 0.1684 433 0.10020
80 0.1736 420 0.10021
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Grain Boundary Space

As a preview to dealing with grain boundaries, we explain the binning scheme and
show how to compute intensities and expected area fractions.

A grain boundary requires five (5) macroscopic parameters to describe its
crystallographic character (which ignores translational parameters at the atomic
scale).

Generally, it is convenient to separate these parameters into the disorientation
and the normal of the boundary plane.

For the purposes of this lecture, assume that the disorientation is the difference
in orientation across the boundary, reduced to a fundamental zone (FZ). Assume
that the normal is a unit vector described by two spherical angles, which can be
referred to either one of the two crystal lattices (orientations).

Assume a binning scheme in which the disorientation is expressed as Euler angles
thus (¢,, cos(®), ¢,); each dimension is divided into equal size cells. The use of
the cosine provides cells of equal volume. We bin the normal according to (f3,
cos(a)), where alpha is the co-latitude and beta the longitude.

For cubic materials, we can use a 90°x90°x90° space for disorientation (which
contains multiple copies of the FZ) and a 90°x360° space for the normal (which
has only one copy of the FZ).



21 . . .
Area Fractions of Grain Boundaries

A reasonable discretization uses 9 intervals (cells) in all dimensions except we
use 36 for the longitude of the normal. This provides an approximate 10°

resolution.

Multiplying out the dimensions, 9*9*9*9*36 = 288,684. Crystal symmetry
provides a reduction of a factor of 36 (1152/96, the number of copies of the
FZ in the disorientation space), down to 8,019 independent cells. This means
that, if we want an average of ten data points per bin (on average) then we
need of order 80,000 points.

Consider the intensity associated with coherent twin boundaries in an fcc
metal, such as copper or silver. This GB type corresponds to a single
disorientation (S3, explained elsewhere) and a single normal, (111). If 1/3 of
the boundaries are of this type (i.e. the area fraction is 1/3) then all the
corresponding data points fall into a single bin/cell. Therefore the intensity
associated with that cell is the area fraction divided by the fraction of bins for
that type, but there is only 1 cell. Therefore the intensity in units of MRD is
8019/3 = 2,673 (“times random”).
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Texture Component Fractions:
Partitioning by Misorientation

Now we discuss how to compute the volume fraction of material
associated with a particular texture component.

The physical analogy is, how many (equal sized) grains will we find in a
material that correspond to a particular texture component?

The simplest way to think about volume fractions is to consider that all cells
within a certain angle of the location of the position of the texture
component of interest belong to that component.

Although we will need to use the concept of orientation distance
(equivalent to misorientation), for now we can use a fixed angular distance
or acceptance angle to decide which component a particular cell belongs to.

This latter approach introduces the concept of orientation distance, or the
difference between two rotations/orientations, which is itself a rotation or
misorientation. Note that rotations are not Cartesian vectors and so we
cannot use Euclidean distance; however, the angle associated with the
difference in orientation (misorientation angle) provides a suitable measure
of orientation distance. Symmetry has to be included in order to find the
smallest possible misorientation angle.
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Acceptance Angle Schematic

e |n principle, one might
want to weight the
intensity in each cell as a
function of distance from
the component location.

e For now, however, we
will assign equal weight to
all cells included in the
volume fraction estimate.




" Illustration of Acceptance Angle

e As a basic approach, include all cells within
10° of a central location.

p
Vv
(), vV | V|V
V| V]| e | V|V
vV | V|V
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Copper component example

15° acceptance angle; location of
maximum intensity 5° off ideal position

CUR80-2 6/13/88 35 Bwimv i
CODK 5.0 90.0 5.0 90.0 1 1

: 2.0%FON= 0 13-APR-** strength= 2.43

100 phi= 45.0

15 89 89 42 14 6 3 3 8 12

5 57 65 65 45 21 14 12 10 8 9

12 118 136 84 49 16 2 1 1 1 2 4
22 123 132 108 37 12 6 3 3 3 3 2
321 178 109 48 19 7 5 5 4 3 3 1
95 131 55 12 3 2 2 1 1 1 0 0
173015 62 23 7 2 1 1 1 1 0 1 0
15131342 881 436 191 90 53 29 17 6 2 1 0 0 1 0 0 0
137 135 109 77 59 41 24 10 4 2 1 0 0 0 0 0 0 0
0 1 3 5 10 13 14 10 3 1 1 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1

