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Outline 
•  Review of possible causes of Abnormal 

Grain Growth (AGG) 
•  Variation in stored energy (from plastic 

deformation) 
•  Particle and pore pinning 
•  Complexion transitions 
•  AGG theory based on energy & mobility 
•  Coarsening of subgrain structures (giving 

rise to recrystallization nuclei) 
•  Appendix: computer codes: MMSP, MEV, 

SPPARKS 



Possible Causes of AGG 
•  Abnormal grains maintain high mobility on their perimeters:  

Example 1 – the GBs acquire impurities and transition from one structure to a different 
one, aka they undergo a complexion transition.  
Requires propagation of the complexion transition from one GB to another. See work 
by Dillon, Harmer, Rohrer, Frazier et al. 

•  Example 2 – in a subgrain network, a highly misoriented (compared to the matrix) 
subgrain has high angle, mobile boundaries.  See papers by Holm, Wang.  

•  Matrix pinned from faceting of majority of grain boundaries: abnormal grains escape 
by de-facetting.  However, it  do the abnormal grains maintain a majority of defacetted 
boundaries?  See work by Henry, Yoon et al. 

•  Matrix pinned with second phase particles: abnormal grains escape how?  Or, how do 
they maintain high mobility? 

•  A possible explanation of AGG in the presence of pinning particles is where the matrix 
is stabilized at a size below the Zener-Smith limit because all the particles are on the 
boundaries, then a grain that can get away will grow abnormally. Roberts, Holm, 
Hoffman et al. 

•  Matrix grains have a non-trivial stored energy (but nucleation of recrystallization 
somehow not possible, e.g. insufficient strain): abnormal grains have lower stored 
energy. Antonione, Bennett, et al. 

•  Special case: AGG in grain-oriented electrical steels has been ascribed to wetting of 
matrix grains by low angle boundaries in Goss grains.  Hwang et al. 
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Abnormal grain growth microstructure 
•  Abnormal grain growth is 

dramatically obvious in 
Fe-3Si steels. 

•  The {110}<001> grains 
are much larger than the 
matrix grains. 

•  Pinning of the matrix 
grains can be achieved 
with either MnS or AlN 
particles 

[Graham 1969] 

time → 

R.D.

Goss, N. P. (1935). "New development in electrical strip steels characterized by fine grain structure approaching the properties 
of a single crystal." Transactions of the Metallurgical Society of AIME 23: 511-544 



1.5% temper-
rolled 
material 
annealed for 
60 min. at 
787°C in air. 

8% temper-
rolled 
material 
annealed for 
15 min. at 
787°C in air. 

AGG: Definition 

Bimodal feature 
typical of AGG 
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•  AGG has occurred 
when a minority of 
grains grow much 
larger than the majority 
(“matrix”). 

•  AGG has occurred 
when the grain size 
distribution is clearly bi-
modal. 

•  Definition above works 
best when the upper 
set is a minority by 
number (and then area-
weighting helps). 

•  In this material, AGG is 
a consequence of non-
uniform stored energy 
from the low strain. 

[Bennett 2011] 
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As-deformed Fe-1%Si 

Maps 
shaded 
according 
to GOS. 

Intergranular 
variations in 
GOS greater in 
8% temper-
rolled material. 

AGG occurs 
more readily in 
8% material 
because of 
greater local 
intergranular 
orientation 
gradients. 

Density of 
abnormally large 
grains will be 
higher in the 8% 
material. 

Presence of  several same-
stored-energy regions in 
1.5% material leads to lower 
density of abnormally large 
grains. 

Grains that grow 
abnormally 
already exist in 
the as-deformed 
material. 

AGG is a local 
phenomenon. 

[Bennett 2011] 



7 

Orientation Spread, Fe-1%Si 

Overall GOS decreases with annealing time. 

15 min. 

1.5% temper-rolled 

0.5 min. 

8% temper-rolled 

5 min. 30 min. 15 min. 60 min. 180 min. 30 min. 

AGG proceeds by low GOS, soft grains, 
consuming their high GOS, deformed neighbors. 

1.5% and 8% temper-rolled Fe-1%Si, annealed 
in air at 787°C for various times. 

[Bennett 2011] 



Pinning & AGG 

•  Still to be explained is the role of particles in AGG.  Why 
is it that the phenomenon is so often (but not always) 
associated with annealing in the proximity of a solvus? 
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Calvet J and Renon C 
(1960) “Discontinuous 
grain growth in Al-Cu 
alloys” Mémoires 
Scientifiques Revue de 
Métallurgie 57 3 
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Pinned microstructures 

However, simulations have shown that AGG 
can occur: 
. . . in particle-pinned microstructures 
without particle dissolution (Roberts et al.) 
. . . in solute-pinned microstructures without 
particles (Kim et al.)  

In pinned microstructures, the 
onset of AGG has been strongly 
correlated to the solution solvus.  

Traditional explanation: 
- Second-phase particles begin dissolving  
- The pinning force is decreased due to 
smaller particle size 
- Select boundaries are then able to break 
free. 

Background 

Gangulee, A. & D'Heurle, F. M. (1972), 'Anomalous Large Grains in Alloyed Aluminum Thin-Films. 1. Secondary Grain-Growth in Aluminum-
Copper Films', Thin Solid Films, 12 399. 
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0% PbO 
Polycrystal 

PMN-35PT Seed 

1% PbO 5% PbO 

Grown Crystal 

<111> 

{111} seeds  PMN-35PT + xPbO    1150°C    10hrs 

*Courtesy E. Gorzkowski (PhD thesis 2005), M. Harmer, Lehigh Univ.; 
J. Amer. Ceramic Society, 89, 2286-2294 

Crystal Growth in  
Pb(Mg1/3Nb2/3)O3 -PbTiO3 [PMN-PT] 



Role of Particle Pinning 
•  Well dispersed second phase particles 

(including voids) are well known to be efficient at 
stabilizing grain networks.   

•  Smith-Zener analysis provides the basic theory 
but is based on randomly placed particles, with 
respect to the boundaries. 

•  Particle pinning investigated in Waspaloy*: 2 
key observations were that (a) the density of 
particles on boundaries was higher than 
random, and (b) AGG occurred. 

11 

D.A. Porter and K.E. Easterling, Phase Transformations in Metals 
and Alloys, (1981) Van Nostrand Reinhold Co: New York. 

P.A. Manohar, M.Ferry and T. Chandra, ISIJ Intl., 38 (1998), 913. 

Zener, C. (1948). Private communication to C.S. Smith. 
Trans. Metall. Soc. AIME 175: 15. 
•  Roberts, C. G. 2007, 'Grain Growth and the Zener 

Pinning Phenomenon: A Computational and 
Experimental Investigation', .PhD thesis, Carnegie 
Mellon Univ. 2007 
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Notation 
•  r  particle radius 
•  R  grain size (or domain size) 
•  Rmax   maximum (limiting) grain size (or domain size) 
•  f or vf  volume fraction (of particles) 
•   γ  grain boundary energy (or domain wall energy) 
•   θ  angle made by boundary at pinning point 
•  Pdrag drag force 
•  ∆E  Energy trap  
•  ∆U  Change in energy of system  
•  NV  Number density of voids 
•  NA  Voids per unit area of domain wall 
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Smith-Zener: Basics 
•  Why do particles have a pinning effect? 
•  Answer: once a boundary has intersected with a particle, 

a certain amount of boundary area is removed from the 
system.  In order for the boundary to move off the particle, 
the “missing area” must be re-created.  This restoration of 
boundary area requires an energy increase.  Through the 
principle of virtual work, this requires a force. 

E 
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Analogy to Pinning Effect 
•  Remember how to blow bubbles?   
•  You take a ring on the end of a stick, 

dip the ring into a soap solution to get a 
film inside the ring, and then blow 
bubbles out of the ring. 

