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Lecture Objectives

e Introduce the concept of the Orientation Distribution (OD) as the
guantitative description of “preferred crystallographic orientation”
a.k.a. “texture”.

e Explain the motivation for using the OD as something that enables
calculation of anisotropic properties, such as elastic compliance, yield
strength, permeability, conductivity, etc.

e |llustrate discrete ODs and contrast them with mathematical
functions that represent the OD, a.k.a. “Orientation Distribution
Function (ODF)”.

e Explain the connection between the location of components in the
OD, their Euler angles and pole figure representation.

e Present an example of an OD for a rolled fcc metal.

e Offer preliminary (qualitative) explanation of the effect of symmetry
on the OD.
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In Class Questions: 1

. Why does an orientation distribution (OD)
require three parameters?

. What are the similarities and differences

between an OD and a probability density
function?

. What is the practical value of an OD (as
compared to pole figures, e.g.)?

Does an OD have to be parameterized with Euler
angles?

. Against which Euler angles are ODs typically
sectioned?



In Class Questions: 2

What distribution of intensity do we expect to
see for a rolled fcc metal?

W

W
ro

W

nat is meant by the “beta fiber”?

nere are standard texture components of
led fcc metals located in the space?

nat are some differences between discrete

forms of ODs and series expansion forms?

What is the size of the volume element in
orientation space?



1.

In Class Questions: 3

Explain how projecting on the first Euler angle
vields an inverse pole figure (for the sample Z

direction) and projecting on the 3" Euler angle
vields a pole figure (for the crystal Z direction).

What are generalized spherical harmonic
(functions)?

How do pole figures relate to the OD?

How do volume fractions (of texture
components) relate to intensity values in the
OD?



Orientation Distribution (OD)

The Orientation Distribution (OD) is a central concept in texture analysis and anisotropy.

Normalized probability* distribution, is typically denoted by “f” in whatever space is used
to parameterize orientation, g i.e. as a function, f{g), of three variables. Typically 3
(Bunge) Euler angles are used, hence we write the OD as (¢, @,¢,). The OD is closely
related to the frequency of occurrence of any given texture component, which means
that = 0 (very important!).

Probability density (normalized to have units of multiples of a random density, or MRD)
of finding a given orientation (specified by all 3 parameters) is given by the value of the
OD function, f. Multiples of a uniform density, or MUD, is another exactly equivalent unit.

ODs can be defined mathematically in any space appropriate to a continuous description
of rotations (Euler angles, axis-angle, Rodrigues vectors, unit quaternions). The Euler
angle space is generally used because the series expansion representation depends on
the generalized spherical harmonics.

Remember that the space used to describe the OD is always periodic, although this is not
always obvious (e.g. in Rodrigues vector space).

In terms of data, think of taking measurements of orientation at individual points in an
EBSD map (in the form of Euler angles) and binning them in a gridded orientation space,
then normalizing the values in MRD units, then making contour plots.

*A typical OD(f) has a different normalization than a standard probability distribution; see later slides
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Meaning of an OD

e Each point in the orientation distribution represents a
single specific orientation or texture component.

e Most properties depend on the complete orientation (all 3
Euler angles matter), therefore must have the OD to
predict properties. Pole figures, for example, are not
enough.

e Can use the OD information to determine presence/
absence of components, volume fractions, predict
anisotropic properties of polycrystals.

e Note that we also need the microstructure in order to
predict anisotropic properties.
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Orientation Distribution Function (ODF)

A mathematical function is always available to describe the (continuous)
orientation density; this is known as an “orientation distribution

function” (ODF). Properly speaking, any texture can be described by an OD but
“ODF” should only be used if a functional form has been fitted to the data.

From probability theory, however, remember that, strictly speaking, the term
“distribution function” is reserved for the cumulative frequency curve (only used
for volume fractions in this context) whereas the ODF that we shall use is
actually a probability density but normalized in a different way so that a
randomly (uniformly) oriented material exhibits a level (intensity) of unity. Such
a normalization is different than that for a true probability density (i.e. such that
the area under the curve is equal to one - to be discussed later).