0 0 0 0 1 0 1 2 2 1 1 1 2 2 3 4 5 6
(jg) 0 0 0 0 1 1 2 4 5 5 5 4 3 6 8 6 6 7
2 2 2 2 2 2 2 2 4 3 3 3 4 7 9 6 12 17

3 4 4 4 4 7 33 80 86 66 42 29 29 31 33 40 51 46

7 7 9 14 31 71 144 179 145 81 31 11 7 7 10 17 25 23

Y 203 190 188 193 224 304 417 486 410 249 109 51 36 26
301 315 404 559 752100511801140 861 494 237 132 65 42

N -
o o
N -
AN
w =
=N
w =
oN

-
U 9k O ©O O O OO K K UL Wu

w N B =
O 00 W O O

?;

v



26

Partitioning Orientation Space

e Problem!

e Solution:
e |f one chooses too e Itis necessary to go
large an acceptance through the entire space
angle, overlap occurs and partition the space

into separate regions with
one subregion for each
component. Each cell is
assigned to the “nearest”
component.

between different
components

Copper(#3)
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Distance in Orientation Space

What does “distance”
mean in orientation
space?

Note: distance is not the
Cartesian distance
(Pythagorean,
V{Ax?*Ay?*Az?})

This is an issue because
the volume increment

varies with [the sine of
the] the 2nd Euler angle.

Answer:

Distance in orientation
space is measured by
misorientation.

This provides a better
method for partitioning
the space.

Misorientation distance is
the minimum available
rotation angle between a
pair of orientations.

Symmetry must be
included.




Misorientation Calculation

Compute misorientation by “reversing” one orientation and then applying the
other orientation. More precisely stated, compose the inverse of one
orientation, g,, with the other orientation, g.

Ag| = miny{ cos™( { 1([O0;"'g,07"*]gp") -1}/2 )}

The symbol “#r()” means the trace of (sum of leading diagonal entries) of the
matrix within the parentheses. The minimum function indicates that one
chooses the particular combination of crystal symmetry operator, 0,€0,;,, and
sample symmetry operator, O,£0,,,, that results in the smallest angle (for
cubic crystals, computed for all 24 proper rotations in the crystal symmetry
point group). Thusi=/..24 and j=1..4.

Superscript T indicates (matrix) transpose which gives the inverse rotation.
Subscripts A and B denote first and second component. For this purpose, the

order of the rotations does not matter (but it will matter when the rotation axis
is important!).

Note that including the symmetry operators allows points near the edges of
orientation space to be close to each other, even though they may be at
opposite edges of the space.

Including sample symmetry ensures that a given cell in orientation space is
associated with the nearest of any variant of a given component.

More details provided in later slides.



Partitioning by Misorientation

e For each point (cell) in the orientation space, compute the
misorientation of that point with every component of
interest (including all 3 variants of that component within
the space); this gives a list of, say, six misorientation
values between the cell and each of the six components of

interest.

e Assign the point (cell) to the component with which it has
the smallest misorientation, provided that it is less than
the acceptance angle.

e |f a point (cell) does not belong to a particular component
(because it is not close enough), label it as “other” or

“random”.
29



Partition Map, COD, ¢, = 0°
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0 20-MAY-** strength= 3.88
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The number in each cell indicates which component it belongs to. 0

“random”; 8

Brass; 1 = Cube.



" Partition Map, COD, ¢, = 45°

0 20-MAY-** strength= 3.88

1.2%,Fon

3/08/02 99 WIMV iter:
5.0 90.0 1 11 2 3

5.0 90.0

AL

0 6859PhiZ2= 45.0

CODB

o I e B e B o R |
Lo e B e R o R |

11
11
11
11

10
10

10
10

10

10

Copper.

Brass

0
0
0

Component numbers: 0:=random; 8:=Brass; 11:= Dillamore; 12:



TN T e copper

.” brass \;\\T%
@
Component
Volumes: fcc

rolling texture

e These contour
maps of individual
components in
Euler space are  Cube
drawn for an

acceptance angle
of ~12°.
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How to calculate misorientation?

The next set of slides describe how to calculate misorientations, how
to deal with crystal symmetry and sample symmetry, and some of the
pitfalls that can arise.