•  The soap+water film “sticks” to the ring 
for the same reason as a grain 
boundary (or domain boundary) sticks 
to a particle: it is simply trying to 
minimize its surface area. 
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Boundary-particle interaction 

•  The drag effect of the particles can 
be quantified by considering a force 
balance at the (immovable) particle 
surface. 

•  Length of boundary attached to a 
particle 
= 2πr cos θ. 

•  Force per unit length exerted by 
boundary on particle = γ sin θ. 

•  Total force =�
length * force.length-1.


•  For θ=45°, the reaction force on the 
boundary is at a maximum. 

•  Maximum force = πγr


grain growth pressure 



16 Drag pressure 
•  To find the point at which grain growth stagnates, we have to 

equate the driving force (pressure, really) to the drag 
pressure. 

•  We cannot equate a per-particle force to a pressure, so we 
must make an assumption about the fraction of boundary 
area that intersects with particles. 

•  Smith-Zener assumption was that the boundaries can be 
assumed to intersect randomly with the particles (not always 
true, but a good place to start!). 

•  Stereology (again!): the fraction of particles with radius r and 
volume fraction f that intersect unit area of a random oriented 
section plane is 3f/2πr2. 

•  Multiply the maximum force per particle by the number per 
unit area of boundary to obtain the drag pressure: 

 Pdrag = πγr * 3f/2πr2 = 3fγ/2r 
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Stagnation of grain growth 
•  The point at which grain growth will stop is (approximately) determined 

by a balance between the driving force (pressure) for grain growth, γ/D, 
and the drag force (pressure). 
 

 3fγ/2rparticle = γ/Rstagnation = γ/Rmax  
 
⇔  Rmax ≤ 2r/3f,  or, 

 Dmax ≤ 4r/3f (Smith-Zener Equation) 
 

•  Note that Underwood gives a more precise analysis and arrives at a 
larger limiting grain size (in fact, double the above estimate), 
 

  Rmax ≤ 4r/3f 
 
which illustrates the approximate nature of the derivation given. 



Grain Size Control 

Previous parallel results: Miodonwik 

102 103 104 105 

Experimental review: Manohar et al. ISIJ 1998 
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•  Upper right panel illustrates the 
physics of boundary-particle 
interaction: Dpinned ~ dppt/Vf 

•  Lower right panel shows summary 
of experimental data, together 
with only available parallel 
calculations w/Monte Carlo in 3D 

•  Investigating the significant range 
of particle volume fraction drives 
us into the petascale; linear sizes 
of the required mesh indicated on 
graph 

•  Monte Carlo method (Potts) offers 
only practical algorithm 
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Grain growth kinetics 
•  The effect of the presence of fine 

particles is to slow down,and eventually 
stop grain growth. 

D2-D0
2∝t 

Porter & 
Easterling 
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Pinning: technological impact 
•  The technological impact of particle pinning is considerable. 
•  Most commercial structural materials, especially for elevated 

temperature service, rely on fine second phase particles to maintain 
a fine grain size. 

•  Limitations: particle dispersions are less effective when not stable, 
or not fully stable. 

•  A common observation: abnormal grain growth frequently occurs in 
materials annealed close to a solvus, where a particle dispersion is 
barely stable. 

•  Pinning of GBs by pores is equally effective.  However, pores can 
also coarsen via diffusion along GBs.  Therefore grain growth in 
ceramics is normally limited by pinning at pores, which in turn is 
limited by pore densification and/or coarsening.  If, however, GBs 
escape from the pinning effect then abnormal grain growth can 
occur.  This tends to leave pores behind in the matrix, which 
becomes a signature of AGG (in ceramics  at least). 



Particles and AGG 

• AGG is often observed in particle-containing 
systems!
-  Near the particle solvus ⇒ local dissolution?!
-  Far from the particle solvus ⇒ 

inhomogeneous particle distribution?!
-  In both cases, theories center around how 

disruptions in the Zener-pinned structure 
cause AGG.!

• Large-scale simulations of pinned systems - with 
no disruptions - showed AGG at "
very long times (Roberts - CMU).!

⇒  How do static particles affect the growth of 
abnormal grains?!

21 
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Comparison of Expt. with Simulation 
A transition from NGG to AGG was observed in both the simulations and 
experiment 

Initiation of AGG was caused by grain size advantage and/or non-random particle distributions 
on grain boundaries. More specifically, if the grain size is smaller than the Smith-Zener limit, 
but the structure is pinned by the larger-than-random density of particles on boundaries (to 
match expts.), then it is possible for a large grain to escape and become “abnormal”. 

Simulation: isotropic GB properties; temperature = 1.5; particles size = 27 
voxels; volume fraction of particles = 6%, 70% of particles were located on 
boundaries; image taken at 100,000 MCS. Roberts (2007), PhD thesis, CMU 



Simulation parameters, take 2 
• Begin with an equiaxed polycrystalline 

microstructure!
-  Boundary properties are uniform and 

isotropic, random grain texture!
-  Note that there AGG is never observed in the 

absence of particles!
• Deposit particles at random on the grain 

boundaries!
-  At sufficiently high particle fractions, the 

system will be pinned!
-  Note that this is a stronger pinning situation 

than Zener pinning because of the non-
random spatial correlation of particles and 
boundaries!

• Allow grains to evolve via normal grain 
growth physics!

23 



Results: Microstructural evolution 

• AGG occurs!
• The abnormal grain size far exceeds the Zener pinned grain size!

• This growth mode would not occur in the absence of particles.!

⇒  A static particle dispersion inhibits normal grain growth but causes 
abnormal grain growth!!

f = 0.1, initial 10000MCS 20000MCS 30000MCS 

24 
“Particle-Assisted Abnormal Grain Growth”, E.A. Holm, T.D. Hoffmann, A.D. Rollett, and C.G. 
Roberts (2015), in S. Fæster et al. (eds.): Proceedings 36th Risø Intl. Symp. Materials Sci.  



Results: Growth kinetics and frequency 

•  The system initially grows to 
its Zener pinned grain size. 

•  AGG incubation time is long 
and variable; all of these 
runs eventually grow 
abnormally (by 106 MCS). 

•  AGG is rare: In this system, 
about 1 in 22,000 grains 
grows abnormally.  

•  The abnormal grain 
consumes all others, so we 
see only one event per 
system. 

Particle fraction = 10% 
Initial grain radius = 10 
Particle radius = 3 

av
g 

gr
ai

n 
si

ze
 

time (MCS) 
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“Particle-Assisted Abnormal Grain Growth”, E.A. Holm, T.D. Hoffmann, A.D. Rollett, and C.G. 
Roberts (2015), in S. Fæster et al. (eds.): Proceedings 36th Risø Intl. Symp. Materials Sci.  



The causes of abnormal grain growth 
•  What permits a particular grain to grow abnormally? 

–  Energy advantage (i.e. greater driving force for growth) 
•  Elastic or plastic strain energy 
•  Surface energy 

–  Mobility advantage (i.e. grows faster than competitors) 
•  Intrinsic – boundary structure 
•  Extrinsic – solutes, particles 

•  Abnormal growth can occur only when the growth advantage 
can persist as the grain grows into new neighborhoods. 

Abnormal grain growth requires a growth advantage and a 
persistence mechanism. 

26 



Model for particle-mediated AGG 
• All grains – but not all grain boundaries – are initially pinned; however, 

thermal fluctuations of the boundaries can occur.!
• A grain boundary that fluctuates off of its pinning particles can move 

freely, consuming other unpinned boundaries and destabilizing pinned 
boundaries.!
⇒  Mobility advantage.!

