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Objectives

Definition and explanation of the pole figure.
Provide information on how to measure x-ray pole figures.
Explain the stereographic and equal area projections.
Explain the defocussing correction.

Explain how pole figures of single orientations relate to
stereographic projections.

Explain how to compute a pole figure based on the
orientation matrix.

Spherical angle grid, area element and normalization of
pole figure data.

Define and explain the inverse pole figure.
Computation of an inverse pole figure



In Class Questions: 1

How is an x-ray pole figure measured?

Why does it not provide complete orientation
information for a polycrystalline sample?

How can one construct a pole figure for a single
orientation?

Why does a pole figure for a single orientation
provide the complete orientation (by contrast to
the single crystal case)?

Why does an experimental pole figure not
correspond to a theoretical one at the edges?



In Class Questions: 2

How does the stereographic projection work?
How does the equal area projection work?

Given an orientation (e.g. the orientation matrix),
how do you calculate the positions of the poles in
a pole figure?

How do you compute an inverse pole figure?

How does one normalize the data for a pole
figure to obtain “multiples of a random density
(MRD)”?



Pole Figure: Definition

A pole figure (in the context of texture) is a map of a selected set of crystal plane normals plotted with respect
to the sample frame. Think of the rows (not columns) in the orientation matrix, which define the coordinates
of each crystal axis with respect to the sample frame.

This definition refers to plane normals because of the standard use of x-ray diffraction to measure pole
figures; crystal directions can equally well be treated.

Since each plane normal is plotted by itself, there is no information in the resulting plot about directions lying
in that plane. Therefore pole figures represent a projection of the texture information.

Each chosen crystal direction is generally specified as a low-index plane normal, e.g. {100}, {110}, {001}.

Crystal symmetry is generally assumed to apply such that all equivalent plane normals sharing the same
Miller indices are shown. For cubic materials, obviously, plane normals and directions are coincident but this
is not the case for lower symmetry Bravais lattices.

Since unit vectors representing directions with respect to a common origin live on a sphere, it is natural to
transform the coordinates to spherical angles such as azimuth (longitude) and declination (co-latitude). This
makes it more clear that, for each crystallite, its 3-parameter orientation (e.g. Euler angles) is reduced
(projected) to only two (2) parameters.

Only the upper hemisphere is plotted, by convention. The resulting diagram is often called a stereogram,
although this implies something about the choice of projection (see later slides).

If only a few distinct orientations are displayed, multiple poles can be plotted on the same diagram as a
discrete pole figure.

When many crystallites are included in the dataset, which have variable orientation, it is impracticable to
have more than one pole. Also it is necessary to bin the data and convert points to densities. For display
purposes, contour plots are the easiest way to understand the result.



Crystal Directions on the Sphere

e Uses the inclination of the
normal to the
crystallographic plane: the
points are the intersection
of each crystal direction
with a (unit radius) sphere.

e This is an orthographic
projection to illustrate the
physical directions, not a
stereographic projection.

Fig. 2-25 {100} poles of a cubic crystal.



Projection from Sphere to Plane

The measured pole figure exists on
the surface of a (hemi-)sphere. To
make figures for publication one must
project the information onto a flat
page. This is a traditional problem in
cartography. We exploit just two of
the many possible projection
methods.

Projection of spherical information
onto a flat surface
— Equal area projection, or,
Schmid projection

— Equiangular projection, or,
Wulff projection,
more common in crystallography

[Cullity]
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Fig. 2-27 The stereographic projection.
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Stereographic vs. Equal Area Projection

(b)

Stereographic

Equal Area

* Many texts, e.g. Cullity, show the
plane touching the sphere at N:
this changes the magnification
factor for the projection, but not [Kocks]
its geometry.




