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Objectives 

•  Introduce you to experimentally observed 
textures in a wide range of materials. 

•  Develop a taxonomy of textures based on 
deformation type. 

•  Prepare you for relating observed textures to 
theoretical (numerical) models of texture 
development, especially the Taylor model. 

•  See chapter 5 in Kocks, Tomé & Wenk. 
•  Some slides courtesy of Prof. P. Kalu (FAMU) 

and Prof. D. Waryoba (Penn State Dubois) 
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Taxonomy 
•  Note that solidification often introduces texture 

where the microstructure is columnar because it is 
usually dendritic and the preferred growth 
direction is <100>.  Equi-axed microstructures are 
nearly random. 

•  Deformation history more significant than alloy. 
•  Crystal structure determines texture through slip 

(and twinning) characteristics. 
•  Alloy (and temperature) can affect textures 

through planarity of slip. 
•  Annealing (recrystallization) sometimes produces 

a drastic change in texture, especially in pure fcc 
metals. 
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Why does deformation result in 
texture development? 

•  Qualitative discussion: 
•  Deformation means that a body 

changes its shape, which is quantified 
by the plastic strain, εp. 

•  Plastic strain is accommodated in 
crystalline materials by dislocation 
motion, or by re-alignment of long chain 
molecules in polymers. 



5 Dislocation glide ⇒  
grain reorientation 

•  Dislocation motion at low (homologous) 
temperatures occurs by glide of loops on 
crystallographic planes in crystallographic 
directions: restricted glide. 

•  Restricted glide throughout the volume is 
equivalent to uniform shear. 

•  In general, shear requires lattice rotation in order 
to maintain grain alignment: compatibility is 
required, which is the basis for the Taylor model. 
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Re-orientation → Preferred orientation 

•  Reorientations experienced by grains 
depend on the type of strain 
(compression versus rolling, e.g.) and 
the type of slip (e.g. {111}<110> in fcc). 

•  In general, some orientations are 
unstable (f(g) decreases) and some are 
stable (f(g) increases) with respect to 
the deformation imposed, hence texture 
development. 
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The Taylor model 

•  The Taylor model has one basic 
assumption: the change in shape 
(micro-strain) of each grain is identical 
to the body’s change in shape (macro-
strain). 

•  Named for G.I. Taylor, English physicist, 
mid-20th century; first to provide a 
quantitative explanation of texture 
development. 
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The Taylor model 
•  The Taylor model has one basic assumption: 

the change in shape (micro-strain) of each 
grain is identical to the body’s change in 
shape (macro-strain). 

•  Named for G.I. Taylor, English physicist, 
mid-20th century; first to provide a quantitative 
explanation of texture development. 

•  This was discussed in the lecture on multiple 
slip (L11). 

Taylor G (1938) "Plastic strain in metals", J. Inst. Metals (U.K.) 62 307	
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Single slip models ineffective 

•  Elementary approach to single crystal 
deformation emphasizes slip on a single 
deformation system. 

•  Polycrystal texture development 
requires multiple slip systems (5 or 
more, as dictated by von Mises). 

•  Cannot use simple rules, e.g., alignment 
of slip plane with compression plane! 
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Deformation systems (typical) 
•  Fcc metals  

(low temperature): 
 {111}<110> 

•  Bcc metals: 
{110}<111>,  
{112}<111>,  
{123}<111>,  
pencil glide 

Hexagonal metals: 
{1010}<1210>; prismatic  
{0001}<1210>; basal 
{1012}<1011>twin;  
{1011}<1123>;  
                pyramidal, or c+a 
{2112}<2113>twin.  

3089TOMÉ et al.: MECHANICAL RESPONSE OF Zr. Part I

Fig. 4. Active deformation systems in Zr considered in this work: prismatic slip, tensile twinning and pyramidal
slip at 293K; prismatic slip, tensile twinning and compressive twinning at 76K.

tem. As a consequence, we assume compressive twin-

ning (ctw) of the {112̄2}!112̄3̄" type at LNT. In what
follows we try to find the evolution of the CRSSs
associated with the active deformation modes at RT

and LNT (Fig. 4). Specifically, we adjust the para-
meters that appear in the hardening laws equations

(4) and (5) until the predicted loading reproduces the

experimental response of Fig. 2.

