Typical Textures, part 1:
 Thermomechanical Processing (TMP) of Metals

A. D. Rollett

$$
27-750
$$

Texture, Microstructure \& Anisotropy
Last revised: $26^{\text {th }}$ Apr. 2014

Objectives

- Introduce you to experimentally observed textures in a wide range of materials.
- Develop a taxonomy of textures based on deformation type.
- Prepare you for relating observed textures to theoretical (numerical) models of texture development, especially the Taylor model.
- See chapter 5 in Kocks, Tomé \& Wenk.
- Some slides courtesy of Prof. P. Kalu (FAMU)

Taxonomy

- Deformation history more significant than alloy.
- Crystal structure determines texture through slip (and twinning) characteristics.
- Alloy (and temperature) can affect textures through planarity of slip.
- Annealing (recrystallization) sometimes produces a drastic change in texture.

Why does deformation result in texture development?

- Qualitative discussion:
- Deformation means that a body changes its shape, which is quantified by the plastic strain, ε_{p}.
- Plastic strain is accommodated in crystalline materials by dislocation motion, or by re-alignment of long chain molecules in polymers.
- Dislocation motion at low (homologous) temperatures occurs by glide of loops on crystallographic planes in crystallographic directions: restricted glide.
- Restricted glide throughout the volume is equivalent to uniform shear.
- In general, shear requires lattice rotation in order to maintain grain alignment: compatibility

Re-orientation \rightarrow Preferred orientation

- Reorientations experienced by grains depend on the type of strain (compression versus rolling, e.g.) and the type of slip (e.g. \{111\}<110> in fcc).
- In general, some orientations are unstable ($f(g)$ decreases) and some are stable ($f(g)$ increases) with respect to the deformation imposed, hence texture development.

The Taylor model

- The Taylor model has one basic assumption: the change in shape (micro-strain) of each grain is identical to the body's change in shape (macrostrain).
- Named for G.I. Taylor, English physicist, mid-20th century; first to provide a quantitative explanation of texture development.

Single slip models ineffective

- Elementary approach to single crystal deformation emphasizes slip on a single deformation system.
- Polycrystal texture development requires multiple slip systems (5 or more, as dictated by von Mises).
- Cannot use simple rules, e.g. alignment of slip plane with compression plane!

Deformation systems (typical)

- Fcc metals
(low temperature): \{111\}<110>
- Bcc metals: \{110\}<111>, $\{112\}<111>$,
\{123\}<111>, pencil glide

Hexagonal metals:
$\{1010\}<1210>$;
$\{0001\}<1210>$;
$\{1012\}<1011>_{\text {twin }}$;
\{1011\}<1123>;
$\{2112\}<2113\rangle_{\text {twin }}$.

Deformation systems (typical)

Material Class	Primary System	Secondary Systems
Face-centered cubic metals	$\{111\}\langle T 0\rangle$	
Body-centered cubic metals	$\{110\}\langle 111\rangle$	$\begin{aligned} & \{123\}\langle 1 \overline{\mathrm{~T}}> \\ & \{112\}\langle 1 \mathrm{I}> \end{aligned}$
Hexagonal close-packed metals $(\mathrm{c} / \mathrm{a}>1.633$) (e.g. $\mathrm{Be}, \mathrm{Cd}, \mathrm{Zn}$ and Mg)	$\{0001\}\langle 120\rangle$	$\begin{aligned} & \{11 \overline{2} 2\}<11 \overline{2} 3> \\ & \{10 \overline{1} 1\}<1 \overline{2} 0> \end{aligned}$
Hexagonal close-packed metals (c/a<1.633) (e.g. Zr, Ti and Hf)	$\{10 \mathrm{~T} 0\}\langle 1 \overline{2} 0\rangle$	$\begin{aligned} & \{1122\}<1123> \\ & \{10 \mathrm{~T}\}<1120> \end{aligned}$
Diamond cubic (fcc) (e.g. Si, Ge and diamond)	\{111\} $\langle 10\rangle$	
Rock Salt (fcc) (e.g. MgO, LiF, NaCl)	$\{110\}\langle 110\rangle$	
CsCl (simple cubic)	$\{110\}<001>$	
Al2O3 (hexagonal)	$\{0001\} 4120>$	$\begin{aligned} & \{1120\}<1701> \\ & \{1 \mathrm{I} 02\}\langle 1 \mathrm{~T} 01\rangle \end{aligned}$
BeO (hexagonal)	$\{0001\}\langle 1120\rangle$	$\begin{aligned} & \{10 T 0\}<1120> \\ & \{10 T 0\}<000 D \end{aligned}$

In deformed materials, texture or preferred orientation exists due to the anisotropy of slip. While slip in bcc metals generally occurs in the $<111>$ type direction, it may be restricted to $\{110\}$ planes or it may involve other planes (T. H. Courtney, Mechanical Behavior of Materials, McGraw-Hill, New York, 1990.)