Stereographic Projections

e Connect a line from the South pole to the point on the surface of the
sphere. The intersection of the line with the equatorial plane defines
the project point. The equatorial plane is the projection plane. The
radius from the origin (center) of the sphere, r, where R is the radius

of the sphere, and o is the angle from the North Pole vector to the
point to be projected (co-latitude), is given by:

r=Rtan(o/2)
e Given spherical coordinates (a,), where the longitude is 1 (as
before), the Cartesian coordinates on the projection are therefore:
(x,y) = r(cosy, siny) = R tan(a/2)(cosy, siny)
e To obtain the spherical angles from [uvw], we calculate the co-latitude
and longitude angles as:
cosa=w
tany =v/u

ICareful: Use ATANZ(v,u), and remember the difference between
atanZ2(x,y) in excel, and atan2(y,x) in fortran and c++!
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Stereographic Projection — Step 1

North pole n

)

o“_7

Point “p” to be projected,
whose co-latitude = o

Equator

South pole

Vertical cross-
section of sphere
through a point to
be projected onto
equatorial plane
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Stereographic Projection — Step 2

North pole n

/=
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Stereographic Projection — Step 3

North pole N . _
Point to be projected
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Equator
Identify pfojected point
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South pole



13

Stereographic Projection — Step 4

North pole n

Point to be projected
o)

Equator
Compute radius of

projected point p’ on
torial plane

South pole
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Stereographic Projection — Step 5

p’ = Rtan(o/2)[cos(¢),sin(¢)]

Longitude of
the projected

point = ¢
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Texture Component — Pole Figure

e To calculate where a texture component shows up in a pole figure, there are various operations that must
be performed.

e The key concept is that of thinking of the pole figure as a set of crystal plane normals (e.g. {100}, or {111})
in the reference configuration (“cube component”) and applying the orientation as a transformation to
that pole (or set of poles) to find its position with respect to the sample frame.

e Step 1:write the crystallographic pole (plane normal) of interest as a unit vector;
e.g. (111) = 1/\/3(1,1,1) = h. In general, you will repeat this for all symmetrically equivalent poles (so for
cubics, one would also calculate {-1,1,1}, {1,-1,1} etc.). In the future, we will use a set of symmetry
operators to obtain all the symmetry related copies of a given pole.

e  Step 2: apply the inverse transformation (passive rotation), g, to obtain the coordinates of the pole
(Miller indices, normalized, crystal axes) in the pole figure (direction in sample axes):
h’=g"h
(pre-multiply the vector by, e.g. the transpose of the orientation matrix, g, that represents the
orientation; Rodrigues vectors or unit quaternions can also be used).

e  Step 3: convert the rotated pole into spherical angles (to help visualize the result, and to simplify Step 4)
where @ is the co-latitude and ¢ s the longitude:
O =cos(h’), p=tan'(h’ /K.
Remember - use ATANZ(I%,’y,h’X) in your program or spreadsheet and be careful about the order of the
arguments!

e  Step 4: project the pole onto a point, p, in the plane (stereographic or equal-area):
p, = tan(O/2) cos¢; p, = tan(B/2) sing. [corrected sine and cosine for p, and p, components 25 i 08]
The previous slide explains where this formula comes from.

e Note: why do we use the inverse transformation (passive rotation)?! One way to understand this is to
recall that the orientation is, by convention (in materials science), written as an axis transformation from

sample axes to crystal axes. To construct a pole figure, we need to transform a known crystal direction
(i.e. the plane normal) to the sample frame so that we know its coefficients in the latter system.
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Texture Component — Pole Figure:
pseudo code

e Repeat these steps for each crystallographically equivalent
pole, where the sphere (and projection circle) have unit

radius -

e Step 1: write the crystallographic pole (plane normal) of
interest as a unit vector; e.g. h=1/v/3(1,1,1)

e Step 2:transform pole to sample ref. frame:
h’=g'h

e Step 3: convert the transformed pole into spherical angles:
®=cos'(h’,), ¢ =tan"'(h’ /')

e Step 4: stereographic projection of the pole onto a point:
py = tan(6O/2) cos¢; p, = tan(O/2) sing.
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Matlab help

Matrix multiplication in Matlab can be accomplished
several different ways.

For matrices of the same dimensions, one can simply
use “*”, asin “A * B”, where A and B are, say, 3x3
matrices. There is a function mmult(A,B) that
accomplishes the same multiplication.