The reference threshold stresses t̂ that result from
such a fitting procedure are plotted in Fig. 5 for each
deformation mode and for the two temperatures. At

RT, tensile twinning is only slightly harder than pris-

matic slip, while the fitting indicates that pyramidal
slip is much harder. At LNT the threshold stresses for

activating prismatic slip and tensile twinning

increases, and compressive twinning is favored over

pyramidal slip. The parameters associated with the

aforementioned modes and temperature regimes are

summarized in Table 1. Here we have tried to keep

the number of adjustable parameters to a minimum,

while aiming for a satisfactory fit of the experimental
loading curves (Fig. 2). The initial texture used in the

simulation (Fig. 1) consists of 377 discrete orien-

tations with appropriate weights. The number of

orientations represents a compromise between accu-

racy and the running time and RAM requirements of

the FE application.

Notice that the reference threshold t̂s given by equ-

Fig. 5. Reference hardening of individual systems [equation (4)] adjusted to the experimental curves of Fig.
2.

ation (4) and plotted in Fig. 5 does not necessarily

describe the actual threshold ts for a given system.
The actual threshold, which is updated using equation

(5), is usually higher because it includes a contri-

bution from the latent hardening coefficients (hss!"
1). For the fitting procedure we enforce the latent
hardening of slip and twinning systems due to slip

activity to be the same, namely hss! = 1. As for the

effect of twinning upon slip and the other twinning

systems, it is evident from the values of the latent

hardening parameters which fit the data, that these
interactions are much stronger. The interpretation is

that the twin lamellae associated with active twin sys-

tems act as barriers for the propagation of dislocations

or of other twinning systems. This interpretation is

also consistent with the hardening exhibited by the

loading curves of Fig. 2: when twinning is active the

hardening rate tends to increase past about 10%

deformation as a consequence of these barriers.

Observe that, according to Table 1, at LNT prismatic

dislocations seem to be strongly impeded by the ten-

sile twins (hpr ttw = 20), but much less by the com-

pressive twins (hpr ctw = 2). This latter result may indi-

cate either that prismatic dislocations can punch more

easily through the compressive twin interface, or that

tensile twin barriers are more closely spaced in the

grains than compressive twin barriers.

The tensile and compressive stress–strain curves
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Deformation systems (typical) 

In deformed materials, texture or preferred orientation exists due to the anisotropy 
of slip. While slip in bcc metals generally occurs in the <111> type direction, it 
may be restricted to {110} planes or it may involve other planes. In general, 
texture development in bcc metals appears to involve <111>{112} as well as 
<111>{110}, but this may reflect easy cross-slip between different {110} planes, 
not actual {112} slip planes.  
(T. H. Courtney, Mechanical Behavior of Materials, McGraw-Hill, New York, 1990.) 
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Strain Measures 

•  Strain commonly defined as a scalar 
measure of (plastic, irreversible) 
deformation: logarithmic strain:= 

   ε = ln {lnew/lold} 
•  Rolling strain: typical: reduction in 

thickness:=    r = 100% x hnew/hold 
better to use von Mises equivalent 
strain: 

    εvM = 2/√3 ln {lold/lnew} 
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Deformation Modes: sample symmetry 

•  Tension, Wire Drawing, Extrusion   C∞ 

•  Compression, Upsetting     C∞ 

•  Torsion, Shear     2 
•  Plane Strain Compression, Rolling  mmm 
•  Deformation modes of uniaxial type generate 

fiber textures, i.e. a single common crystal 
axis parallel to the deformation axis 

•  Shear gives monoclinic symmetry 
•  Plane strain gives orthorhombic symmetry 
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Axisymmetric deformation: 
Extrusion, Drawing 
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smaller angles give more 
uniform deformation but 
higher friction forces 
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Uniaxial Strain 
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See Ch. 5 in Kocks, Tomé & Wenk	
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Uniaxial Modes - C∞ 

Deformation mode/    fcc/       bcc/        hcp (Ti) 
  Wire drawing,        <111>   <110>     <10-10> 
 Round extrusion.    & <100> 
Upsetting,         <110>   <111>     <0001> 
Uniaxial compression.     &<100> 
 
Note exchange of types between fcc & bcc 
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§  In  fcc  metals,  axisymmetric  deformation  (e.g.  wire 
drawing) produces fiber texture:  <111> + <100> duplex, 
parallel to the wire. 	