•  If the free boundary belongs to a grain that is inclined to grow, it will 
grow at the expense of its pinned neighboring grains.!

• As the growing grain increases in size, it accesses ever more avenues for 
growth. !
⇒  Persistence mechanism.!
Static 
interface Penetration 

Lateral 
migration 

New static interface 
position 

[courtesy Prof. Bevis Hutchinson] 27 



Effect of initial grain size on  
particle-mediated AGG 

•  For particle-assisted AGG, the the abnormal grains should begin as grains 
with a high driving force for growth, i.e. large grains.!

•  Simulations confirm that the abnormal grains are usually among the 
largest initial grains.!

!

!
!
!
!
!
!

*  Note: In normal GG, even a large size advantage does not guarantee AGG.!

In this particular 
microstructure, the 
abnormal grain begins as 
the second largest grain, 
in both size and number 
of neighbors. 

28 “Particle-Assisted Abnormal Grain Growth”, E.A. Holm, T.D. Hoffmann, A.D. Rollett, and C.G. 
Roberts (2015), in S. Fæster et al. (eds.): Proceedings 36th Risø Intl. Symp. Materials Sci.  



Which grains become abnormal? 

•  Abnormal grains are typically 
among the largest – in volume and 
number of neighbors.!

•  There is a substantial spread: !
- We cannot predict which grain 

grows abnormally.!
- We cannot even predict which 

group of grains likely contains 
the incipient abnormal grain"
!

⇒  Abnormal grain growth depends 
on more than individual grain 
characteristics: The neighborhood 
is critical as well.!

29 



System scaling 

•  This system scales with the area fraction of the 
particles on the boundaries, which is given by fR0 

•  We have examined f = 0.1, R0 = 10 

•  In extending the simulations to f = 0.05, R0 = 20, the 
system grew to a pinned state then stopped. 

•  However, after 29.106 MCS abnormal grain growth 
occurred. 

•  Because the initiating event is fluctuational, the 
incubation time scales exponentially with grain size. 

⇒  We expect particle-stimulated AGG to increase as 
grain size decreases, consistent with experimental 
observations. 

30 



GB Complexions and AGG 
•  A notable achievement by Dillon, Harmer et al. has been to delineate several types or 

“complexions” of grain boundary according to impurity content and structure. J. Amer. 
Ceram. 89 3885 (2006). 

•  Note that it is commonly accepted that segregation of impurities to GBs, in metals, results 
in solute drag, i.e. lower effective mobility.  For many solutes, increases in recrystallization 
temperature are apparent above a few parts per million. 

•  Counter to (metallurgical) intuition, for sufficiently high loading, boundaries in certain 
ceramics can be significantly more mobile than in the pure material. 

•  A “complexion” denotes a definite grain boundary structure (e.g., 1, 2 or 3 layers of 
impurity atoms) that is in equilibrium with the adjoining material.  It is not the same as 
wetting, which simply means penetration of a boundary by the impurity with no limit on 
volume fraction. 

•  Just as in the model, if a small fraction (1%?) of GBs are highly mobile then AGG ensues. 
The crucial feature of the situation is, however, that the abnormal growth of a given grain 
cannot be sustained unless the complexion transition propagates from one grain boundary 
to (a reasonable fraction) of its adjoining boundaries. Frazier et al. (2015), 'Abnormal grain 
growth in the Potts model incorporating grain boundary complexion transitions that 
increase the mobility of individual boundaries', Acta Mater., 96 390. 
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Grain Boundary Complexions 

Complexion transitions occur 
when temperature and 
composition change such that 
one complexion becomes  
metastable with respect to 
another. 

Cantwell et al. Acta Mater. (2014) 62 1 

32 

This can change some 
grain boundary properties 
drastically, especially 
mobility and energy 



Complexion Transitions and AGG 

Grain Boundary Mobility Increases as Complexions Get Closer to Complete 
Wetting, but the Slope with Respect to Temperature Remains the Same! 

Why? 
Dillon & Harmer, J. Amer. Ceram. Soc. 2008 91 2304 

33 S.J. Dillon, M. Tang, W.C. Carter, M.P. Harmer, “Complexion: A new concept for kinetic engineering in materials science,” 
Acta Mater. 55 6208-6218 (2007). 



Aberration-Corrected Electron Microscopy 
34	

Courtesy: M.P. Harmer 



Complexion: Energy and Mobility 
Changes 

Alumina 
doped with 
100 ppm Nd 

Complexion I: 
mono layer 
segregation, low 
mobility 

Complexion III: 
bilayer 
segregation, 
higher mobility 

Grain boundary composition, 
structure, energy, mobility, and 
distribution linked. 
 
Controlling complexion 
transitions offers possibility of 
microstructure control 
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Dillon et al. Acta Mater. 55 (2007) 6208-18.   
Dillon et al. Int. J. Mat. Res., 101 (2010) 50-56.  Dillon et al. J. Am. Ceram. Soc., 93 (2010) 1796-802.  
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Doped Yttria - EBSD 
36 

Normal Grain Growth (NGG)       Abnormal Grain Growth (AGG) 
   0 hours      6 hours 

�  100 ppm Calcia-doped yttria at 1700°C for 0 and 6 hours in reducing atmosphere 
�  Fabricated by S. Ma at Lehigh University 



Grain Growth Kinetic Types 
37	

S.J. Dillon, M. Tang, W.C. Carter, M.P. Harmer, “Complexion: A new concept for kinetic 
engineering in materials science,” Acta Mater. 55 6208-6218 (2007). 



Complexion Transitions and AGG 

38 Bojarski et al. Metall. and Mater. Trans. A. (2012) 43 3532 

Yttirum-doped alumina: 
Bojarski et al., Mater. Sci. Forum (2013) 753 87 

Implication: many grain 
boundaries changed 

complexion AFTER coming into 
contact with abnormal grains 

c-plane 
high γ	

a-plane 
low γ	

Surface dihedral angles 

c-plane 
high γ	

a-plane 
low γ	

High energy GBs transition more easily, hence we 
observe AGG more against the single crystal that 
has a high energy 0001 surface (red color) 

single crystals  single crystals  



Propagation 

•  Consider the problem of how the transitioned, 
high mobility boundaries have to propagate. 

39 



Boundary-Based Approach to Modeling AGG 
with Complexion Transitions 

•  Over the course of the simulation, transition 
randomly selected grain boundaries to a high 
mobility “complexion”. 

•  Grain boundaries are “special”, as opposed to 
entire grains.  

•  How easily can such a process result in AGG? 
•  Grains with a volume 10x the average (~2.66x 

average radius) regarded as abnormal. 

40 
Frazier, W. E., Rohrer, G. S., & Rollett, A. D. (2015), 'Abnormal grain growth in the Potts model incorporating 
grain boundary complexion transitions that increase the mobility of individual boundaries', Acta Mater 96 390. 
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Independent 
“N0” Transition 

Single Adjacency 
“N1” Transition 

Double  
Adjacency 
“N2” Transition 

3 Different Transitions Across TLs"
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Grain Growth with Independent (N0) 
+ Adjacency (N1) Transitions 

Frazier, W. E., Rohrer, G. S., & Rollett, A. D. (2015), 'Abnormal grain growth in the Potts model incorporating 
grain boundary complexion transitions that increase the mobility of individual boundaries', Acta Mater 96 390. 



Subgrain Coarsening 
•  Deformed metals, especially those with high stacking fault energy, will form 

a subgrain network inside each grain.  
•  The misorientation across the average subgrain boundary increases 

steadily with strain. 
•  Therefore, the likelihood of finding a subgrain with high angle, highly mobile 

boundaries increases with strain. 
•  Such a subgrain has the potential to grow abnormally, which can give rise 

to a new grain – “intragrain nucleation”. 
•  2D simulation, theory: Holm, E. A., et al. (2003). "On abnormal subgrain 

growth and the origin of recrystallization nuclei." Acta materialia 51: 
2701-2716.  