For orientation distance, only the magnitude of the difference in
orientation needs to be calculated. Therefore some of the details
that follow go beyond what you need for volume fraction.
Nevertheless, you need to be aware of these issues so that you do not
become confused in subsequent exercises.

This misorientation calculation is not available in popLA but is
available in TSL/HKL software. It is completely reliable but does not
allow you to control the application of symmetry.
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Objective

e To make clear how it is possible to express a
misorientation in more than (physically)
equivalent fashion.

e To allow researchers to apply symmetry correctly;
mistakes are easy to make!

e |tis essential to know how a rotation/orientation/

texture component is expressed in order to know
how to apply symmetry operations.
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Worked Example

In this example, we take a pair of orientations that were chosen
to have a 60°<111> misorientation between them (rotation axis
expressed in crystal coordinates). In fact the pair of
orientations are the two sample symmetry related variants of
the Copper component. The Copper component can be written
with Miller indices as (112)[11-1].

We calculate the 3x3 Rotation matrix for each orientation, g]A
and gz, and then form the misorientation matrix, Ag=g,g, .
From the misorientation matrix, we calculate the angle,

= cos™!(trace(Ag)-1)/2), and the rotation axis.

In order to find the smallest possible misorientation angle, we

have to apply crystal symmetry operators, O, to the
misorientation matrix, OAg, and recalculate the angle and axis.

First, let’s examine the result....



. Worked Example

angles.. 90. 35.2599983 45. {100} pole figures
angles.. 270. 35.2599983 45.
lst Grain: Euler angles: 90. 35.2599983 45.

2nd Grain: Euler angles: 270. 35.2599983 45.

1st matrix:

-0.577 0.707 0.408 ] (S Ul

-0.577 -0.707 0.408 ]

0.577 0.000 0.817 ]

S =

2nd matrix:

0.577 -0.707 0.408 ]

0.577 0.707 0.408 ] +

-0.577 0.000 0.817 ] s
Product matrix for gA X gB"-1:
[ -0.667 0.333 0.667 ] (112)(111)
[ 0.333 -0.667 0.667 ]
[ 0.667 0.667 0.333 ]
MISORI: angle= 60. axis= 1 1 -1

As it happens, the result is 60°[11-1], which looks reasonable,
but is it, in fact, the smallest angle?



. Output with Symmetry Applied

1st matrix:

[ -0.691 0.596
[ -0446 -0.797
[ 0569 0.100

0.408 ]
0.408 ]
0.817]

2nd matrix:

[ 0.691 -0.596
[ 0446 0.797
[ -0569 -0.100

0.408 ]
0.408 ]
0.817]

Symmetry operator number 1

Product matrix for gA X gBA-1:

[ -0.667 0333 0.667]
[ 0333 -0.667 0.667]
[ 0667 0667 0.333]
Trace = -1.

angle = 180.

Symmetry operator number 2

Product matrix for gA X gBA-1:

[ -0.667 0333 0.667]

[ -0.667 -0.667 -0333]

[ 0333 -0.667 0.667]
Trace = -0.666738808
angle = 146.446426

Symmetry operator number 3

Product matrix for gA X gBA-1:

[ -0.667 0.333 0.667]
[ -0333 0.667 -0.667]
[ -0.667 -0.667 -0.333]
Trace = -0.333477736
angle = 131.815857

Symmetry operator number 4

Product matrix for gA X gBA-1:

[ -0.667 0333 0.667]

[ 0667 0667 0333]

[ -0.333 0.667 -0.667]
Trace = -0.666738927
angle = 146.446442

Symmetry operator number 5
Product matrix for gA X gBA-1:
[ -0.667 -0.667 -0.333]
[ 0333 -0.667 0.667]
[ -0.667 0333 0.667]
Trace = -0.666738987

angle = 146.446442

Symmetry operator number 6

Product matrix for gA X gBA-1:
[ 0667 0667 0.333]
[ 0333 -0.667 0.667]
[ 0667 -0333 -0.667]
Trace = -0.666738987

angle = 146.446442

Symmetry operator number 7

Product matrix for gA X gBA-1:
[ 0667 -0.333 -0.667]
[ 0333 -0.667 0.667]
[ -0.667 -0.667 -0.333]
Trace = -0.333477974