Schmid and Wassermann (1963): 60% <111> + 40% <100>	

Ahlborn and Wassermann (1963): 66% <111> + 34% <100>	
Electrolytic 
Copper }

McHargue et al., 1959 

Axisymmetric deformation	
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Axisymmetric deformation	
•  Axisymmetric deformation ~ higher order symmetry, C∞	

•  Texture can be represented by an inverse pole figure (IPF). 	

•  In IPF, contour lines show the frequency with which the various 
directions, <uvw>, in the crystal coincide with the specimen axis 
under consideration	

DD	 TD	 ND	
DD – Drawing direction corresponds to RD in rolling	
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q  The relative proportions of the two components are 
determined by the stacking fault energy and vary in a 
complex manner.	

Axisymmetric deformation	

English & Chin (1965) Acta metall.	
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Effect of deformation strain	

001	 101	

111	

001	101	

111	

001	 101	

111	
Max = 6.9	 Max = 7.7	 Max = 5.3	

ε = 2.80	 ε = 3.10	 ε = 3.56	

001	 101	

111	

001	 101	

111	

001	 101	

111	 111	

001	 101	

Max = 4.1	 Max = 4.5	 Max = 5.0	 Max = 5.4	

ε = 0.0	 ε = 0.45	 ε = 1.29	 ε = 2.31	

D. R. Waryoba, Ph. D. Dissertation, FSU, 2003	

X-ray IPFs showing the effect of strain on the texture of OFHC copper wire 
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Max. = 5.29 Max. = 6.85 Max. = 2.06 Max. = 2.10 

Max. = 2.48 Max. = 2.44 Max. = 4.65 Max. = 5.97 

RT 180°C 250°C 300°C 

450°C 500°C 600°C 750°C 

X-ray IPFs showing the effect of annealing temperature on the texture of OFHC copper 
wire, initially drawn to true strain of 2.31.  The strong <111> fiber first decreases with 
annealing temperature but then increases again. 

D. R. Waryoba and P. N. Kalu, TMS 2003,San Diego, CA	

Effect of Temperature	
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Initial 
texture 
 
 
theoretical 
texture 
 
 
exptl. 
texture 

[Kocks Ch. 5: Inverse Pole Figures] 

Uniaxial Compression:  
various fcc metals 
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BCC uniaxial textures 

92% rolled Ta 
Tensile test in 
original RD to 
strain of 0.6: 
<110> fiber 
(a) Normal and rolling direction 
inverse pole figures (equal area 
projection) of 92% rolled Ta and (b) 
Prior normal and rolling direction 
inverse pole figures for (a) tested in 
tension to a strain of 0.6 (tensile 
direction coincident to prior rolling 
direction). 

Kocks, Ch. 5	
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Texture inhomogeneity in Drawn Wires	

III II I 

Max = 4.2 
 

Max = 3.5 
 

Max = 15.7 
 

OIM IPFs representing outer region, mid region, and inner core 
of the OFHC Cu wire drawn to true strain of 2.31 (contours are 
at 1, 2, 3 … times random)  

D. R. Waryoba and P. N. Kalu, TMS 2005, San Francisco, CA	
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Max = 9.2 

Max = 5.3 

Max = 5.1 
10 min 

OIM IPFs representing outer region, mid region, and inner core of 
the OFHC Cu wire drawn to true strain of 2.31 and  annealed at 
250°C for 10 min (contours are at 1, 2, 3 … times random)  

Texture inhomogeneity in Drawn Wires	

D. R. Waryoba and P. N. Kalu, TMS 2005, San Francisco, CA	
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Rolling = Plane Strain 

RD 

ND 

Rolling ~ plane strain deformation means 
extension or compression in a pair of 
directions with zero strain in the third 
direction: a multiaxial strain. 
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Plane strain (rolling) 

Plane strain means extension/compression in  
a pair of directions with zero strain in the  
third direction: a multiaxial strain. 

tension 

compression 
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Typical rolling texture in FCC Materials 
Type Component {hkl}<uvw> 

Euler Angles (Bunge) 