Historically, ODF was associated with the series expansion method for fitting
coefficients of generalized spherical harmonics [functions] to pole figure data*.
The set of harmonics+coefficients constitute a mathematical function describing
the texture. Fourier transforms represent an analogous operation for 1D data.

*H. J. Bunge: Z. Metall. 56, (1965), p. 872.
*R. J. Roe: J. Appl. Phys. 36, (1965), p. 2024.
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Orientation Space: Why Euler Angles?

Why use Euler angles, when many other variables could
be used for orientations?

The solution of the problem of calculating ODs from akbar.marlboro.edu
pole figure data was solved by Bunge and Roe by _

exploiting the mathematically convenient features of (‘/

the generalized spherical harmonics, which were Yo,

developed with Euler angles. Finding the values of /

coefficients of the harmonic functions made it into a % &._/

linear programming problem, solvable on the , |

computers of the time. Vi@, oF  |Yio,¢F

Generalized spherical harmonics are the same functions ﬂ’ N S

used to describe electron orbitals in quantum physics. L t/ -«

If you are interested in a challenging mathematical |Y?(Q“’”I: Y:6.9F Y36, 0F
problem, find a set of orthogonal functions that can be Q (\: 2\_’/ ‘\,_
used with any of the other parameterizations ( Z . g
(Rodrigues, quaternion etc.). See e.g. Mason, J. K. and 730, 0F  |YiO0.0F  |Yi6.ef  |Yi0.6)

C. A. Schuh (2008). "Hyperspherical harmonics for the
representation of crystallographic texture." Acta
materialia 56 6141-6155.

Look for visualization as:
spherical_harmonics.mpeg

Concept Params. Euler Normalize Vol.Frac. Cartesian Polar Components



10

Euler Angles, Ship Analogy

e Analogy: position and the
heading of a boat with respect
to the globe. Latitude or co-
latitude (®) and longitude (y)
describe the position of the
boat; third angle describes the
heading (¢) of the boat
relative to the line of
longitude that connects the
boat to the North Pole.

e Note the sphere always has
unit radius.

[Kocks, Tomé, Wenk]
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Area Element, Volume Element

Bunge Euler angles:

e Spherical coordinates result Z‘I’/'“:me element =

in an area element whose dA d¢, =
magnitude depends on the Sin® db d, dp.
declination (co-latitude):
dA =sin®@dedy
Volume element =

dV =

dA d¢ =

sin@de dy dg.

(Kocks angles)

[Kocks, Tomé, Wenk]
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Description of Probability

e Note the difference between probability density function (pdf), f(x),
and the cumulative probability function (cdf), F(x). The example
below is that of a simple (1D) misorientation distribution in the angle.

integrate >




13

logqo(my)

Binning Discrete Data Points

HOPCAT: log(HI mass) vs Absolute R-band magnitude

10.0 —

9.5

9.0 —

8.5

8.0 [~

user nicholls.htm
7.0 | | Le | |

https://www.wavemetrics.com/
products/igorpro/gallery/

-14 -16 -18 -20 -22
Mg

Above left: here, individual points

were placed in a 2-D space. Then
contours were added based on a

5002 gridding that is not visible here.

Visit the page to get details.

Below right: here, some
counts were binned into
hexagonal bins ina 2-D
space and converted into a
greyscale. Visit the page to
get details.

http://www.r-bloggers.com/example-9-1-
scatterplots-with-binning-for-large-datasets/

Counts

:
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Gridding points on a Sphere

www.tatukgis.com

However, our problem with texture data is

that we need to bin it on a sphere. If we use
equal increments in the two angles, then the
area element varies from small at the poles

to large at the equator. Which is where the
sin(®) comes from. Random points give i
equal area density on a sphere but the

number in each cell varies.

http://stackoverflow.com/questions/26841727/
histogram-from-spherical-plots-in-matlab
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" Exam ple of
random
orientation T
distribution in S

9p0°

|Bunge]

« o

E u 1 e r S p a C e Figure 2.25 On the definition of the invariant measures by a random

distribution in the EULER space ¢, Do,

Note the smaller densities of points (arbitrary scale) near @ =0°.
When converted to intensities, however, then the result is a
uniform, constant value of the OD (because of the effect of the

Cartesian grid and the volume element size, sin@d®dg¢,dg,). If a
material had randomly oriented grains all of the same size then this
is how they would appear, as individual points in orientation space.
We will investigate how to convert numbers of grains in a given
region (cell) of orientation space to an intensity in a later lecture
(Volume Fractions).
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Normalization of OD

If the texture is random then the OD is defined such that it has
the same value of unity everywhere, i.e. 1.