angle = 131.815872

Symmetry operator number 8

Product matrix for gA X gBA-1:
[ 0667 -0°.333 -0.667]
[ -0333 0.667 -0.667]
[ 0667 0667 0.333]
Trace = 1.66695571

angle = 70.5199966

Symmetry operator number 9

Product matrix for gA X gBA-1:
[ 0333 -0.667 0.667]
[ 0667 -0333 -0.667]
[ 0667 0667 0.333]
Trace = 0.333477855

angle = 109.46682

Symmetry operator number 10

Product matrix for gA X gBA-1:
[ -0333 0.667 -0.667]
[ -0.667 0333 0.667]
[ 0667 0.667 0333]
Trace = 0.333477855

angle = 109.46682

Symmetry operator number 11
Product matrix for gA X gBA-1:
[ -0333 0.667 -0.667]
[ 0667 0667 0.333]
[ 0667 -0333 -0.667]
Trace = -0.333261013

angle = 131.807526

Symmetry operator number 12

Product matrix for gA X gBA-1:
[ 0667 0667 0.333]
[ 0667 -0333 -0.667]
[ -0333 0.667 -0.667]
Trace = -0.333261073

angle = 131.807526

Symmetry operator number 13

Product matrix for gA X gBA-1:
[ -0333 0.667 -0.667]
[ -0.667 -0.667 -0.333]
[ -0.667 0333 0.667]
Trace = -0.333261013

angle = 131.807526

Symmetry operator number 14

Product matrix for gA X gBA-1:
[ -0.667 -0.667 -0.333]
[ -0.667 0333 0.667]
[ -0333 0.667 -0.667]
Trace = -1.

angle = 180.

Symmetry operator number 15

Product matrix for gA X gBA-1:
[ 0333 -0.667 0.667]
[ -0.667 -0.667 -0.333]
[ 0667 -0333 -0.667]
Trace = -1.

angle = 180.

Symmetry operator number 16

Product matrix for gA X gBA-1:
[ -0.667 -0.667 -0.333]
[ 0667 -0333 -0.667]
[ 0333 -0.667 0.667]
Trace = -0.333260953

angle = 131.807526

Pajarito.materials.cmu.edu/rollett/texture_subroutines : look for rexgbs-[date].f90

Symmetry operator number 17
Product matrix for gA X gBA-1:
[ 0333 -0.667 0.667]
[ 0667 0.667 0333]
[ -0.667 0.333 0.667]
Trace = 1.66652203

angle = 70.533165

Symmetry operator number 18

Product matrix for gA X gBA-1:
[ 0667 0667 0.333]
[ -0.667 0333 0.667]
[ 0333 -0.667 0.667]
Trace = 1.66652203

angle = 70.533165

Symmetry operator number 19

Product matrix for gA X gBA-1:
[ 0333 -0.667 0.667]
[ -0.667 0333 0.667]
[ -0.667 -0.667 -0.333]
Trace = 0.333044171

angle = 109.480003

Symmetry operator number 20
Product matrix for gA X gBA-1:
[ 0667 -0333 -0.667]

[ 0667 0.667 0333]
[ 0333 -0.667 0.667]
Trace = 2.
angle = 60.

Symmetry operator number 21

Product matrix for gA X gBA-1:
[ 0667 0667 0.333]
[ -0333 0.667 -0.667]
[ -0.667 0333 0.667]
Trace = 2.

angle = 60.

Symmetry operator number 22

Product matrix for gA X gBA-1:
[ 0667 -0333 -0.667]
[ -0.667 -0.667 -0.333]
[ -0333 0.667 -0.667]
Trace = -0.666522205

angle = 146435211

Symmetry operator number 23
Product matrix for gA X gBA-1:
[ -0.667 -0.667 -0.333]

[ -0333 0.667 -0.667]
[ 0667 -0333 -0.667]
Trace = -0.666522026

angle = 146.435196

Symmetry operator number 24
Product matrix for gA X gBA-1:
[ 0333 0.667 -0.667]

[ 0667 -0333 -0.667]
[ -0.667 -0.667 -0.333]
Trace = -0.999999881

angle = 179.980209

MISORI: angle= 60. axis= 1 1

MISORI: angle= 60. axis= 11 -1-1

This set of tables
shows each
successive result as a
different symmetry
operator is applied
to Ag. Note how the
angle and the axis
varies in each case!
Note that #20 is the
one that gives a 60°
angle.
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Misorientations

e Misorientations:
_ -1
Ag=gpg,
transform from crystal axes of grain A
back to the reference axes, and then
transform to the axes of grain B.

e Note that this use of “g” is based on the
standard Bunge definition
(transformation of axes)




" Notation

e |n some texts, misorientation formed
from axis transformations is written
with a tilde.