Strain Measures

- Strain commonly defined as a scalar measure of (plastic, irreversible) deformation: logarithmic strain:=

$$
\varepsilon=\ln \left\{l_{\text {new }} / l_{\text {old }}\right\}
$$

- Rolling strain: typical: reduction in thickness: $=\quad r=100 \% \times h_{\text {new }} / h_{\text {old }}$ better (!) = von Mises equivalent strain

$$
\varepsilon_{\mathrm{vM}}=2 / \sqrt{ } 3 \ln \left\{l_{\text {old }} / l_{\text {new }}\right\}
$$

Deformation Modes:sample symmetry

- Tension, Wire Drawing, Extrusion
- Compression, Upsetting
- Torsion, Shear
- Plane Strain Compression, Rolling
- Deformation modes of uniaxial type generate fiber textures
- Shear gives monoclinic symmetry
- Plane strain gives orthorhombic symmetry

Axisymmetric deformation:
 Extrusion, Drawing

$$
\varepsilon=\left(\begin{array}{ccc}
+\Delta & 0 & 0 \\
0 & -0.5 \Delta & 0 \\
0 & 0 & -0.5 \Delta
\end{array}\right)
$$

Uniaxial Strain

$$
d \varepsilon=\left(\begin{array}{ccc}
+\Delta & 0 & 0 \\
0 & -\Delta / 2 & 0 \\
0 & 0 & -\Delta / 2
\end{array}\right)
$$

Inverse Pole
Figures
tension
C_{∞}

$d \varepsilon=\left(\begin{array}{ccc}-\Delta & 0 & 0 \\ 0 & +\Delta / 2 & 0 \\ 0 & 0 & +\Delta / 2\end{array}\right)$ compression

Uniaxial Modes $-C_{\infty}$

Note exchange of types between $f c c \& b c c$

Axisymmetric deformation

- In fcc metals, axisymmetric deformation (e.g. wire drawing) produces fiber texture: $<111>+<100>$ duplex, parallel to the wire.

Schmid and Wassermann (1963): $60 \%<111>+40 \%<100>$, Electrolytic Ahlborn and Wassermann (1963): $66 \%<111>+34 \%<100>\}$ Copper

Axisymmetric deformation

- Axisymmetric deformation \sim higher order symmetry, C_{∞}
- Texture can be represented by an inverse pole figure (IPF).
- In IPF, contour lines show the frequency with which the various directions, <uvw>, in the crystal coincide with the specimen axis under consideration

Axisymmetric deformation

\square The relative proportions of the two components are determined by the stacking fault energy [English et al., 1965] and vary in a complex manner.

Effect of deformation strain

$\varepsilon=0.0$

$\varepsilon=2.80$

都

$\varepsilon=3.10$
$\varepsilon=1.29$

$$
0-1.2\rangle
$$

$$
\varepsilon=3.56
$$

X-ray IPFs showing the effect of strain on the texture of OFHC copper wire
D. R. Waryoba, Ph. D. Dissertation, FSU, 2003

Effect of Temperature

X-ray IPFs showing the effect of annealing temperature on the texture of OFHC copper wire, initially drawn to true strain of 2.31

Uniaxial Compression: fcc

[Kocks Ch. 5: Inverse Pole Figures]

Texture inhomogeneity in Drawn Wires

D. R. Waryoba and P. N. Kalu, TMS 2005, San Francisco, CA

Texture inhomogeneity in Drawn Wires

$$
\text { Rolling }=\text { Plane Strain }
$$

Rolling ~ plane strain deformation means extension or compression in a pair of directions with zero strain in the third direction: a multiaxial strain.

Plane strain (rolling)

Plane strain means extension/compression in a pair of directions with zero strain in the third direction: a multiaxial strain.