ϕ1 θ ϕ2 

Deformation 

Bs {011}<211> 35 45 0 

S {123}<634> 55 35 65 

Cu {112}<111> 90 30 45 

Shear1 {001}<110> 0 0 45 

Shear2 {111}<110> 0 55 45 

Shear3 {112}<110> 0 35 45 

Recrystallizati
on 

Goss {011}<001> 0 45 0 

Cube {001}<100> 0 0 0 

RCRD1 {013}<100> 0 20 0 

RCRD2 {023}<100> 0 35 0 

RCND1 {001}<310> 20 0 0 

RCND2 {001}<320> 35 0 0 

P {011}<122> 70 45 0 

Q {013}<231> 55 20 0 

R {124}<211> 55 75 25 
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fcc/                          bcc/                     hcp (Ti) 
Shear: 
A:{111}<uvw>      E:{110}<001>        ? 
B:{hkl}<110>      D:{112}<110> 
C: {001}<110> 
 
Rolling: Partial Fibers: 
beta, alpha   gamma, alpha     {0001} 
                                                           split to +/-TD 
 



Fcc rolling textures 

•  The next set of slides summarizes 
rolling textures in fcc metals.  This topic 
was also presented as an example in 
the discussion of Orientation 
Distributions and their graphical 
representation. 

30 



31 
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Cartesian Euler Space 
φ1 

Φ 

φ2 
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Sections φ2 = 0° 
φ2 = 5° φ2 = 15° 

φ2 = 10° 

φ1 Φ 

φ2 
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PF Representation	

Note how very different components �
tend to overlap in a pole figure.	



35 Fiber Plots: 
various rolling  
reductions: 
(a)  intensity versus 
position along  
the fiber 
(b) angular position  
of intensity maximum 
versus position along 
the fiber 

Kocks, Ch. 2 

β-fiber 



36 Volume fraction vs.  
density (intensity) 

• Volume fraction 
associated with  
region around 
the fiber in a given 
section. 
• Vf increases faster  
than density with 
increasing Φ. 
• Location of max.  
density not at nominal 
location. 

Kocks, Tomé, Wenk: Ch. 2 
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Rolling 
fcc Cu: 

Effect of 
Strain 

von Mises strains= initial, 0.5, 1.0, 2.0, 2.7, 3.5 

{111} Pole Figures, 
RD vertical 



38 Effect of Alloying: Cu-Zn (brass); 
the texture transition 

Zn content: (a) 0%, (b) 2.5%, (c) 5%, (d) 10%, (e) 20% and (f) 30% [Stephens PhD, U Arizona, 1968] 

Copper 
component 

Brass 
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Alloy, Precipitation Effects 

Hirsch & Lücke, 1988 , Acta metall. 36, 2863 Engler et al., 1989, Acta metall. 37, 2743 

copper copper brass brass 
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Rolling 
Textures 

BCC 

{110} and {100} pole figures 
(equal area projection; rolling 
direction vertical) for (a) low-
carbon steel cold rolled to a 
reduction in thickness of 80% 
(approximate equivalent strain 
of 2); (b) tantalum, 
unidirectionally rolled at room 
temperature to a reduction in 
thickness of 91%. 

Kocks, Ch. 5	
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{100} Pole 
figure for certain 
components of 
rolled BCC 
metals 

Note how very different components 
tend to overlap in a pole figure. 

Kocks, Ch. 5	
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BCC fibers: the φ2 = 45° section 

γ, <111>||ND 

α,	
<110>||RD 

    ε, 
<110>||TD 

Goss Φ 

φ1 
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Ta, Fe 
rolling 
textures 

Note: Euler angles 
are Roe angles: 
axes transposed 
with Θ horiz., 
ψ vertical. 
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Fe, Fe-Si 
rolling fiber 

plots 

Note the marked  
alloy dependence 
in the alpha fiber; 
smaller variations 
in the gamma fiber. 
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Summary: part 1 
•  Typical textures illustrated for FCC & BCC metals as a 

function of alloy type (stacking fault energy) and 
deformation character (strain type). 

•  Pole figures are recognizable for standard deformation 
histories but orientation distributions provide much more 
detailed information.  Inverse pole figures are also useful, 
especially for uniaxial textures. 

•  Measure strain using von Mises equivalent strain. 
•  Plane strain (rolling) textures concentrate on 

characteristic lines ("partial fibers") in orientation space. 
•  Uniaxial textures align certain crystal axes with the 

deformation axis. 