Ag

e Standard A->B transformation is
expressed in crystal axes. The reason
for this is that we generally want to
know the common axis between the
two crystals in terms of crystal
coordinates.




»  Misorientation +Symmetry

oAg:

(0.8)(0.8,4)"
— chBgA-] OC-] .

e Note the presence of symmetry
operators pre- & post-multiplying
e Note that removing the parentheses

from the term with the inverse swaps
the order of the two matrices.




+ Symmetry: how many equivalent
representations of misorientation?

e Axis transformations:
24 independent operators (for cubic) present on
either side of the misorientation. Two
equivalents from switching symmetry, i.e. the
fact that there is no (physical) difference
between passing from grain A to grain B, versus
passing from grain B to grain A.

e Number of equivalents = 24x24x2=1152.




" When to include Sample Symmetry?

e Answer: only for volume fractions
e The ruleis simple:

e For calculating orientation distances for the
purpose of partitioning orientation space, you do
include sample symmetry. You only have to apply
the sample symmetry, however, to either the
component or the cell being tested but not both.

e For calculating misorientations for the purpose of
characterizing grain boundaries, you do not
include sample symmetry.



43

Practical Help with Volume Fractions

To calculate volume fractions directly from popLA .SOD files
(orientation distributions in popLA format), use sod2vf.f (a
Fortran 77 code)

To calculate volume fractions from a list of discrete orientations
in .\WTS format, use wts2pop|[-latest_revision_date].f, which also
bins the orientations into an SOD as well as pole figures and
inverse pole figures. Look at any .WTS file to learn about the
format (or read the popLA manual). You can find these

programs at
pajarito.materials.cmu.edu/rollett/texture_subroutines

If your data source is a *.ANG orientation map (from TSL, or, a
*.CTF from HKL) then first use OIM2WTS.f to convert it to

the .WTS format. If your material has hexagonal symmetry be
very careful about how the Cartesian x-axis is aligned with the
crystal axes (TSL and HKL are, typically, different).



" Volume fractions from Random?

e Based on a list of 20,000 random orientations and
a 15° acceptance angle, you should expect this set
of volume fractions:

e {001}<100> cube vol. frac.= 2.175 %
{001}<110> NDcube vol. frac.= 2.144 %
{011}<100> Goss vol. frac.= 2.310 %
{110}<112> brass vol. frac.= 4.116 %

Dillamore vol. frac.= 3.030 %
{211}<111> Copper vol. frac.= 3.721 %
{231}<124> S vol. frac.= 8.475 %

e Remember that more orientations are required for
greater precision (more significant figures).



s Volume fractions from Random?

e Based on a list of 20,000 random orientations and a 10° acceptance angle, you
should expect this set of volume fractions:

For component cube vol. frac.= 0.575 %
For component NDcube vol. frac.= 0.690 %
For component Goss vol. frac.= 0.715 %
For component brass vol. frac.= 1.310 %
For component Dillam vol. frac.= 1.103 %
For component Copper vol. frac.= 1.382 %
For component 231124 vol. frac.= 2.775 %

e Note how the volume fractions have decreased markedly with the decrease in
acceptance angle.

e Eliminating the Dillamore component, which is only about 10° from Copper,
the following set is found: note that Copper has increased but not by a factor

of 2.