To get the inverse of a transformation/rotation matrix,
=A! or (in Matlab) “A*-1”, one only needs the
transpose. The transpose of a matrix can be written as
“A”” where the apostrophe signifies transpose.

To left multiply a vector by a 3x3 matrix (matrix on the
left, vector on the right) one needs a column vector.
However, if one enters a vector as h=[1,1,1], for
example, the result (“h”) is a row vector. The fixis to
use the transpose of the vector, thus: “hnew =A * h’”.
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Standard (001) Projection
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Fig. 2-37 Standard (001) projection of a cubic crystal, after Barrett [1.7].
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Equal Area Projection

e Connect a line from the North Pole to the point to be
projected. Rotate that line onto the plane tangent to the
North Pole (which is the projection plane). The radius, r, of
the projected point from the North Pole, where R is the
radius of the sphere, and a is the angle from the North Pole
vector (co-latitude) to the point to be projected, is given by:

r=2R sin(o/2)

e Given spherical coordinates (a,v), where the longitude is y
(as before), the Cartesian coordinates on the projection are
therefore:

(x,y) = r(cosy, siny) = 2R sin(a/2)(cosy, siny)

Concept Params. Euler Normalize Vol.Frac. Cartesian Polar Components
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Standard Stereographic
Projections

e Pole figures are familiar diagrams. Standard
Stereographic projections provide maps of low
index directions and planes.

e PFs of single crystals can be derived from SSTs by
deleting all except one Miller index.

e Construct {100}, {110} and {111} PFs for cube
component.



Cube Component {001}<1 00>

\\»@4 )

Thlnk of the 6-20 setting as acting as a filter on the
standard stereographic projection,
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How to Measure Texture

X-ray diffraction; pole figures; measures average texture
at a surface (ums penetration); projection (2 angles).

Neutron diffraction; type of data depends on neutron
source; measures average texture in bulk (cms penetration in
most materials) ; projection (2 angles).

Electron [back scatter] diffraction; easiest [to automate] in

scanning electron microscopy (SEM); local surface texture
(nms penetration in most materials); complete orientation (3
angles).

Optical microscopy: optical activity (plane of polarization);
limited information (one angle).



Texture: Quantitative Description

e Three (3) parameters needed to describe the
orientation [of a crystal relative to the embedding
body or its environment].

e Most common: 3 [rotation] Euler angles.

e Most experimental methods [X-ray and neutron
pole figures included] do not measure all 3 angles,
so orientation distribution must be calculated.

e Best mathematical representation for graphing,
illustrating symmetry: Rodrigues-Frank vectors.

e Best mathematical representation for calculations:
guaternions.
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X-ray Pole Figures

X-ray pole figures are the most common source of texture
information; cheapest, easiest to perform. They have the advantage
of providing an average texture over a reasonably large surface area
(~1mm?), compared to EBSD. For a grain size finer than about 100 um,
this means that thousands of grains are included in the measurement,
which ensures statistical viability.

Pole figure:= variation in diffracted intensity with respect to direction
in the specimen.

Representation:= map in projection of diffracted intensity.

Each PF is equivalent to a geographic map of a hemisphere (North
pole in the center).

Map of the density of a specific crystal direction w.r.t. sample
reference frame. More concretely, it is the frequency of occurrence of
a given crystal plane normal per unit spherical area. Think of a
(spherical) pin cushion with each pin representing the normal to {hkl}.
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PF apparatus

From Wenk’s chapter in Kocks
book.

Fig. 20: showing path
difference between adjacent
planes leading to destructive
or constructive interference.
The path length condition for
constructive interference is
the basis for the Bragg
equation:

2dsinf=nA
Fig. 21: pole figure
goniometer for use with x-ray
sources.

[Kocks]

2. MEASUREMENT OF POLE FIGURES

Fig. 21 Diffraction geometry in a pole-figure goniometer. (a) ATEMA-C pole-higure goniometer
yurtesy of Rich. Seifert & Co.); (b) reflection geometry; (¢) transmission geometry; (d) spherical projec-

pon illustrating goniometric angles
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Pole Figure measurement

PF measured with 5-axis goniometer.