Part 2: shear/ torsion textures 

•  This section covers shear (torsion) 
textures 

46 



47 Shear Texture 
•  Shear strain means that displacements are tangential 

to the direction in which they increase. 
•  Shear direction=1, Shear Plane ⊥ 2-axis 
•  The matrix shows the velocity gradient; the strain 

(rate) is the symmetrized version of L. 

ε12= 
tanθ 

1 = Shear Direction = <uvw> 

2 = 
Torsion 

Axis 
= {hkl} L =

0 +Δ 0
0 0 0
0 0 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Note the definition of 
strain, εij, as the 
derivative of the 
displacement ui with 
respect to coordinate xj. 	

θ	



Metals.textures.part3 
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Torsion Textures: twisting of a 
hollow cylinder specimen 

(a) 

(b) (c) 

Torsion Axis Sense of 
shear:	
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Shear Textures:  
idealized texture 
components for 

FCC metals 

Torsion Axis 

Shear direction 

C component: {001}<110> 

B partial fiber {hkl}<110> 

A partial fiber {111}<uvw> 

Canova et al. (1982), 'Texture Development Prediction for Deformation in 
Torsion and Tension at Large Strains', J. Metals 35 A21-A21; Canova et al. 
(1984), 'Theory of Torsion Texture Development', Acta metall. 32 211	
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FCC 
Torsion 
Textures 

Plots of {111} and {200} pole 
figures (equal area projection; 
torsion axis vertical) for the 
following materials deformed in 
torsion; the shear direction 
points to the left in these figures. 
a) Nickel at γ=3.6 
b) Copper at γ=3.5 
c) Silver at γ=3.5 
d) Cu-30Zn at γ=3.5 
e) Ni-60Co at γ=3.2 

Note that the partial "A" fiber is present 
in Ni and Cu, but is absent in the other 
materials.  Silver, brass and Ni-60Co 
show instead a "D" fiber which is 
similar to the A fiber but rotated 
approximately 90° about the torsion 
axis.  The B fiber is present to varying 
degrees in all the materials. 

Kocks, Ch. 5	
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Shear Texture Components 
•  Why study shear textures?  Shear strain is 

common near the surface of rolled parts, for 
example. 

•  Partial Fibers:    A/D  {111}<uvw>…<110> 
      B   {hkl}<110> … {112} 

Components    C   {001}<110> 
      D   {112}<111> 
      E   {011}<111> 
      F   {110}<001>   
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FCC vs. BCC 
{100} Pole figures 

FCC BCC 

Montheillet et al. (1985), Acta metall., 33 705	
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BCC torsion textures: Fe 
Ideal |{100}  
pole figures 
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BCC torsion 
textures: Ta 

(a) initial texture 
from swaged rod; 
(b) torsion texture 

Ideal |{100}  
pole figures 

Kocks, Ch. 5	
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Hexagonal Metals 

•  Common to show the (0001) pole figure: 
provides most information needed. 

•  Easy slip on the basal plane means that 
compression generally aligns the basal 
plane normal with the compression axis. 

•  Tension typically aligns basal plane 
normals perpendicular to the axis. 



Deformation systems, hexagonal 

3089TOMÉ et al.: MECHANICAL RESPONSE OF Zr. Part I

Fig. 4. Active deformation systems in Zr considered in this work: prismatic slip, tensile twinning and pyramidal
slip at 293K; prismatic slip, tensile twinning and compressive twinning at 76K.

tem. As a consequence, we assume compressive twin-

ning (ctw) of the {112̄2}!112̄3̄" type at LNT. In what
follows we try to find the evolution of the CRSSs
associated with the active deformation modes at RT

and LNT (Fig. 4). Specifically, we adjust the para-
meters that appear in the hardening laws equations

(4) and (5) until the predicted loading reproduces the

experimental response of Fig. 2.

The reference threshold stresses t̂ that result from
such a fitting procedure are plotted in Fig. 5 for each
deformation mode and for the two temperatures. At

RT, tensile twinning is only slightly harder than pris-

matic slip, while the fitting indicates that pyramidal
slip is much harder. At LNT the threshold stresses for

activating prismatic slip and tensile twinning

increases, and compressive twinning is favored over

pyramidal slip. The parameters associated with the

aforementioned modes and temperature regimes are

summarized in Table 1. Here we have tried to keep

the number of adjustable parameters to a minimum,

while aiming for a satisfactory fit of the experimental
loading curves (Fig. 2). The initial texture used in the

simulation (Fig. 1) consists of 377 discrete orien-

tations with appropriate weights. The number of

orientations represents a compromise between accu-

racy and the running time and RAM requirements of

the FE application.