${ }^{28}$ Typical rolling texture in FCC Materials

Type	Component	\{hkl\}<uvw>	Euler Angles (Bunge)		
			φ_{1}	θ	φ_{2}
Deformation	Bs	\{011\}<211>	35	45	0
	S	\{123\}<634>	55	35	65
	Cu	\{112\}<111>	90	30	45
	Shear ${ }_{1}$	\{001\}<110>	0	0	45
	Shear $_{2}$	\{111\}<110>	0	55	45
	Shear_{3}	\{112\}<110>	0	35	45
Recrystallizati on	Goss	\{011\}<001>	0	45	0
	Cube	\{001\}<100>	0	0	0
	$\mathrm{RC}_{\mathrm{RD} 1}$	\{013\}<100>	0	20	0
	$\mathrm{RC}_{\text {RD2 }}$	\{023\}<100>	0	35	0
	$\mathrm{RC}_{\mathrm{ND} 1}$	\{001\}<310>	20	0	0
	$\mathrm{RC}_{\text {ND2 }}$	\{001\}<320>	35	0	0
	P	\{011\}<122>	70	45	0
	Q	\{013\}<231>	55	20	0
	R	\{124\}<211>	55	75	25

$\mathrm{fcc} / \mathrm{bcc} / \mathrm{hcp}(\mathrm{Ti})$

Shear:
$\begin{array}{ll}\text { A:\{111\}<uvw> } & E:\{110\}<001> \\ B:\{h k l\}<110> & D:\{112\}<110>\end{array}$
C: $\{001\}<110>$
Rolling: Partial Fibers:
beta, alpha
gamma, alpha \{0001\}

INVERSE POLE FIGURES

IDEAL ORIENTATIONS

Cartesian Euler Space

Sections

$$
\phi_{2}=0^{\circ} \phi_{2}=5^{\circ}{ }_{\phi_{2}=10^{\circ}}^{\phi_{2}=15^{\circ}}
$$

PF Representation

Name	Indices	$\begin{aligned} & \text { Bunge } \\ & \left(\varphi_{1}, \Phi_{,}, \varphi_{2}\right) \end{aligned}$
Δ copper	$\{112\}<11 \overline{1}>$	$90^{\circ}, 35^{\circ}, 45^{\circ}$
- S1	$\{124\}<21 \overline{1}>$	$59^{\circ}, 29^{\circ}, 63^{\circ}$
- S2	$\{123\}<41 \overline{2}>$	$47^{\circ}, 37^{\circ}, 63^{\circ}$
- S3*	$\{123\}<63 \overline{4}>$	$59^{\circ}, 37^{\circ}, 63^{\circ}$
-brass	$\{110\}<\overline{1} 12>$	$35^{\circ}, 45^{\circ}, 0^{\circ}$
Taylor	$\{4411\}<1111^{-8} 8$	$7^{\circ}, 71^{\circ}, 70^{\circ}$
WGoss	\{110\}<001>	$0^{\circ}, 45^{\circ}, 0^{\circ}$

Note how very different components tend to overlap in a pole figure ${ }_{3}$

Fiber Plots:
various rolling reductions:
(a) intensity versus position along the fiber
(b) angular position of intensity maximum versus position along the fiber

Kocks, Ch. 2

Volume fraction vs. density (intensity)

- Volume fraction associated with region around the fiber in a given section.
- V_{f} increases faster than density with increasing Φ.
- Location of max. density not at nominal location.

Kocks, Ch. 2

Rolling

 fcc Cu: Effect of Strain
\{111\} Pole Figures, RD vertical

von Mises strains= initial, $0.5,1.0,2.0,2.7,3.5$

Effect of Alloying: Cu-Zn (brass); the texture transition

Zn content: (a) 0%, (b) 2.5%, (c) 5%, (d) 10%, (e) 20% and (f) 30% [Stephens PhD, U Arizona, 1968]

Hirsch \& Lücke, 1988 , Acta metall. 36, 2863
Engler et al., 1989, Acta metall. 37, 2743

Summary: part 1

- Typical textures illustrated for FCC metals as a function of alloy type (stacking fault energy) and deformation character (strain type).
- Pole figures are recognizable for standard deformation histories but orientation distributions provide much more detailed information. Inverse pole figures are also useful, especially for uniaxial textures.
- Measure strain using von Mises equivalent strain.
- Plane strain (rolling) textures concentrate on characteristic lines ("partial fibers") in orientation space.
- Uniaxial textures align certain crystal axes with the deformation axis.