•  Complication: “intergrain nucleation” can occur via “strain induced 
boundary migration”. 

43 

Low 
misorient
ation 

High 
misorient
ation 
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Anisotropy Dependence? 
Parametric simulations show that: • 

    isotropic γ   +   isotropic M   ⇒       normal growth 
anisotropic γ +     isotropic M   ⇒       normal growth 
    isotropic γ + anisotropic M   ⇒   abnormal growth 
anisotropic γ + anisotropic M   ⇒   abnormal growth 

Low densities of highly mobile boundaries are necessary for 
abnormal growth: 

• 

Few high-M boundaries Many high-M boundaries 

Holm et al. (2003) Acta mater. 51 2701-2716.  
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Mean field theory for AGG in 2D 
•  Hillert originally suggested that any grain with size twice that of the mean,  

R > 2<R>, would be able to escape and grow abnormally. 
•  Simulations showed that this was not the case and Thompson et al. 

demonstrated this theoretically by re-analyzing the basic mean field theory; 
Acta metall. 35: 887-890 (1987). 

•  Rollett et al. (1989) Acta metall. 37 2127, showed that a mobility advantage 
for the boundary of a grain would allow it to grow abnormally to a multiple of 
the matrix grain size.  Rollett & Mullins (1997) Scripta mater. 36 975, 
extended von Neumann-Mullins to include energy and mobility (Humphreys 
used mean-field in his 1997 Acta paper) 

•  The issue with this approach is, how can an individual grain sustain a 
mobility advantage while growing through a matrix of multiple orientations? 

•  1st Answer: subgrain structures can sustain a mobility advantage where a 
particular outlier subgrain always has a high misorientation, high mobility, 
perimeter; (AGG) Holm et al. Acta mater. (2003) 51: 2701. (Applied to the 
nucleation of recrystallization) Wang et al. (2011), Acta mater. 59 3872. 

•  2nd Answer: changes in the composition of boundaries (to form different 
“complexions”) generates perimeters around abnormal grains with 
sustained high mobility; Frazier et al. (2015) Acta Mater 96 390. 



46 Philosophy of Approach 

•  This development is based on: Rollett, A. 
D. and W. W. Mullins (1996). “On the 
growth of abnormal grains.” Scripta 
metall. et mater. 36(9): 975-980.  

•  Analysis confined to 2D because it is 
possible to integrate the curvature 
around the perimeter of a grain and 
relate it to the rate of change of area; not 
possible in 3D. 
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Relative growth rate - summary 

-1.2
-0.8
-0.4
0

0.4
0.8
1.2
1.6
2

0 1 2 3 4 5 6

G
(Γ
,µ
,ρ
)

ρ

µ=2
Γ=0.7

Γ=1.0

Γ=1.3 Γ=1.1

Plot of relative growth rate versus relative size for µ = 2 with four different 
values for the ratio of grain boundary energies, Γ = 0.7, 1.0 (solid line), 
1.1 and 1.3.  Note that only the curve for Γ = 1.3 shows both upper and 
lower roots (G = 0) but that the other three cases also have upper roots 
that increase with decreasing Γ. The results predict abnormal grain 
growth (Γ > 0) over a range of relative size that decreases with increasing 
boundary energy ratio and decreasing boundary mobility ratio. 
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ρ− = 2µΓa− 2 µΓa( )2 + µΓ a − 2( )[ ]1/ 2
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48 AGG Analysis: Assumptions 
•  The theory makes a number of simplifying 

assumptions. 
•  Students are assumed to be familiar with the Herring 

equation. 
•  Only 2D grain growth is treated, although it is 

reasonable to expect that theory applies in 3D also. 
•  Grain boundary properties are assumed to be 

constant (uniform) everywhere except for the 
boundaries between certain special grains (type A) 
and grains in the matrix (type B). 

•  The special grains share the same energy and 
mobility on their boundaries. 

•  The special grains are isolated (no A-A boundaries). 

Rollett and Mullins (1996) Scripta metall. et mater. 36 975.  
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Microstructure 

•  Each A grain is 
surrounded by B 
grains. 

•  We are interested in 
whether the A grain 
grows faster than the 
B grains during 
growth. 

•  4-sided example 
should shrink. 

AB

B

B

ζ

B

Figure 1. 

turning angle=ζ 
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50 Parameters 
•   Γ:=γAB/γBB in which the γ's are the boundary 

energies on the AB and BB boundaries, 
respectively. 

•  µ:= MAB/MBB in which the M’s are the 
boundary mobilities. 

•  A:= area of a grain; n:= number of sides of a 
grain. 

•  S:= arc length; β:=angle made by directed 
tangent to line relative to a fixed reference 
direction. 

•  Define a function a, of the energy ratio:  
a(Γ) = 3ζ /π = (6 /π )sin−1(1/ 2Γ) < 3



51 Turning angle at a vertex 
•  Fig. 1 shows an irregular 4-sided A grain 

surrounded by B grains.  The vertices are 
assumed to be in equilibrium.  If torque terms 
are neglected, the turning angle ζ of the 
tangent to the AB boundary at a vertex is then 
given by 
  
 
 
 

•  Note the limiting case of wetting of the matrix 
grain boundaries by the A grain occurs at 
Γ=1/2 or ζ=π. 

ζ = 2sin−1(1/ 2Γ) AB

B

B

ζ

B
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dA/dt vs. curvature 

•  We now derive a relationship between the 
rate of change of area of the “A” grain, its 
number of sides, and the equilibrium angles 
at each vertex. The curvature rule for a two 
dimensional grain may be written: 
 
 
 
where v is the outward velocity in the normal 
direction, and dβ/ds is the curvature.  

v = −Mγ dβ
ds

Rollett and Mullins (1996) Scripta metall. et mater. 36 975.  
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Integrate around the grain 
•  If Eq. 2 is integrated around the “A” grain with 

n sides of fixed MAB and γΑΒ, the left hand side 
just gives the rate of change of area A of the 
grain and on the right, the integral of dβ/ds 
gives  2π-nζ, since there is a discontinuity of 
the AB tangent angle of ζ at each of the n 
vertices as illustrated in Fig. 1. 

dA
dt

= −MABγ AB 2π − nζ( ) = πMABγ AB

3
an − 6( )

Rollett and Mullins (1996) Scripta metall. et mater. 36 975.  



54 The “n-6” rule 
•  The previous equation shows that the 

rate of area change is constant; if all 
boundaries are equivalent, as they are 
for a “B” grain surrounded by “B” grains 
in the matrix, then Γ=1, a=1 and the 
equation reduces to the “n-6” rule for 
the B matrix grains: 

dA
dt

=
πMBBγ BB

3
n − 6( )

Rollett and Mullins (1996) Scripta metall. et mater. 36 975.  
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Grow or Shrink? 
•  The equation shows that the A grain will 

grow if n>ν=6/a and shrink if the reverse 
is true. Fig. 2 shows a plot of v as a 
function of Γ. 	

2

4

6

8

10

12

0.5 1 1.5 2

ν

Γ

Growth

Shrinkage

ν = 6 /a = π / sin−1(1/ 2Γ)
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Grow or Shrink? Contd. 
•  If n>ν the A grain grows and if n<ν  it shrinks. 

Note if Γ<1/√3, the A grain grows for any 
number of sides n≥3, which corresponds to 
the wetting criterion. 