Notice that the reference threshold t̂s given by equ-

Fig. 5. Reference hardening of individual systems [equation (4)] adjusted to the experimental curves of Fig.
2.

ation (4) and plotted in Fig. 5 does not necessarily

describe the actual threshold ts for a given system.
The actual threshold, which is updated using equation

(5), is usually higher because it includes a contri-

bution from the latent hardening coefficients (hss!"
1). For the fitting procedure we enforce the latent
hardening of slip and twinning systems due to slip

activity to be the same, namely hss! = 1. As for the

effect of twinning upon slip and the other twinning

systems, it is evident from the values of the latent

hardening parameters which fit the data, that these
interactions are much stronger. The interpretation is

that the twin lamellae associated with active twin sys-

tems act as barriers for the propagation of dislocations

or of other twinning systems. This interpretation is

also consistent with the hardening exhibited by the

loading curves of Fig. 2: when twinning is active the

hardening rate tends to increase past about 10%

deformation as a consequence of these barriers.

Observe that, according to Table 1, at LNT prismatic

dislocations seem to be strongly impeded by the ten-

sile twins (hpr ttw = 20), but much less by the com-

pressive twins (hpr ctw = 2). This latter result may indi-

cate either that prismatic dislocations can punch more

easily through the compressive twin interface, or that

tensile twin barriers are more closely spaced in the

grains than compressive twin barriers.

The tensile and compressive stress–strain curves

56 

Acta mater. 49 (2001) 3085–3096	
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Uniaxial 
textures in 

Ti 

Compression: 
25° from 0001, 
~ <11-24> 

compression 

tension 

Kocks, Ch. 5	
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Zr: 
compression 

 
 

Ti: 
compression 

Kocks, Ch. 5	
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Hexagonal 
Rolling 

Textures; 
schematic 

c/a > 1.633: 
RD split in 0001 
 
c/a < 1.633: 
TD split in 0001 

Kocks, Ch. 5	
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Hexagonal 
Rolling 

Textures: 
exptl. 

Kocks, Ch. 5	
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Hexagonal 
Rolling: 
strain 

dependence 

20% 30% 

55% 97% 

Kocks, Ch. 5	
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point. The FE code imposes the computed velocity

gradient on the polycrystal, updates the orientation

and the hardening of the individual grains depending

on the deformation history of the element, and pre-

dicts the macroscopic stress for use in the solution of

the continuum equilibrium equations. The advantage

of this approach is that it accurately accounts for

material anisotropy and its evolution with texture

development. The disadvantage is that the calcu-

lations are computationally intensive, although feas-

ible on modern computers for problems not requiring

fine spatial resolution.

2. MATERIAL AND EXPERIMENTS

The material in this study is crystal-bar zirconium,

purchased from Teledyne Wah Chang, processed via

a series of clock rolling and vacuum annealing cycles

to produce a plate with strong basal texture and

approximate in-plane axisymmetry (Fig. 1). The

aggregate exhibits equiaxed grains with a mean size

of ca 25 µm. Results of compression tests done in

cylindrical specimens cut from the plate and tested

in the through-thickness (TT) and the in-plane (IP)

directions have been reported by Kaschner et al. [7]

and Kaschner and Gray [8], who studied the effects

of texture and interstitial impurities.

In this paper we use the experimental compression

test data to adjust the constitutive response of high-

purity zirconium. In addition, we present new results

of tensile tests meant to provide information on the

asymmetric character of the mechanical response of

Zr. Cylindrical tensile specimens with a nominal cen-

tral gauge of 17.7 mm length and 2.25 mm diameter

were machined with their axes parallel to the plane

of the plate. Mechanical tests were performed at 76

and 293K at a strain rate of 0.001 s!1 to an accumu-

lated plastic strain of ca 25% along the testing direc-

tion. The tensile loading curves, together with the

compression curves, are depicted in Fig. 2. for both

testing temperatures. Notice the striking difference

between the TT compression (TTC) and the IP com-

pression (IPC) response at both temperatures. This

difference can be explained qualitatively by the fact

that the Zr crystals are hard to deform along the c-

axis, while they can accommodate deformation by

easy prism slip when the testing direction is perpen-

dicular to the c-axis. As for comparing specimens

Fig. 1. Initial texture (basal and prism pole figures) of clock rolled Zr used in this study. Direction 3 coincides
with the plate normal (ND).

tested in-plane, notice the different hardening exhib-

ited by the IPT and the IPC curves. This is especially

evident at LNT, where the section aspect ratios of the

tensile and compression samples are also very differ-

ent (see Fig. 3). In what follows we will attribute such

response to grain reorientation by tensile twinning

during IPC, which leads to a texture “randomization”
in the sample, but which also introduces strong bar-

riers to further propagation of dislocations or twins.