2 axes used to set Bragg angle (choose a specific crystallographic plane with 6/
20), which determines the Miller indices associated with the PF. These settings
remain constant during the measurement of a given pole figure.

Third axis tilts specimen plane w.r.t. the focusing plane (co-latitude angle in the
PF, i.e. distance from North Pole). Although this angle can be as large as 90°,
no diffracted intensity will be measured with the plane of the beams parallel to
the surface: this limits the maximum tilt angle at which PFs can be measured in
reflection to about 80°.

Fourth axis spins the specimen about its normal (longitude angle in the PF).

Fifth axis (optional) oscillates the Specimen under the beam in order to
maximize the number of grains included in the measurement.

For texture calculation, at least 2 PFs required and 3 are preferable even for
materials with high crystal symmetry.

N.B. deviations of relative intensities in a standard 6/20 scan from powder file
indicate texture but only on a qualitative basis.
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Pole Figure Example

e |f the goniometer is set for {100} reflections, then all
directions in the sample that are parallel to <100>
directions will exhibit diffraction.

NO RD RO

_reference

—
"‘-.' %

[Bunge]

Note the convention with the RD pointing up, TD to the right, and ND
out of the plane. This is an unfortunate convention because it is a left-
handed set of axes!
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Practical Aspects

e Typical to measure three PFs for the 3 lowest values of
Miller indices (smallest available angles of Bragg peaks).

e Why?

Small Bragg angles correspond to normals coincident with
symmetry elements of the crystal, which means fewer symmetry-
related poles, and, consequently, greater dynamic range of
intensity (peak to valley).

A single PF does not uniquely determine orientation(s), texture
components because only the plane normal is measured, but not
directions in the plane (2 out of 3 parameters).

Multiple PFs required for calculation of Orientation Distribution

The lowest index reflections have the smallest Bragg angles and
are therefore the easiest to measure, with the highest intensities.
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Corrections to Measured Data

Random texture [=uniform dispersion of orientations] means same
intensity in all directions.

Background count must be subtracted, just as in conventional x-ray
diffraction analysis.

X-ray beam becomes defocused at large tilt angles (> ~60°); measured
intensity even from a sample with random texture decreases towards
edge of PF because less of the diffracted beam intersects with, or is
captured by the detector.

Defocusing correction required to increase the intensity towards the
edge of the PF. (Despite the uncertainty associated with this
correction, it is better to measure in reflection out to as large a tilt as
possible, in preference to trying to combine reflection and transmission
figures.)

After these corrections have been applied, the dataset must be
normalized in order that the average intensity is equal to unity (similar
to, although not the same as, making sure that a probability
distribution has unit area under the curve).

Units: multiples of a random density (MRD). To be explained ...
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Defocussing

The combination of the 6-26
setting and the tilt of the
specimen face out of the
focusing plane spreads out the

beam on the specimen surface.

Above a certain spread, not all
the diffracted beam enters the
detector.

Therefore, at large tilt angles,
the intensity decreases for
purely geometrical reasons.

This loss of intensity must be
compensated for, using the
defocussing correction.

(90°-x) 0° 15° 30° 45° 60° 75°

000

v000gf

00000

Fig. 13. Change in shape and orientation of the irradiated spot on the sample surface
for different sample inclinations as a function of tilt angle o and Bragg angle 26. The
incident beam is cylindrical with 2 mm diameter.

[Kocks]
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Defocusing Correction

No defocusing correction needed at small tilts, ¢, because all the diffracted
beam enters the detector. The correction becomes more important with

decreasing 26 and narrower receiving slit.

Best procedure involves measuring the intensity from a reference sample
with random texture.

If such a reference sample is not available, one may have to correct the

available defocusing curves in order to optimize the correction. This will be
explained again in the context of using mtex or popLA.