•  We now turn to the comparison of the 
ultimate size of the A grain to that of the B 
grains. For this purpose, following Thompson 
et al.† and Rollett et al.*, we study the time 
dependence of the ratio ρ=RA/<RB> where the 
R's are area-equivalent radii. 
† Thompson, C., H. Frost, et al. (1987). “The relative rates of secondary and normal grain growth.” Acta 
metall. 35 887-890. 
* Rollett, A. D., D. J. Srolovitz, et al. (1989). “Simulation and Theory of Abnormal Grain Growth-  
Variable Grain Boundary Energies and Mobilities.” Acta Metall. 37 2127. 
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Growth of A grains 
•  Using the rule for differentiating a quotient we 

have  
 
 
 
 
where              simply means that  is 
averaged over (isolated) A grains of the same 
RA but otherwise possibly of different shape 
and n, and similarly for                  . 

˙ ρ RA =
1

RB
2 RB

˙ R A RA − RA

d RB

dt
# 
$ 
% 

& 
' 
( 

˙ ρ RA

˙ R A RA
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58 Growth of A grains, contd. 
•  To evaluate the first derivative in the brackets of the 

previous equation, we combine Eq. 3 and the 
expression A=πRA

2 to get 
  
 
 
 
For <n|RA>, the average number of sides of A grains 
with a fixed RA, we use the expression  
 

      <n|RA> = 3r + 3�
�
which is linear in the size of the A grain and gives the 
limit 3 as RA becomes very small; it approximates the 
number of circular B grains that would fit on the 
circumference of the A grain 

!RA RA =
MABγAB
6RA

a n RA − 6( )

Rollett and Mullins (1996) Scripta metall. et mater. 36 975.  
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Growth of A grains, contd. 
•  Combining these equations: 

 
 
 
 

•  Now we need something to predict the 
coarsening rate in the matrix (the “B” grains), 
for which we turn to Hillert’s classical grain 
growth theory. 

!RA RA =
µΓMBBγBB
2 RB

a+ a− 2( ) 1
ρ

⎛

⎝
⎜

⎞

⎠
⎟
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60 Hillert’s theory 
•  Assume that the presence of A grains does 

perturb the B matrix; the theory may be 
obtained by combining two ingredients: the 
“n-6” rule, expressed in area equivalent 
radius form and averaged over all B grains of 
radius RB: 
 
 
 
and the linear relation sides(size): 

!RB RB =
MBBγBB
6RB

n RB − 6( )

n RB = 3RB / RB +3
Rollett and Mullins (1996) Scripta metall. et mater. 36 975.  
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Hillert’s theory, contd. 
•  Abbruzzese et al.† found that this 

relationship is experimentally supported. 
It also satisfies the Euler* requirement 
that <n>=6. Combining Eqs. 11 and 12 
with standard coarsening theory, one 
obtains the Hillert result  

† Abbruzzese, G., I. Heckelmann, et al. (1991). “Topological foundation and kinetics of texture controlled 
grain growth.” Textures and Microstructures 14-18: 659-666.  
*Courant, R. and H. E. Robbins (1941). What is Mathematics, Oxford University Press. 

d
dt
RB =

MBBγBB
8 RB



62 Abnormal Growth: main result 
•  Combining equations gives the 

following: 

!ρ | RA =
MBBγBB
2 RB

2 G(ρ,µ,Γ)

G(ρ,µ,Γ) = µΓ a+ a− 2( ) 1
ρ

⎛

⎝
⎜

⎞

⎠
⎟−

ρ
4

⎧
⎨
⎩

⎫
⎬
⎭

The sign of G is the same as that of  !ρ | RA
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Finding a limiting (abnormal) size 
•  Think of the result as a quadratic equation and 

consider which way the relative size is changing: 
for there to be a fixed relative size (ρ), there 
must be a “restoring force”. 

•  Thus, for a stable ρ to exist, corresponding to a 
fixed ratio of the A to B grain size as growth 
proceeds, there must be a positive root ρ of the 
quadratic equation G=0 at which  
∂G/∂ρ<0, so that the sign of               is positive 

•  The mathematical condition for real roots of G=0 
to exist is 

!ρ | RA

µ ≥ (2− a) /Γa2

Rollett and Mullins (1996) Scripta metall. et mater. 36 975.  
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The positive root: max. size 
•  Physically µ must also be positive. If the previous 

condition is not satisfied, G<0 for all ρ (the Eq. 
above shows G<0 for large ρ) so that under 
these conditions the “A” grain would shrink and 
disappear. If the condition above is satisfied, it is 
easily shown that the upper root, given by  
 
 
 
is then the stable one. If  
1/2<Γ≤1/√3 (3>a≥2),  
then G>0 for any (positive) ρ<ρ+ so that any A 
grain in this range will grow toward the stable ρ+.  

ρ+ = 2µΓa + 2 µΓa( )2 + µΓ a − 2( )[ ]1 / 2

Rollett and Mullins (1996) Scripta metall. et mater. 36 975.  
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Minimum size for abnormal growth 
•  If, however, Γ>1/√3 (a<2), the initial value of ρ must 

lie in the range ρ- <ρ < ρ+ for growth toward ρ+ to 
occur, where ρ- is given by 
 
 
if ρ<ρ-, G<0 so shrinkage and disappearance of the A 
grain would occur. In the special case that the 
condition above is an equality, which represents a 
double-root curve in the (µ, Γ) plane (e.g. µ=Γ=a=1 
as discussed by Thompson et al.), 
then                                            . In this case G is 
never positive so grain A would again ultimately 
disappear. 

ρ− = 2µΓa− 2 µΓa( )2 + µΓ a − 2( )[ ]1/ 2

ρ+ = ρ− = 2(2 − a)/a

Rollett and Mullins (1996) Scripta metall. et mater. 36 975.  
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Asymptotes 
•  Note also that one only expects the relative 

size to approach the asymptote rather slowly 
under experimental conditions.  If the range of 
ρ over which G>0 is small then fluctuations in 
the growth rate, due for example, to 
fluctuations in the number of neighbors, may 
cause     to become negative for long enough 
to cause A to disappear. Note also that one 
only expects the relative size to approach the 
asymptote rather slowly under experimental 
conditions. 

˙ ρ 

Rollett and Mullins (1996) Scripta metall. et mater. 36 975.  



67 Details 
•  The case of a<2 (Γ>1/√3) is illustrated in the following 

figure which shows a plot of G as a function of ρ for µ=2 
and several values of Γ. There are two positive roots of 
G=0. The effect of decreasing Γ is to expand the range 
over which G is positive. The meaning of G>0 or             
>0 is that the average growth rate of the A grain will 
exceed that of the mean size of the matrix so that the 
expected value of ρ will increase until it reaches the 
stable upper root of G=0. Note that this analysis 
addresses only the average value of dρ/dt. If the range of 
ρ over which G>0 is small then fluctuations in the growth 
rate, due for example, to fluctuations in the number of 
neighbors, may cause to become negative for long 
enough to cause A to disappear.  

˙ ρ | RA

Rollett and Mullins (1996) Scripta metall. et mater. 36 975.  
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Relative growth rate - plot 
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Figure 3.  Plot of relative growth rate versus relative size for µ=2 with four different 
values for the ratio of grain boundary energies, Γ=0.7, 1.0 (solid line), 1.1 and 1.3.  
Note that only the curve for Γ=1.3 shows both upper and lower roots (ρ=0) but that 
the other three cases also have upper roots that increase with decreasing Γ. The 
results predict abnormal grain growth (G>0) over a range of relative size that 
decreases with increasing boundary energy ratio. 

Rollett and Mullins (1996) Scripta metall. et mater. 36 975.  