Any ODF is normalized by integrating over the space of the 3
parameters (as for pole figures).

Sine(®) corrects for volume of the element (previous slide).
The integral of Sin(®) on [0,m) is 2.

Factor of 2mt*2*21 = 81? accounts for the volume of the
space, based on using radian measure ¢,=0-2rt, ®=0-T,
¢, = 0 - 2rt. For degrees and the equivalent ranges (360, 180,
360°), the factor is 360°*2*360° = 259,200 (°?).

1 |
" [If /(@1 ®,@; )sin PddPdg, =1
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PDF versus ODF

e So, what is the difference between an ODF and a pdf (probability density function, as
used in statistics)?

e First, remember that any orientation function is defined over a finite range of the
orientation parameters (because of the periodic nature of the space).

e Note the difference in the normalization based on integrals over the whole space, where
the upper limit of W signifies integration over the whole range of orientation space:
integrating the PDF produces unity, regardless of the choice of parameterization,
whereas the result of integrating the ODF depends on both the choice of parameters and
the range used (i.e. the symmetries that are assumed) but is always equal to the volume
of the space.

e Why do we use different normalization from that of a PDF? The answer is mainly one of
convenience: it is much easier to compare ODFs in relation to a uniform/random material
and to avoid the dependence on the choice of parameters and their range.

e Note that the periodic nature of orientation space means that definite integrals can
always be performed, in contrast to many probability density functions that extend to
infinity (in the independent variable).

Statistics: J(X) =0, Vx Texture: J(Xx)=0, V x
Q Q Q
Paf> [Prgdg=1  OPFP [V rig)dg= [ dg
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Discrete versus Continuous
Orientation Distributions

e As with any distribution, an OD can be described either as
a continuous function (such as generalized spherical
harmonics) or in a discrete form.

e Continuous form: Pro: for weak to moderate textures,
harmonics are efficient (few numbers) and convenient for
calculation of properties, automatic smoothing of
experimental data; Con: unsuitable for strong (single
crystal) textures, only available (effectively) for Euler
angles.

e Discrete form: Pro: effective for all texture strengths,
appropriate to annealed microstructures (discrete grains),
available for all parameters; Con: less efficient for weak
textures.

Concept Params. Euler Normalize Vol.Frac. Cartesian Polar Components



" Standard 5x5x5°
Discretization

e The standard discretization (in the popLA
package, for example) is a regular 5° grid
(uniformly spaced in all 3 angles) in Euler
space.

e |llustrated for the texture in “demo” which
is a rolled and partially recrystallized
copper. {x,y,z} are the three Bunge Euler
angles. The lower view shows individual
points to make it more clear that, in a
discrete OD, an intensity is defined at each
point on the grid.

e 3D views with Paraview using demo.vtk as
input (available on the 27-750 website,
almost at the bottom of the page). Try
thresholding the image for yourself.
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Discrete OD

e Real data is available in discrete form e.g. from
EBSD.

e Normalization also required for discrete OD, just
as it was for pole figures.

e Define a cell size (typically A[angle]= 5°) in each
angle.

e Sum the intensities over all the cells in order to
normalize and obtain an intensity (similar to a

probability density, but with a different
normalization in order to get units of MRD).

1= #%%% f(¢1,d>i,¢z)A¢1A¢z(cos(<Di -ATCD) - COS(q’i *ATCD))
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PEs &2 OD

A pole figure is a projection of the
information in the orientation
distribution, i.e. many points in an
ODF map onto a single point in a PF.