1.0

0.6 |

0.4}

[Kocks]

1 I L 1
0 10 20 30 40 50 60 70 80 90
(90°-x)

Fig. 24 Intensity correction for x-ray pole-figure determinations in reflection geometry. Selected
flections of quartz. Cu K radiation (from Baker et al., 1969).
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Area Element, Volume Element

e |f many data points (individual poles)
are measured, a discrete plot is too
crowded. The points can be binned
and then a contour plot generated.

e The simplest grid has equal increments
in each of the two spherical angles, ®
and 1. These are co-latitude and
longitude.

e Spherical coordinates result in an area
element, d4, whose magnitude
depends on the declination (or co-

latitude): In practice, a diffracted intensity is
measured at the center of each cell
dA = sin® d® dw in the grid. Therefore each value is

associated with a different area.

Concept Params. Euler Normalize Vol.Frac. Cartesian Polar Components



Normalization

e Normalization is the operation that ensures that “random”
is equivalent to an intensity of one.

e This is achieved by integrating the un-normalized intensity,
f(6,y), over the full area of the pole figure, and dividing
each value by the result, taking account of the solid area.
Thus, the normalized intensity,

f(6,y), must satisfy the following equation, where the 21
accounts for the area of a hemisphere:

% [ f(®.)sin0dOdy =1

Note that in poplLA files, intensity levels are represented by i4 integers, so the
random level = 100. Also, in .EPF data sets, the outer few rings (typically, ® > 80°)
are empty because they are unmeasurable; therefore the integration for
normalization excludes these empty outer rings.
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Inverse Pole Figure: Definition

An inverse pole figure (in the context of texture) is a map of a selected set of sample directions
plotted with respect to the crystal frame. Think of the columns (not rows) in the orientation
matrix, which define the coordinates of each sample axis with respect to the crystal frame.

In general, only the 1, 2 & 3 (RD, TD, ND) directions are plotted.
The sample directions are generally notated with Miller indices, e.g. [100], [010], [001].
Sample symmetry is ignored because these 3 sample directions are (almost) never equivalent.

Since unit vectors representing directions with respect to a common origin live on a sphere, it is
natural to transform the coordinates to spherical angles such as azimuth (longitude) and
declination (co-latitude). This makes it more clear that, for each crystallite, its 3-parameter
orientation (e.g. Euler angles) is reduced (projected) to only two (2) parameters.

Only the upper hemisphere is plotted, by convention. The resulting diagram is often called a
stereogram, although this implies something about the choice of projection (see later slides).

If only a few distinct orientations are displayed, multiple poles can be plotted on the same
diagram as a discrete inverse pole figure.

When many crystallites are included in the dataset it is necessary to bin the data and convert
points to densities. For display purposes, contour plots are the easiest way to understand the
result.

Because orientations are reduced (projected) to a single direction, the space required to display

a unique result depends on the crystal symmetry. For cubics, only the Standard Stereographic
Triangle (SST) is needed. See the Kocks book for lower symmetry cases.



Inverse Pole Figures

Filename root: demo_wip —p X

BT ol A

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Multiples of Random

001 101 001 101 001 101
SOP3 SOP2 SOP1

The figure above shows an example of a set of Inverse Pole
Figures, derived from a sample of rolled copper (“DEMO” as found

in the demonstration dataset for poplLA). From left to right, we Filename root: demo_ful N )
see the distribution of the ND, TD and RD, respectively, with | s
respect to the crystal reference frame. The cubic crystal Multiples of Random

symmetry of copper means that we only need one unit triangle to

FFE ) ) 111 gt 200 : 20
represent the distribution. Thus the Standard Stereographic ﬂn @ ﬁ
iy Gy €Y

3)
Triangle (SST) is the fundamental zone for inverse pole figures for =
cubic materials. The (experimental) pole figures for this dataset

are shown to the right.
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Inverse Pole Figure - Procedure

To calculate where a sample direction appears in an inverse pole figure, there are various operations that
must be performed.

The key concept is that of thinking of the inverse pole figure as a set of sample directions (e.g. RD, or ND)
in the reference configuration and applying the orientation as a transformation to that direction (here one
only needs to deal with a single direction, in contrast to the Pole Figure case) to find its position with
respect to the sample frame.

Step 1: write the sample direction of interest as a unit vector; e.g. ND=[001] = h.

Step 2: apply the transformation (passive rotation), g (not g/, or g"), to obtain the coordinates of the
sample direction in the inverse pole figure (in crystal axes):

h’=gh

(pre-multiply the vector by, e.g. the orientation matrix, g, that represents the orientation; Rodrigues
vectors or quaternions can also be used).