69 

Contours in the (µ,Γ) plane 
•  The next figure shows the (µ,Γ) plane with regions of ρ+ (stable 

root) delineated: no real roots exist in the upper left triangle 
whereas two roots exist in the lower right triangle (Γ>1/√3).  
Over the range 0.5<Γ≤1/√3, only one positive root exists (ρ- is 
negative), and for Γ≤0.5, wetting occurs. Several contours of 
constant relative size are shown; these were calculated by 
setting G=0 in Eq. 14a, and solving for µ with fixed values of ρ. 
Also shown is the curve (thick line) along which the upper and 
lower roots are equal; this was calculated from Eq. 16 with an 
equality.  Each contour of constant ρ touches this line at a point 
for which ρ+=ρ-; for µ and Γ less than this point, the contour 
describes the branch for ρ+; conversely, for µ and Γ larger than 
this point, the contour describes the branch for ρ-. In the region 
of two positive roots, each µ,Γ pair is intersected by two 
contours; the difference between ρ+ and ρ- defines the range of 
relative size over which abnormal growth is likely to occur.  [Eq. 
numbers refer to the Scripta metall. Paper] 

Rollett and Mullins (1996) Scripta metall. et mater. 36 975.  
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Contours in the (µ,Γ) plane: plot 
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Figure 4. The µ, Γ plane with regions of stable ρ delineated. For Γ<0.5, wetting 
occurs; for 0.5≤Γ≤1/√3, only one positive root exists; below the double root curve 
(dotted line) and for Γ>1/√3 two positive roots exist. Contours of constant ρ+ (solid 
curves) and ρ- (dashed curves) have been drawn; the difference between the ρ+ 
and ρ- values at any point in the two root region defines the range of relative sizes 
over which abnormal growth can occur. 
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Abn. Gr. Gr.: Conclusions 

•  Abnormal growth is promoted by high mobility 
of the abnormal grain relative to the matrix. 

•  Abnormal growth is constrained by high 
energy of the abnormal grain. 

•  A combination of high mobility and high 
energy could occur in a sub-grain structure 
with a few misoriented subgrains. 

•  Complex dependence of abnormal growth 
revealed by contours in the (µ,Γ) plane. 



Extending AGG to nucleation of 
primary recrystallization 

•  Since deformed metals develop dislocation cell structures with accumulating 
strain, it is reasonable to ask what happens during annealing. 

•  Polygonization is the process by which dislocation cells evolve into subgrain 
structures.  Cahn [Cahn, R. W. (1950), Proceedings of the Physical Society of 
London A, 63, 323-336] postulated many years ago that this process could 
continue with certain individual subgrains growing abnormally and thereby acting 
as "nuclei" for primary recrystallization. 

•  Wang et al. extended the simulation of AGG in subgrain structures by combining 
its results (in terms of the frequency of generation of abnormal grains) with 
constitutive information about subgrain misorientations available in the literature 
and showed that the dependence of recrystallized grain size on prior strain was 
in reasonable agreement with the literature. 

•  It is important to note that primary recrystallized grain size is, to first order, only 
dependent on the prior strain and not sensitive to annealing temperature.  This 
confirms that the process of recrystallization is determined by the prior strain 
history, even if the rate (kinetics) of recrystallization depend on temperature via 
the rate sensitivity of grain mobility. 
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40% Thickness reduction 

1.   The prior grain structure stretches out, 
becomes elongated. 

2.   The subgrain structure, by contrast, 
remains approximately equi-axed and 
changes size according to the flow stress. 

3.   High angle boundaries also develop 
within the (prior) grains at higher strains. 

HAGB (>= 15º) 

 
LAGB (< 15º) 

60% Thickness reduction 

Original Grain Structure Grain Boundary Network 
at Increasing Strain 

RD 

10% Thickness reduction 



Holm Theory 
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Mobility anisotropy is 
changed by varying 
critical angle (θ*) 
defining a jump in 
mobility. 
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MDF Comparison 
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Note: Misorientation  calculation is based on only nearest 
neighbors in a 3D voxelized structure. 
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3D Simulation Results 
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Abnormal growth Modeling 
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C1 and C2 are constants, 
28.0 and 1.18 respectively.  

Application conditions: 

•  Strong texture 

•  One single component 
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Relation between GOD & Mean Misorientation 

Mean Misorientation VS. Grain Orientation Deviation
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Model by Wang et al. 
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Application to Nucleation 
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Where k is a constant, ~ 1.50º for incidental 
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Grain Size (after Recrystallization) Model via AsGG 

AA5052: J.J. Nah et al. Scripta Materialia 58 (2008) 500-503 

AA1050: J.P. Suni, H. Weiland, R.T. Shuey. Materials Science Forum 2002; 408 - 412: 359. 
D.A. Hughes et al. Phys. Rev Lett. 81 4664 (1998) 

AA 5XXX: 1.1% Mg, 97% Al, other alloying elements and impurities. 

AA1050: Commercial purity aluminum.  

Based on the subgrain size (a constant) 
calculated from the flow stress model 

1050 Model 1: 672 K (Def. T), 5/s (strain 
rate) 

1050 Model 2: 561 K (Def. T), 50/s 
(strain rate) 

5XXX Model: 623 K (Def. T), 50/s 
(strain rate) 

! 

Dpredicted = Vgrain (")3

! 

Vgrain =
Vsubgrain

Pnucelation (")

Subgrain size model 
Nucleation model 

Wang et al. (2011). "Modeling the recrystallized grain size in 
single phase materials." Acta mater. 59 3872-3882. 
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Questions (1) 
1.  If a given grain has a perimeter that has a higher mobility than 

the boundaries in the surrounding (matrix) grains, what effect 
does this have on the probability of AGG? 

2.  If a given grain has a perimeter that has a higher energy than 
the boundaries in the surrounding (matrix) grains, what effect 
does this have on the probability of AGG? 

3.  What contradictory effects can impurities have in promoting 
AGG? 

4.  What is the main effect of second phase particles on grain 
boundary migration? 

5.  What is the main effect of second phase particles on grain 
growth kinetics? 

6.  What effect do pores have on grain growth? 
7.  In what way are pores different from (most) second phase 

particles? 
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Questions (2) 
1.  What is “relative size” in the context of AGG? 
2.  What does an analysis of relative size reveal in terms of 

mobility and energy ratios? 
3.  What impact does abnormal growth in subgrain networks have 

on primary recrystallization? 
4.  Why is the dependence of average GB misorientation on 

plastic strain important? 
5.  Why is the subgrain size as a function of flow stress important? 
6.  How does abnormal subgrain growth help to explain the fact 

that recrystallized grain size depends on prior strain (and 
deformation conditions such as deformation temperature and 
strain rate) but not on annealing temperature? 
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Summary 
•  The kinetics of abnormal grain growth can be described with a 

mean field theory that considers the behavior of an exceptional 
grain.  Upper and lower limits to relative size are found, so we 
expect bimodal grain size distributions. 

•  Abnormal grain growth in a limited range of orientations 
(subgrains) occurs when a small minority of grains have 
misorientations large enough to give their perimeters high 
mobility. 

•  AGG can also occur if the boundaries of a grain undergo a 
transition to high mobility, e.g. impurity segregation leading to a 
transition in the GB structure. 

•  AGG demonstrated to occur in the presence of particle pinning, 
provided that the grain size is smaller (but not too much smaller) 
than the Smith-Zener limit.  If a higher than random fraction of 
particles is present on the boundaries, then this raises the 
probability of AGG. 
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Hot Work 

Cast 
Anneal 

Quench 

As-received 
Condition 

Waspaloy is a high strength, nickel base, precipitation-hardening alloy. 

1.34     0.01     0.04      0.06     13.5     19.8  0.79    4.25     0.04      Bal.     2.98    0.05 

 Al          B        C         Nb       Co       Cr  Fe      Mo        Mn       Ni         Ti         Zr 
Waspaloy Composition: 

Effect of High Temperature: 

1.  γ’ dissolves 

2.  Only [MC] type carbides 
are present. 

3.  Complex alloy is 
essentially reduced to 2 
phases:  
Matrix + Carbides 

Roberts, PhD thesis CMU (2007) 

Sims and Hagel, The Superalloys, Wiley: New York 
(1972), p. 577. 