Equivalently, can integrate along a
line in the OD to obtain the intensity

in a PF.

The path in orientation space is, in
general, a curve in Euler space. In
Rodrigues space, however, it is
always a straight line (which was

exploited by Dawson - see N. R. Barton,
D. E. Boyce, P. R. Dawson: Textures and

Microstructures Vol. 35, (2002), p. 113.).

—_— O

1
P(hkl)(aalg) = %

Concept Params. Euler Normalize Vol.Frac. Cartesian Polar Components

(b)

Kocks Ch. 3, fig. 1

Orientation
Distribution

Pole Figure
(w,@,q)) 1
4/ (lP,@,(I)) o)
(x.0) @ ~ ($,0.0) 4
\ (TP,®,¢) 4
(”Ja@’q)) 5

[ f(g)ar
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Distribution Functions and
Volume Fractions

Recall the difference between probability density functions and
probability distribution functions, where the latter is the cumulative

form.

For ODs, which are like probability densities, integration over a range
of the parameters (Euler angles, for example) gives us a volume
fraction (equivalent to the cumulative probability function).

Note that the typical 1-parameter Misorientation Distribution, based
on just the misorientation angle, is actually a probability density
function, perhaps because it was originally put in this form by
Mackenzie (Mackenzie, J. K. (1958). "Second paper on statistics
associated with the random orientation of cubes." Biometrica 45
229-240). This is the only type of texture plot that is a true probability
density function (as in statistics). We will discuss misorientations in

later lectures.
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Grains, Orientations,
and the OD

e Given a knowledge of orientations of
discrete points in a body with volume V, OD

given by:
d
V8 e)as

Given the orientations and volumes of the
N (discrete) grains in a body, OD given by:

M) - f(g)as

Concept Params. Euler Normalize Vol.Frac. Cartesian Polar Components
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Volume Fractions from Intensity
in the [cantinuous] OD

f(g)dg
Vf(g) } l jfgf dg

where 2 denotes the entire orientation space, and d€2 denotes the region around the
texture component of interest. For specific ranges of Euler angles:

@1 +Agp; <I>+A<I>fﬂz+A(/?2

Velor. @, 0,) = [ ff 0., ¢ )d

¢ —Ap1 P-AD ¢ — Apo

Vf(q)laq)a )= f f f (@1, 9, @, )sin D, dPdg,

Volume fractions will be discussed in more detail in a later lecture.
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Intensity from Volume Fractions

Objective: given information on volume fractions (e.g.
numbers of grains of a given orientation), how do we
calculate the intensity in the OD? Answer: just as we
differentiate a cumulative probability distribution to obtain a
probability density, so we differentiate the volume fraction
information:

e General relationships, where fand ghave their usual
meanings, Vis volume and V;is volume fraction:

V. (9)= [ f(g)dg

f(g) — 1 dV(g) — AVf For a PDF, one would use :
V dg Ag L dv(e) _ f(g)
oV
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Intensity from V; contd.

e For 5°x5°x5° discretization within a 90°x90°x90°
volume, we can particularize to:

Vi(®) = Y1002 [ f(8)sin @dPdy dg,

dv(g) AV,
dg Ag

f(g) =

AV,
25°(cos[® - 2.5°]- cos[® +2.5°))

= 81007
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Representation of the OD

e Challenging issue!

e Typical representation: Cartesian plot (orthogonal
axes) of the intensity in Euler [angle] space.

e Standard but unfortunate choice: Euler angles,
which are inherently spherical (globe analogy).

e Recall the Area/Volume element: points near the
origin are distorted (too large area).

e Mathematically, as the second angle approaches
zero, the 1st and 3rd angles become linearly
dependent.

At @ =0, only ¢,+¢, (or ¢;-¢,) is significant.
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OD Example

Will use the example of texture in rolled fcc
metals.

Symmetry of the fcc crystal and the sample (i.e.
cubic-orthorhombic) allows us to limit the space to
a 90x90x90° region (see the discussion in the
lecture on symmetry).

Intensity is limited, approximately to lines in the
space, called [partial] fibers.