For component cube vol. frac.= 0.575 %
For component NDcube vol. frac.= 0.690 %
For component GoOss vol. frac.= 0.715 %
For component brass vol. frac.= 1.310 %
For component Copper vol. frac.= 1.710 %
For component 231124 vol. frac.= 2.775 %



« More Random/Uniform Volume
Fractions by Component

Table 1: Orientations, Multiplicities, and Volume Fractions of 5 Orientation Poles

a° 1 5" 1°
Component  {hkl} (uvw)  rst (&1, D, 02) Multiplicity Code A Code A Code B Code B
Cube 001 100 010 {0.0,0) 1 0.65% 068% 054%  0.67T%
Goss 011 100 0Ll (0,45.0; 1 0.64% 067% 059%  0.67%H
Brass 101 121 101 (35.26,45,90) 2 L19%  1.35%  L19% L.35%
n — fiber, 012 10D 021 (0,26.57,0) 2 La% 13%  1L3d% L3v%
5 213 364 22179 (58.98,36.70,63.43) ] 2.76% 2.70% 2.78%  2.70%

Taken from unpublished work by Creuziger, Hu & Rollett (2010).
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Variations in Random Vf

Why do the volume fractions vary with component
location?

Answer: mainly because of variations in how close they lie
to symmetry planes in orientation space.

Assume cubic-orthorhombic (crystal+sample) symmetry

An orientation such as Goss lies on one edge, so despite
including 3 symmetry-related locations, its volume is only
about 1/4% of, say, the S component.

Similarly the Copper component, only includes 1/2t of the
space of the S component.

The rest of the variation is related to location with respect
to the second Euler angle. See the next slide for
illustrations of the above points.



" 3D Views

a) Brass b) Copper c¢)S
Goss e) Cube

f) combined texture

1: {35,45,90}, Brass,

2: {55,90, 45}, Brass

3: {90, 35,45}, Copper,

4. {39, 66,27}, Copper

5: {59, 37,63}, S,

6: {27,58, 18}, S,
7:{53,75,34},S

8: {90, 90, 45}, Goss

9: {0,0,0}, cube*

10: {45, 0,0}, rotated cube

* Note that the cube exists as a line between
(0,0,90) and (90,0,0) because of the linear

dependence of the 1st and 3rd angles when the
2nd angle = 0.

Figure courtesy of Jac-hyung Cho, KIMS, Korea 1/8
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Scaling by Random V;

e |t has been argued that volume fractions are more reliable
than intensities partly because they reflect the physical
makeup of the material more accurately. For example, the
intensity at the cube position rises to very high values once
the volume fraction of orientations near cube rises much
above 25%, which is not true of other orientations.

e Given that the volume fraction varies significantly with
position in the space, especially for components near
symmetry planes, it has also been argued that volume
fractions should be reported as a multiple of the fraction
associated with a random (uniform) texture.



Volume fractions from
continuous distributions

Using texture components in crystal plasticity finite element simulations, D. Raabe, F. Roters,
International Journal of Plasticity, 20, 339-361 (2004), doi:10.1016/50749-6419(03)00092-5. [look
in Box folder]

The iterative series-expansion method for quantitative texture analysis. |. General outline, M.
Dahms and H. J. Bunge, J. Appl. Cryst. (1989). 22, 439-447, doi:10.1107/50021889889005261

Discretization techniques for orientation distribution functions, LS Toth & P van Houtte, Textures &
Microstructures (1992). [look in Box folder]

Section 3.4 (p 70) in Orientations & Rotations by A. Morawiec.
Chapter 13 in Quantitative Texture Analysis, edited by HJ Bunge and C Esling (1982).

The first paper by Raabe & Roters is based on the concept of representing each component by a
Gaussian peak in orientation space. The simplest mathematical form is this:

f(g) = Sy exp(-w?/wy?)
In fact, the von Mises-Fisher distribution (g.v. wikipedia) is more correct for spherical parameters,
which is discussed by Morawiec and others.

If a series expansion fit for a texture is available, and the positions of a set of texture components
has been identified (e.g., by inspection of the OD), then volume fractions can be obtained via a
procedure that minimizes the difference between the fitted Gaussian peak and the local values of
f(g), using the coefficients of the ODF.
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Summary

Methods for calculating volume fractions from discrete
orientation distributions reviewed.

Complementary method of calculating the OD from
information on discrete orientations (e.g. OIM) provided.

Method for calculating orientation distance (equivalent to
misorientation) given, with illustrations of the importance of
how to apply symmetry operators.

For further discussion: in some cases, it is useful to compare
volume fractions in a textured material to the volume
fractions that would be expected in a randomly oriented
material.

Different programs may well yield different volume fraction
values because of differences in the procedure (e.g. how the
space is partitioned).
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Supplemental Slides

The following slides illustrate what happens with misorientations if you
deal with active rotations, instead of the standard axis transformations
(passive rotations) used in materials science.