3. POLYCRYSTAL MODEL AND SINGLE CRYSTAL

PARAMETERS

The VPSC polycrystal formulation originally pro-

posed by Molinari et al. [9] and later implemented

for anisotropic plasticity by Lebensohn and Tomé [1]

is used for the polycrystal analysis presented here.

The formulation is briefly reviewed in what follows,
while the hardening and twinning models are

described in some detail because they are relevant to

the interpretation of the experiments. Within the

VPSC formulation the polycrystal is represented as an

aggregate of orientations with weights that represent

volume fractions chosen to reproduce the initial tex-

ture. Each grain is treated as an ellipsoidal inclusion

embedded in an anisotropic medium. The shear rate

in each system is a power of the resolved shear stress

divided by a threshold value. The strain rate in the

grain is given by the sum over the shears contributed

by all systems:

Dcij = ġ0!
s

ms
ij"ms:s"c

ts #n = Mc
ijkl(s")skl"c (1)

where Dc, Mc, sc, ms are the strain rate, the visco-

plastic compliance, the deviatoric stress, and the

Schmid tensors for the grain. The exponent n is set

to n = 20 in our calculations, and equation (1) has to

be interpreted as a strategy for resolving the activity

in each system without ambiguity rather than as

describing the actual rate sensitivity of the material

[11]. The overall response of the homogeneous effec-

tive medium is described by a pseudo-linear law relat-

ing overall strain-rate and overall stress:

D̄ = M(sec):s̄". (2)

When the stress equilibrium equation is solved for
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Fig. 2. Experimental (+) and predicted (———) loading curves for clock rolled Zr at RT and LNT. Through-
thickness compression (TTC), in-plane compression (IPC) and in-plane tension (IPT).

Fig. 3. Cross-section at the midpoint of high-purity zirconium samples deformed at LNT (76K) along the in-
plane direction. (a) Deformed in compression (IPC) to 24% true strain; (b) deformed in tension (IPT) to 25%

true strain. Double-ended arrows indicate the initial orientation of the basal poles.

the visco-plastic inclusion the following interaction

equation results:

(Dc!D̄) = !M∗:(s"c!s̄") (3a)

where

M∗ = neffM(sec):(I!E)!1:E (3b)

and E is the visco-plastic Eshelby tensor [10].

Observe that we use neff = 10 in the interaction equ-

ation and n = 20 in equation (1). This is done in order

to enforce a more rigid interaction than the neff = n

associated with the tangent formulation [11]. This

feature changes the results quantitatively but not

qualitatively, and provides grain strain deviations

from the average which are intuitively more realistic.

Observe, also, that when neff→0 equation (3) tends to
give the Full Constraints (Taylor) case. The condition

represented by equation (3) allows the deformation to

differ from grain to grain depending on the relative

anisotropy between each grain and the surrounding

matrix. Typically, grains unfavorably oriented for

accommodating an imposed strain will deform less

than those favorably oriented.

3.1. Hardening of slip and twinning systems

The threshold stress ts, which appears in equation
(1), describes (in an average way) the resistance for

activation that the deformation modes experience and

it usually increases with deformation due to strain-

hardening. Here we define a reference hardening
function for each system, described by:

t̂s = ts0 + (ts1 + qs1#)!1!exp!!
qs0#
ts1
"" (4)

where # is the accumulated shear in the grain. Equ-

ation (4) represents an extended Voce law which,

instead of stress saturation, exhibits an asymptotic

hardening rate qs1. While the latter could be regarded
as describing stage IV at large strains, for the strains

used in this work it is more of an adjustable hardening

parameter. In addition, we allow for “self” and “lat-

Note the strong 
anisotropy caused 
by texture 