Since we dealing with intensities in a 3-parameter
space, it is convenient to take sections through the
space and make contour maps.

Example has sections with constant ¢,.

Concept Params. Euler Normalize Vol.Frac. Cartesian Polar Components
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3D Animation in Euler Space
e Rolled commercial purity Al

Animation made with DX - see www.opendx.org

?,

Py

Animation shows a slice progressing up in ¢,; each slice is drawn at a 5° interval (slice number 18 = 90°)
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Cartesian Euler Space

Line diagram shows a schematic of the beta-fiber typically found in an fcc rolling texture with major
components labeled (see legend below). The fibers labeled “alpha” and “gamma” correspond to
lines of high intensity typically found in rolled bcc metals.

0 90°
G -
(I) o0° a-fibre
o,y ©
: 2
: g
L
G: Goss \ §)
B: Brass —
C: Copper (PZ . :

D: Dillamore
S: “S” component

et '@a-ﬂbfe
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OD Sections

0, =0°
Example of copper rolled to 90 % 2
reduction in thickness (&~ 2.5)

}
L

L5 9 I‘C 12

¥

- wn
Wg

=
-
o |

65 7
o
¢
.\‘ N

O,
: , ' .
/_/ [IN[2¢sdon [2458 0 12 ~SO%.0

g YCE8 012 14
[Humphreys & Hatherley] _80° 3 10 VO':?S’ f? 90 My
1

Sections are drawn as contour maps, one Qw ° N © @ |3 cgus‘*/
per value of ¢, (0, 5, 10 ... 90°). IE5Q prvsewn Pu‘se 10 n °
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Example of OD in Bunge Euler Space

g Section at 15°

[Bunge]

15
L6810

e OD isrepresented by a
series of sections, i.e. one
(square) box per section.
e Each section shows the
variation of the OD intensity O v
for a fixed value of the third

angle.

e Contour plots interpolate
between discrete points. 680 1 ,.

e High intensities mean that the nt - : ’3

corresponding orientation is % ‘;% b
common (occurs frequently). ? 7R 748

7N CEan (10580 0 mvo%ﬁ

&0 3 10 >90 j’—’—";l
/’ i
S /@ @ -; 5
/ /

LN I == ¢ = °
265Q 12 B0 12 246810 n 95/"-

a " J

1-'.
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Example of

OD in Bunge q -

Euler Space, @-lig. s @
contd. o

This OD shows the texture
of a cold rolled copper sheet.
Most of the intensity is TR =gl :
concentrated along a fiber. 4@ N e e
Think of “connect the dots!” b ;b ;% 3@

:2;€{;#{')35 THdan [0 on | ~ 58 10
The technical name for this I S W |
is the beta fiber. @b

o o o - CU

¥ n=95%

A AT .
2e5Qu 2468012 2asain

a " J
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Numerical

—

Graphical .o * 7

[ )
[ ]
CUR80-2°6/13/88 COMPUZED BY WIMV 6-MAR-89
CODK ,*5.0 90.0 5.0 90.0 1 1 142 3 100 phi= 45.0

3 3 3 3 4 9 14 /43 82 99 82 43 14 9 4 3 3 3 3
2 3 3 4 7 11 15 )32 56 58 51 47 29 13 6 5 4 3 4
3 3 3 34 5 104 33 43 63 82 73 50 32 18 13 9 9 12
3 4 7 7 9 6 18/ 15 51 99 143 161 128 102 77 59 52 42 42
—_— 450 4 4 5 6 3 9 6| 14 23 39 72 117 159 167 149 158 166 177 191
2 _— 2 1 2 3 4 4 7 7 10 20 51 108 156 191 258 387 567 760835