This material is useful in case you have experience with solid mechanics,
or you cannot get a misorientation calculation to work properly.

Note: it does not matter whether you use passive or active rotations for
computing the rotation angle; it only makes a difference to the rotation
axis, i.e. the skew-symmetric part of the misorientation matrix.

Caution: if you calculate the misorientation for a grain boundary with
active rotations, the axis will be expressed in the sample frame. This is
not what you want, generally speaking, if one is interested in the
crystallographic character of the boundary.



. Passive vs. Active Rotations

These next few slides describe the differences between dealing with

passive rotations (= transformations of axes) and active rotations
(fixed coordinate system)

e Passive Rotations e Active Rotations
e Materials Science || ® Solid mechanics

+ o describes an axis || ° & describesa

transformation rotation of a crystal

from samble to from ref. position
P to its orientation.
crystal axes

Passive Rotations (Axis Transformations) Active (Vector) Rotations
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Matrices

g=2XZ, =

( COS@y COs@,
—sin @ sin @, cos P

—COS @ Sin @y
—sin @) cos @ cos P

\ sing; sin®

Passive Rotations (Axis Transformations)

singj cos ¢
+¢0s @) sin @y cos P

—sing; sin ¢,
+C0S (] COS ¢ cos P

—cos @ sin®

sing, sin @

Note transpose
relationship
between the two

COS@y Sin O

cosd

COS{p| COSQH

—sin\p; sin g, cos P

sing;
+C0s

0S¢
sing, cos P

matrices.

9 = 9¢10019 D1009 P2001 =

—Cos @y sing, .
. sin ¢ sin O
—sin @) cos ¢y cos P
—sin @ sing; —Cc0os ¢ sin P
+COS (] COS ¢y cos P
cos @ sin® cos P

Active (Vector) Rotations
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Texture +Symmetry

Symmetry Operators:

OsampleEOs
Ocrysta/EOc
/
g =0.g0.
e = 5

Note that the crystal
symmetry post-multiplies,
and the sample symmetry
pre-multiplies.

g =0g0.
g<——g

Note the reversal in
order of application of
symmetry operators!

Passive Rotations (Axis Transformations)

Active (Vector) Rotations




" Groups: Sample +Crystal Symmetry

e 0.€0(432); e Think of applying the
proper rotations of symmetry operator in
the cubic point group. the appropriate

e 0.€0(222); frame: thus for active

proper rotations of rotations, apply

the orthorhombic symmetry to the

point group. crystal before you
rotate it.

Passive Rotations (Axis Transformations) Active (Vector) Rotations
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Misorientations

Misorientations:

Ag=gsg,";

transform from crystal
axes of grain A back to the
reference axes, and then
transform to the axes of
grain B.

Note that this use of “g” is
based on the standard
Bunge definition
(transformation of axes)

Misorientati?ns:

Ag=gs84 " ;

the net rotation from A to B is:
rotate first back from the
position of grain A and then

rotate to the position of grain
B.

Note that this use of “g” is
based on the a definition in
terms of an active rotation (the

g” is the inverse, or transpose
of the one on the left).

Passive Rotations (Axis Transformations)

Active (Vector) Rotations
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Notation

¢ |n some texts,
misorientation
formed from axis
transformations is
written vxith a tilde.

Ag

e Standard A->B

transformation is

expressed in crystal
axes.

e You must verify from
the context which
type of misorientation
is discussed in a text!

e Standard A->B
rotation is expressed
in sample axes.

Passive Rotations (Axis Transformations)

Active (Vector) Rotations




»  Misorientation +Symmetry

¢ Ag:ngA_];
. Ag= (850.)(8,0.)"
O O - = 850078,
( CgB)( ch) — O o !
:0 _10_] _gB ch'
5BSA Ve e Note the reduction to
e Note the presence a single symmetry
of symmetry operator because the
operators pre- & symmetry operators
post-multiplying belong to the same
group!

Passive Rotations (Axis Transformations) Active (Vector) Rotations



~Symmetry: how many equivalent
representations of misorientation?

e Axis transformations: e Active rotations:
24 independent operators Only 24 independent
(for cubic) present on operators present
either side of the “inside” the
misorientation. Two misorientation. 2 from
equivalents from switching switching symmetry.
symmetry. e Number of equivalents=

e Number of equivalents= 24x2=48.
24x24x2=1152.