Jackman, Canada and Sczerzenie, Superalloys 1980, 
TMS: Warrendale, p. 365 

Waspaloy: Experimental 

Annealing Temperature = 
1100°C (above the γ’ solvus) 
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Predicted: 
 

Observed: 

Particle/Boundary Stereological Relationship 
The number fraction of particles on grain boundaries 
was measured and predicted for the (1) initial and (2) 
annealed conditions (i.e. 1100°C/1h).  

History Expected Observed 

As-received 0.23 0.61 

1100°C/1h 0.07 0.19 

The fraction on boundaries decreased in agreement with theoretical 
calculations; however, both experimental conditions showed higher fractions 
than predicted from random intersections. 
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Definitions: 
(NA)b = # of particles 
on boundaries 

NA = # of particles 

r =  particle radius 

LA = grain boundary 
trace per unit area 

Assumptions: 
(1) NS = NA 
(2) spherical particle 
(3) uniform spatial distribution 

Larger than expected fractions on boundaries may explain why the limiting 
grain size is commonly less than the Smith-Zener limit. 

Roberts, PhD thesis 
CMU (2007) 
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To obtain a pinned microstructure, the material was annealed for an 
extended period of time; however, abnormal grain growth (AGG) 
occurred at long annealing times (1100°C/2wk). 

 What is the cause of AGG in this material?  
Texture? The orientation and misorientation were random, implying 
that texture does not initiate or control AGG. 
 Particles? 
 Size Advantage?  

Abnormal  
Grain 

Roberts, PhD thesis 
CMU (2007) 
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Comparison of Expt. w/ Simulation 

Experiment and 
simulation show 
qualitative agreement 
of the observed growth 
trends. 

 
Note: 

The nickel alloy 
increased its mean grain 
size by a factor of ~2.5 
while the simulations 
exhibited factors greater 
than 3. 

Expt. 

Potts model 

Roberts, PhD thesis CMU (2007) 
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Comparison of Expt. w/ Simulation 
A transition from NGG to AGG was observed in both the 
simulations and experiment. 

Initiation of AGG was caused by grain size advantage and/or non-random particle distributions 
on grain boundaries. More specifically, if the grain size is smaller than the Smith-Zener limit, 
but the structure is pinned by the larger-than-random density of particles on boundaries (to 
match expts.), then it is possible for a large grain to escape and become “abnormal”. 

Simulation: isotropic GB properties; temperature = 1.5; particles size = 27 
voxels; volume fraction of particles = 6%, 70% of particles were located on 
boundaries; image taken at 100,000 MCS. 

Roberts, PhD 
thesis CMU 

(2007) 
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Software 
§  Materials people have, collectively, invested substantially in software 

development. 
§  CMU philosophy: unless there exists an obvious opportunity for 

commercialization, it is better to make software freely available. 
§  CMU makes its tools for serial and parallel algorithms for Monte 

Carlo, phase field, and level set models of grain growth, as well as 
particle dissolution.  We have already made many of our 3D 
microstructure analysis tools available on the web.  

§  CMU software is distributed over a number of websites. 
§  http://code.google.com/p/mbuilder/ : Microstructure Builder 
§  http://matforge.org/cmu/  : MMSP package 
§  http://latir.materials.cmu.edu/websvn 
§  http://mimp.materials.cmu.edu/research/downloads.html 
§  http://neon.materials.cmu.edu/rollett/texture_subroutines   



MMSP is a library of functions that 
manipulate parallel uniform grids 

§    Written in C++ using MPI 

§    Open-source, extensible 

§    Parallelism mostly hidden 

§    Most serial algorithms 
written in C or C++ can be 
quickly parallelized 

§    Primarily intended for 
numerical modeling  

Grid data subdivided 
across an array of 18 

processors 
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An MMSP grid is  
a distributed array 

Distributed:  
 

Each MPI process “owns” 
its own segment of the 

array, and “shares” ghost 
buffers 

This permits the creation of very large 
grids which can be accessed at the 
same time by many processors on any 
system with MPI installed (either shared 
or distributed memory architectures).  

process 0 process 1 process 2 

ghost buffers (grey);  original domain (white) 
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Templated: 
 

An MMSP grid can  
store any type of data.  

 

An MMSP grid is N-dimensional, 
where N is any positive,  

non-negative integer. 

This permits tremendous 
versatility in the data structure 
used to represent information at 
each point in the domain, and also 
enables dimension-independant 
coding 

Supported data types: 
§   Any POD data type:  int, float, double, etc. 
§   Any STL container:  std::vector, std::map, std::list, 
std::string, std::complex, etc. 
§   MMSP built-in data types, such as arrays, matrices, 
sparse vectors, sparse matrices, tensors, etc. 
§   Advanced users can create their own data types as well. 

An MMSP grid is  
a templated array 
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When to use MMSP 
. . . when the required computations are data-intensive (large 
domains) so that data parallelism makes sense 
 
. . . when the workload is evenly distributed across the domain 
(or approximately so) 
 
. . . when you have access to a large computing system (with 
either shared or distributed memory) and on which MPI has 
been installed 
 
. . . when your computation requires a complicated data type 
(such as vector, sparse vector, or sparse tensor data) at every 
node in your grid  
 

Other options exist, such as global arrays:   
http://www.emsl.pnl.gov/docs/global/ 

 

MMSP is not compatible with some excellent software utilities  
(such as PETSC; http://www.mcs.anl.gov/petsc/petsc-as/ ) 

95 



Adapting MMSP for AGG 
-   Use the Potts model (Q-state Ising) for simplicity and 

efficiency 
-   Moderately large domains run in minutes on a single 

CPU 
-   Run isotropic grain growth until small, compact grain 

structure developed 
-   Use microstructure from previous run as input;  

declare a small (~10) grains as abnormal grains;  
assign their perimeters as having low energy and high 
mobility 
allow the system to evolve 

-   Measure the results 
-   Eventually, repeat in phase field to permit dependence 

of energy, mobility on boundary normal (e.g. to capture 
the faceted growth observed in yttria) 

96 



97 

Synthetic Textures (One Component) 
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Note: Misorientation  calculation is based on only nearest neighbors 
in a 3D voxelized structure. 
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 8º GROD  of Brass 

12º GROD of Brass 

15º GROD of Brass 

The number 
of 

abnormally  

large 

 grains  

(ALG)  

increases 

as 

deviation  

increases. 

Initial Final 5×107  4×107 

Initial  1×107 Final 2×107 

Initial 1×107 2×107 Final 

AGG has occurred when a minority of grains grow much larger than the majority (“matrix”). 
An “abnormal grain” is defined as one that is > 8X initial average volume. 

AsGG - Brass Component 
 

Time 
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8º GROD of S 

12º GROD of S 

Initial 1×107 2×107 Final 

Initial Final 5×107  4×107 

Initial  1×107 Final 2×107 

15º GROD of S 

The number 
of 

abnormally  

large 

 grains   

(ALG) 

increases 

as 

deviation  

increases. 

AsGG - S Component 

AGG has occurred when a 
minority of grains grow 
much larger than the 
majority (“matrix”). 

An “abnormal grain” is 
defined as one that is > 
8X initial average 
volume. 
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2×105 Steps 5×106 Steps 9 ×106 Steps Initial 

Ideal Components: Brass Bunge Angles: 35,45,0 S : 123,27,221 RD  

ND 

5º 

5º 

SIBM 

1. Beck PA, Sperry PR.. J. Applied Physics. (1950); 21:150-152 
2.  P.J. and Humphreys, F.G. (2003), Acta Mater. 51.  

grain1 

grain2 

1. Nucleation at HAGB after 20% 
thickness reduction in aluminum. New 
grain A,B are growing between 
deformed grain C,D. 
 