1 1 2 2 2 3 34 3 3 8 22 48 104 184 299 551 999152617
1 1 1 1 2 1 1\ 2 4 6 15 26 49 87 148 248 505 837 930
1 1 2 1 1 1 2 1 2 4 7 13 23 34 42 56 80 89 82
1 11 ) 2 3\3 3 4 9 12 15 19 28 29 33 38 36
1 2 2 1 1 11 1 1 2 2 2 2 2 2 3 3 3 4
2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 1 1 1
Example of a A S5 5 5 %5111
9 11 9 10 13 15 9 9 6 6 6 6 4 4 4 3 3 3
Slngle SeCtIOIl 9 12 13 13 18 18 14 16 5 15 16 11 8 7 7 5 4 3 2
25 28 33 31 33 35 34 37 63 74 55 22 10 14 10 7 7
14 13 15 16 17 18 20 24 113 102 66 36 28 23 21 18
5 7 9 9 14 24 31 46 418 377 285 205 158 148 138 138
13 13 13 14 20 31 50 99 201 505 98 835 646 480 382 346
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s (Partial) Fibers in
fce Rolling Textures

o O %
o0’ a-fibre
$ C= Cl)pper

[Humphreys & Hatherley]

P,

Concept Params. Euler Normalize Vol.Frac. Cartesian Polar Components



36

OD 2 Pole Figure

[Kocks, Tomé, Wenk]

Note that

=
Z

«
Y

0
2
‘ . .

X Fig. 25. Recalculated 111 and 100 polefigures of copper rollfad to 90"% reductlf)n, w1‘th,
symbols for standard componeng: A ‘Copper’; V ‘Dillamore’; o various ‘S
components; square: ‘Brass’, diaggénd: ‘Goss'.

B = Brass C = Copper

any given component that is represented as a point in

orientation space occurs in multiple locations in each pole figure.
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Euler Angles: recap

Euler Angles represent a crystal orientation with
respect to sample axes

Sample Axes

'?\ ND
| 100 crystal Axes
010 | /
o\ '\ _RD
7N
7 \
Component RD ND ’
: 4 001
Cube <100> {001} o
Goss <100> {011} Rotation 1 (¢,): rotate sample axes about ND
Brass <112> {110} Rotation 2 (®): rotate sample axes about rotated RD
Copper <111> {112} Rotation 3 (¢,): rotate sample axes about rotated ND

Slide courtesy of Lin Hu [2011]
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T'exture Components
versus Orientation Space

(P cube {100}<001> (0, 0, 0)

@Goss
{110}<001> @ Brass
(0, 45, 0) {110}<-112>

(35, 45, 0)

Component Euler Angles (°)

Cube (0,0, 0)

Goss (0, 45, 0)

Brass (35, 45, 0)
Copper (90, 45, 45)

Slide courtesy of Lin Hu [2011]
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ODFE: 3D vs. sections

ODF

Orientation Distribution Function f(g)

ODF gives the density of grains having
a particular orientation.

@Goss
{110}<001>
(0, 45, 0)

(P cube {100}<001> (0, 0, 0)

5 Brass

\
‘ {110}<-112>

(35, 45, 0)

Slide courtesy of Lin Hu [2011]

Contours at 0.500 1.000 2.000 4.000 8.000 16.000
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3D Views

a) Brass b) Copper ¢)S
d) Goss e) Cube

f) combined texture

1: {35, 45, 90}, brass,

2: {55, 90, 45}, brass

3: {90, 35, 45}, copper,

4: {39, 66, 27}, copper
5:{59, 37, 63}, S,
6:{27,58, 18}, S,
7:{53,75,34},S

8: {90, 90, 45}, Goss

9: {0, 0, 0}, cube

10: {45, 0, 0}, rotated cube

Figure courtesy of Jae Hyung Cho
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7-0XIs

. e SO versus COD

e An average of the SOD made by
averaging over the 1st Euler angle,
¢,, gives the inverse pole figure for the
' sample-Z (ND) direction.
: E e An average of the COD made by
SR 3 -averaging over the 3 Euler angle, ¢,,
! / | gives the pole figure for the crystal-Z
(001) direction.

Pu—
N
m[: .

[001] - pole figure

Fig. 21 The (001) pole figure and the inverse pole figure of the sample z axis (normal direction) are
projections of the ODF along ¢, and ¢, , respectively.

e One could section or slice Euler space on any of the 3 axes. By convention,
only sections on the 1st or 3rd angle are used. If ¢, is constant in a section,
then we call it a Sample Orientation Distribution, because it displays the
positions of sample directions relative to the crystal axes. Conversely,
sections with ¢, constant we call it a Crystal Orientation Distribution, because
it displays the positions of crystal directions relative to the sample axes.