Passive Rotations (Axis Transformations) Active (Vector) Rotations
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Passive <> Active

Just as is the case for rotations, and texture components,

gpassive(H/ n) = gTactive(H/ n)/

so too for misorientations,
Agpassive(an) = AgTactive(eln)-

However, please be careful about the frame. The discussion given here
(with the exception of the example that illustrated how the
misorientation axis moved with the bi-crystal) is based on using the
“local” or “crystal” frame, not the reference frame.

The relationship between the misorientation calculated in the local frame
and the misorientation calculated in the reference frame is not at all
simple. For dealing with grain boundaries, | strongly suggest that you
stick to the local/crystal frame.



" Worked example: active rotations

e So what happens when we
express orientations as active
rotations in the sample
reference frame?

e The result is similar (same
minimum rotation angle) but
the axis is different!

e The rotation axis is the sample
[100] axis, or x-axis, which
happens to be parallel to a
crystal <111> direction
because the Copper
component is (112)[11-1].

{100} pole figures

(S 4]

0= g

60° rotation m
about RD

—

(112)(111]
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Active rotations

A
FEMYIERR)
A= e
(12)(11]
>

angles.. 90. 35.2599983 45.
angles.. 270. 35.2599983 45.

1st Grain: Euler angles: 90. 35.2599983

45.
2nd Grain: Euler angles: 270.
35.2599983 45.

1st matrix:
[ -0.577 0.707 0.408 ]
[ -0.577 -0.707 0.408 ]
[ 0.577 0.000 0.817 ]

2nd matrix:
[ 0.577 -0.707 0.408 ]
[ 0.577 0.707 0.408 ]
[ -0.577 0.000 0.817 ]
MISORInv: angle= 60. axis= 1 0 O

Note: same angle, different axis,

example

Symmetry operator number

1

Product matrix for gB X gA"-1:

[ -1.000 0.000 0.000
[ 0.000 -1.000 0.000
[ 0.000 0.000 1.000
Trace = -1.

angle = 180.

Symmetry operator number

2

Product matrix for gB X gA"-1:

[ -0.333 0.000 0.943
[ 0.816 -0.500 0.289
[ 0.471 0.866 0.167
Trace = -0.666738927

angle = 146.446442

Symmetry operator number

3

Product matrix for gB X gA™-1:

[ 0.333 0.817 0.471
[ 0.817 0.000 -0.577
[ -0.471 0.577 -0.667
Trace = -0.333477914

angle = 131.815872

now in sample frame
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Active rotations

e What is stranger, at first
sight, is that, as you rotate
the two orientations
together in the sample
frame, the misorientation
axis moves with them, if
expressed in the
reference frame (active
rotations).

e On the other hand, if
one uses passive
rotations, so that the
result is in crystal
coordinates, then the
misorientation axis
remains unchanged,
as you rotate the pair
of cr.



o 1 | Active rotations

- example
gl
(\12\f““ Symmetry operator number 1
Product matrix for gB X gA”"-1:
[ -1.000 0.000 0.000 ]
> [ 0.000 -1.000 0.000 ]
[ 0.000 0.000 1.000 ]
Add 10° co the first Euler angle so that Trace = -1.
both crystals move together: angle = 180.
angles.. 100. 35.2599983 45.
angles.. 280. 35.2599983 45. Symmetry operator number 2
Product matrix for gB X gA"-1:
1st matrix: [ -0.478 0.004 0.878 ]
0.691 : 0.596 0.408 [ 0.820 -0.355 0.448 ]
[ e : : ] [ 0.314 0.935 0.167 ]
[ -0.446 -0.797 0.408 ] Trace = -0.666738808
[ 0.569 0.100 0.817 ] angle = 146.446426
2nd matrix: Symmetry operator number 3
[ 0.691  -0.596 0.408 ] [Pr°dugt02‘2t“x §°22‘ZB X gf)‘ ;24 ]
[ 0.446 0.797 0.408 ] : 0.824 0.289 Z0.487 ]
[ -0.569 -0.100 0.817 ] [ 0.564 0.487 0.667 ]
Trace = -0.333477765
MISORInv: angle= 60. axis= 6 1 0 angle =  131.815857

Note the change in the misorientation axis
from 100 to 610!