   

2. EBSD Map showing SIBM in Al-0.1 
wt% Mg, cold rolled 20% and annealed 
at 300°C. HAGBs are black and LAGBs 
are grey.  
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SIBM 
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which is 8 times greater in volume than the average at 106 MCS.  
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•  Both AsGG and SIBM was successfully simulated using 3D Monte 
Carlo method. The 3D digital materials model physical textures with 
variable orientation spread, which is correlated with the mean 
misorientation.  

•  Which recrystallization nucleation mechanism operates depends on 
the orientation spread. For example, when both grains have 
orientation spreads (GROD values) smaller than 5°, SIBM is 
dominant. 

Summary of 
Simulation 
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Probability of AsGG Model 
PAsGG vs. <θ> 

our Potts model 

Subgrain Size Model 
δ  vs. Strain 

Literature data 

Mean Misorientation 
<θ> vs. Strain 
Hughes et al. 

Probability of Nucleation Model 
Pnucleation vs. Strain 

Recrystallized Grain Size Model 
Grain Size vs. Strain 

Recrystallized Grain Size based AsGG 

We need a functional form for PAsGG vs. <θ>: 

Model 1: Regression analysis of the probability of AsGG against θ (GROD). 

Model 2: Regression analysis of the probability of AsGG against 15/<θ>. 

Model 3: Exponential function found by plotting the scaled probability of AsGG 
against 1/θ. 

€ 

< θ >= k ε vM( )2 / 3
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Sampl
e1 

Sampl
e2 

Sampl
e3 

Hughes’s Observation: 

Where k is a constant, ~ 1.50º for incidental 
subgrain boundaries (IDBs) and ~7.21º for 
geometrically necessary boundaries (GNBs).   

εvM is von Mises strain. 

 

Mean Misorientation Validation  

! 

< " >= k #
vM

D.A. Hughes et al. Phys. Rev Lett. 81 4664 (1998) 

AA5005 data: 90% thickness reduction and GNBs.    

! 

EBSD data Average < " >=13.1º

! 

"
vM
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3
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( 

Hughes’s equation 
is valid! 

D.A. Hughes et al. / Scripta Mater. 48 (2003) 147–153 

TEM micrograph showing the arrangement 
of dislocation boundaries developing in pure Ni 
deformed to a rolling reduction of 20%.  
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105 Subgrain Size Models 

€ 

γ slip system =
γ shear

< Mtorsion >
=

εv.m.
< Mtension >

€ 

εv.m. = 3.07 ×
3
2.7

γ shear

Steps: 

1.  von Mises strain is converted to shear strain. 

2.  Shear stress is found from the shear stress-strain curve. 

3.  Insert shear stress into the subgrain size equation. 

4.  Plot subgrain size as a function of v.M strain. 

Al Subgrain Size Change With Von Mises Strain
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AA5005 data 

K=10 ,r=1 

€ 

δ = bK τ /G( )−r

τ : shear stress
G : shear modulus

€ 

Burgers vector :b = 2.86 ×10−10m

Timothy J. Ginter, Farghalli A. Mohamed, Journal of Materials Science 17 (1982) 2007-2012 

D.A. Hughes et al. Phys. Rev Lett. 81 4664 (1998) 
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Flow Stress Model  
Shear Stress Model 

Alloy 
Def. 

Temp 
(K) 

   

€ 

˙ ε  
(1/s) 

H (J) lnA n Stress 
(Mpa) 

  
(Subgrain 

Size) 
 ( m) 

1050  5 6 1  0 .037  5 0  15688 8  26 .69  3 . 8 4  31 .71  2.34 

1050  6 7 2  0 .037  5  15688 8  26 .69  3 . 8 4  12 .77  5.82 

1050 5 6 1  0 .037  5  15688 8  26 .69  3 . 8 4  26 .29  2.83 

1050 6 7 2  0 .037  5 0  15688 8  26 .69  3 . 8 4  18 .54  4.01 

5XXX 6 2 3  0 .051  5 0  16549 9  23 .56  2 . 7 4  46 .70  1.59 

5XXX 6 2 3  0 .051  5  16549 9  23 .56  2 . 7 4  39 .13  1.90 

5XXX 6 2 3  0 .051  1 0  16549 9  23 .56  2 . 7 4  41 .40  1.80 

 
Assumption: The strain rate and 
deformation temperature for 5XXX 
(5000 series) alloy are based on 
typical industry process parameters. 

T. Sheppard, M.A. Zaidi, P.A. Hollinshead, N. 
Raghunathan. Structural Evolution During The Rolling of 
Alumimium Alloys. In: Chia E, H., McQueen HJ, editors. 
Microstructural Control in Aluminium Alloys: 
Deformation, Recovery and Recrystallization New York, 
USA, 1985. p.19. 

Zener-Hollomon 
Parameter 
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Subgrain Size Models 
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Flow Stress 
Model  

Alloy 
Def. 

Temp 
(K) 

   

€ 

˙ ε  
(1/s) 

H (J) lnA n Stress 
(Mpa) 

  
(Subgrain 

Size) 
 ( m) 

1050  5 6 1  0 .037  5 0  15688 8  26 .69  3 . 8 4  31 .71  2.34 

1050  6 7 2  0 .037  5  15688 8  26 .69  3 . 8 4  12 .77  5.82 

1050 5 6 1  0 .037  5  15688 8  26 .69  3 . 8 4  26 .29  2.83 

1050 6 7 2  0 .037  5 0  15688 8  26 .69  3 . 8 4  18 .54  4.01 

5XXX 6 2 3  0 .051  5 0  16549 9  23 .56  2 . 7 4  46 .70  1.59 

5XXX 6 2 3  0 .051  5  16549 9  23 .56  2 . 7 4  39 .13  1.90 

5XXX 6 2 3  0 .051  1 0  16549 9  23 .56  2 . 7 4  41 .40  1.80 

 

Assumption: The strain rate and 
deformation temperature for 5XXX 
(5000 series) alloy are based on 
typical industry process parameters. 

T. Sheppard, M.A. Zaidi, P.A. Hollinshead, N. 
Raghunathan. Structural Evolution During The Rolling of 
Alumimium Alloys. In: Chia E, H., McQueen HJ, editors. 
Microstructural Control in Aluminium Alloys: 
Deformation, Recovery and Recrystallization New York, 
USA, 1985. p.19. 

Zener-Hollomon 
Parameter 

Subgrain size 
obtained from 
standard 
relationship 
between flow 
stress and 
subgrain size. 
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Grain Size (after Recrystallization) Model via AsGG 

AA5052: J.J. Nah et al. Scripta Materialia 58 (2008) 500-503 

AA1050: J.P. Suni, H. Weiland, R.T. Shuey. Materials Science Forum 2002; 408 - 412: 359. 
D.A. Hughes et al. Phys. Rev Lett. 81 4664 (1998) 

AA 5XXX: 1.1% Mg, 97% Al, other alloying elements and impurities. 

AA1050: Commercial purity aluminum.  

Based on the subgrain size (a constant) 
calculated from the flow stress model 

1050 Model 1: 672 K (Def. T), 5/s (strain 
rate) 

1050 Model 2: 561 K (Def. T), 50/s 
(strain rate) 

5XXX Model: 623 K (Def. T), 50/s 
(strain rate) 

! 

Dpredicted = Vgrain (")3

! 

Vgrain =
Vsubgrain

Pnucelation (")

Subgrain size model 
Nucleation model 

log-scale grain size 