Concept Params. Euler Normalize Vol.Frac. Cartesian Polar Components
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Section Conventions e

Crystallite Orientation Sample Orientation
Distribution Distribution
COD SOD
fixed third angle in each section fixed first angle in each section
sections 1n (¢, ,P)/(¥,0) sections in (¢,,P)/(9,0)
¢,/¢ = constant ¢,/W = constant
Reference = Sample Frame Reference = Crystal Frame
Average of sections-> Average of sections-> ND
(001) Pole Figure Inverse Pole Figure

Concept Params. Euler Normalize Vol.Frac. Cartesian Polar Components
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Summary

The concept of the orientation distribution has been
explained.

The discretization of orientation space has been explained.
Cartesian plots have been contrasted with polar plots.

An example of rolled fcc metals has been used to illustrate
the location of components and the characteristics of an
orientation distribution described as a set of intensities on a
regular grid in Euler [angle] space.

For correct interpretation of texture results in rolled

materials, you must align the RD with the X direction
(sample-1)!

Remember that each deformation type (rolling vs. drawing
vs. shear) and each crystal lattice has its own set of typical
texture components.
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Supplemental Slides
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Texture Components

e Many components have names to aid the
memory.

e Specific components in Miller index notation have
corresponding points in Euler space, i.e. fixed
values of the three angles.

e Lists of components: the Rosetta Stone of texture!

e Very important: each component occurs in more
than one location because of the combined
effects of crystal and sample symmetry!!

Concept Params. Euler Normalize Vol.Frac. Cartesian Polar Components
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Texture Component Table

In the following slide, there are four
columns.

Each component is given in Bunge and in
Kocks angles.

In addition, the values of the angles are
given for two different relationships
between Materials axes and Instrument
axes.

Instrument axes means the Cartesian axes
to which the Euler angles are referred to. In
terms of Miller indices, (hkl)//3, and [uvw]//
1.

The difference between these two settings is
not always obvious in a set of pole figures,
but can cause considerable confusion with
Euler angle values.

RD

RD

1

2

2

A
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Table 4.F.2. fcc Rolling Texture Components: Euler Angles and Indices

Name Indices Bunge Kocks Bunge Kocks
((pl ’(I) acp2) (lp 96 9¢) ((pl ’(I) 7cp2) (IP 9® 9¢)
RD=1 RD=1 RD=2 RD=2

copper/ {112}(111) 40, 65,26 | 50,65,26 | 50,65,64 | 39,66, 63

1* var.

cocpper/ {112}(111) 90, 35,45 [0, 35,45 0, 35,45 90, 35,45

2" var.

S3* {123}(634) 59,37,27 |31,37,27 |31,37,63 | 59,37,63

S/ 1st var. (312)<0 21> 32,58,18 | 58,58,18 | 26,37,27 | 64,37,27

S/2nd var. | (312)<021> 48,75,34 | 42,7534 | 42,75,56 | 48,75, 56

S/ 3rd var. | (312)<021> 64,37,63 | 26,37,63 [ 58,58,72 | 32,58,72

brass/ {110}(112) 35,45,0 55,45,0 55,45,0 35,45,0

1% var.

br?ss/ {1 10}(1 12) 55,90,45 | 35,90,45 | 35,90,45 | 55,90, 45

2" var.

brdass/ {1 10}(1 12) 35,45,90 | 55,45,90 | 55,45,90 | 35,45,90

3" var.

Taylor {44 11311118) [42,71,20 | 48,71,20 |48,71,70 | 42,71,70

Taylor/ {44 11}(11 11 8) 90,27,45 [ 0,27,45 0,27,45 90, 27,45

2nd var.

Goss/ {110}(001) 0,45,0 90,45,0 90, 45,0 0,45,0

1% var.

Ggss/ {110}(001) 90,90,45 | 0,90, 45 0,90, 45 90, 90, 45

2" var.