Step 3: convert the rotated direction into spherical angles (to help visualize the result, and to simplify Step
4) where O is the co-latitude and ¢ is the longitude:

O =cosi(h’), p=tan(h’ /h’).

Remember - use ATANZ(I%”y, h’.) in your program or spreadsheet and be careful about the order of the
arguments!

Step 4: project the direction onto a point, p, in the plane (stereographic or equal-area):

py = tan(O/2) cos¢; p, = tan(O/2) sing.

The previous slide explains where this formula comes from. The axes of the inverse pole figure are x=100
and y=010. (Caution - this is simple and obvious for cubics. For low symmetry crystals, these are Cartesian
x and y, which may or may not correspond to the a and b crystal axes. The location of Cartesian x and y
for hexagonal systems requires particular care!)

Note: why do we use the transformation (passive rotation)?! One way to understand this is to recall that
the orientation is, by convention (in materials science), written as an axis transformation from sample axes

to crystal axes. For the inverse pole figure, we are transforming a sample direction into crystal axes so we
can use the orientation matrix directly.



Summary

The pole figure is explained as a plot in which poles of crystal
planes are projected (stereographic or equal area) onto a
circular plot with the sample axes as the reference frame. If
data is taken from an experiment or a large number of poles
are binned, contour plots are displayed.

A method to compute the positions of poles in such a figure is
described, based on transforming the coefficients of a crystal
plane normal to the sample frame.

The typical reflection mode for measuring pole figures with x-
ray diffraction is described, along with the need for a
defocussing correction and normalization to obtain units of
multiples of a random density (MRD).

The inverse pole figure is described in which sample directions
are plotted in the crystal frame (also as a stereographic or equal
area projection), along with the calculation method.
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Supplemental Slides

e The following slides contain revision material
about Miller indices from the first two lectures.
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Miller Indices

e Cubic system: directions, [uvw], are equivalent to planes,
(hkl).

e Miller indices for a plane specify reciprocals of intercepts
on each axis.

B 0 — L alp
lo——a/h—] a IA 2A 3A 4A

(a) (b)
Fig. 2-9 Plane designation by Miller indices.
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Miller <-> vectors

e Miller indices [integer representation of direction
cosines] can be converted to a unit vector, n:
{similar for [uvw]}.

(h,k,l)
VR + K2+ 12

n-=
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Miller indices of a pole

Miller indices are a convenient way to represent a direction or a plane normal in a crystal, based
on integer multiples of the repeat distance parallel to each axis of the unit cell of the crystal
lattice. This is simple to understand for cubic systems with equiaxed Cartesian coordinate
systems but is more complicated for systems with lower crystal symmetry. Directions are simply
defined by the set of multiples of lattice repeats in each direction. Plane normals are defined in
terms of reciprocal intercepts on each axis of the unit cell. In cubic materials only, plane normals

are parallel to directions with the same Miller indices.

Fig. 2-39 Determination of the Miller indices of a pole.

When a plane is written with
parentheses, (hkl), this indicates a
particular plane normal: by
contrast when it is written with
curly braces, {hkl}, this denotes a
the family of planes related by the
crystal symmetry. Similarly a
direction written as [uvw] with
square brackets indicates a
particular direction whereas
writing within angle brackets,
<uvw> indicates the family of
directions related by the crystal
symmetry.
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Miller Index Definition of
Texture Component

e The commonest method for specifying a texture
component is the plane-direction.

e Specify the crystallographic plane normal that is
parallel to the specimen normal (e.g. the ND) and

a crystallographic direction that is parallel to the
long direction (e.g. the RD).

(hk!) // ND, [uvw] // RD, or (hkl)[uvw]
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Direction Cosines

e Definition of direction cosines:

e The components of a unit vector are equal to the
cosines of the angle between the vector and each
(orthogonal, Cartesian) reference axis.

e We can use axis transformations to describe
vectors in different reference frames (room,

specimen, crystal, slip system....)



45

Euler Angles, Animated
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