G((l)ss/ {110}(001) 0,45,90 90,45,90 |90,45,90 |0,45,90

3 var.

[Kocks,
Tomé,
Wenk]

Concept Params. Euler Normalize Vol.Frac. Cartesian Polar Components
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Need for 3 Parameters

e Another way to think about orientation:
rotation through 0 about an arbitrary axis,
n; this is called the axis-angle description.

e Two numbers required to define the axis,
which is a unit vector.

e One more number required to define the
magnitude of the rotation.

e Reminder! Positive rotations are
anticlockwise = counterclockwise!

Concept Params. Euler Normalize Vol.Frac. Cartesian Polar Components
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Sets of Randomly Chosen
Orientations

A reasonable question to ask, or something that one needs from time to
time, is how best to generate a randomly chosen set of orientations, that,
when converted into an OD, yields a uniform distribution?

We assume that the reader is familiar with how to invoke a “random
number generator” on a computer (e.g. “RAND”), and that such functions
are pseudo-random in the sense that they produce a sequence of values
between 0 and 1 with uniform density over that interval in a sequence
that has minimal regularity.

The safest procedure is to generate random values of the Euler angles
over the full range (no symmetry included). Thus: { 2n*RAND,
acos(2*RAND-1), 2rt*RAND }.

Note that very large numbers of points are required in order to obtain an
OD with intensities close to 1, especially near ®=0 where the data
becomes sparse.
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Polar OD Plots

e As an alternative to the (conventional) Cartesian
plots, Kocks & Wenk developed polar plots of
ODs.

e Polar plots reflect the spherical nature of the
Euler angles, and are similar to pole figures (and
inverse pole figures).

e Caution: they are best used with angular
parameters similar to Euler angles, but with sums
and differences of the 15t and 3™ Euler angles.

Concept Params. Euler Normalize Vol.Frac. Cartesian Polar Components
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Polar versus Cartesian Plots

(a) | (b) (c)

Diagram showing the relationship between coordinates in
square (Cartesian) sections, polar sections with Bunge
angles, and polar sections with Kocks angles.
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8.00

5.66

4.00

N 2 83

Z.00

1.41

| 1.00

L il | | |
COD sections (fixed third angle, ¢) for copper cold é_Kockls,
rolled to 58% reduction in thickness. Note that o

Wenk]
the maximum intensity in each section is well aligned
with the beta fiber (denoted by a "+" symbol in each section).
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Tomé,

Euler Ang]e Conventions e

Specimen Axes
“COD”"
y
o P2 2
| @x @x ‘ |
Roe

Bunge Canova

Crystal Axes
llSOD"

Kocks

(b)
Bunge and Canova are inverse to one another

Kocks and Roe differ by sign of third angle
Bunge and Canova rotate about x’, Kocks, Roe, Matthis

about y’ (2nd angle).

Concept Params. Euler Normalize Vol.Frac. Cartesian Polar Components
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Where is the RD? (TD, ND...)

[€,C,GLG;

Kocks oe Bunge Canova

In spherical COD plots, the rolling direction is typically assigned to
Sample-1 = X. Thus a point in orientation space represents the
position of [001] in sample coordinates (and the value of the third
angle in the section defines the rotation about that point). Care is
needed with what “parallel” means: a point that lies between ND and
RD (Y=0°) can be thought of as being “parallel” to the RD in that its
projection on the plane points towards the RD.

Concept Params. Euler Normalize Vol.Frac. Cartesian Polar Components
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Where is the RD? (TD, ND...)

| ~r

-

. | 30°

In Cartesian COD plots (¢, constant in each section), the rolling
direction is typically assigned to Sample-1 = X, as before. Just as in the
spherical plots, a point in orientation space represents the position of
[001] in sample coordinates (and the value of the third angle in the
section defines the rotation about that point). The vertical lines in the
figure show where orientations “parallel” to the RD and to the TD
occur. The (distorted) shape of the Cartesian plots means, however,
that the two lines are parallel to one another, despite being orthogonal

Concept Params. Euler Normalize Vol.Frac. Cartesian Polar Components
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