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Lecture Objectives

Brief review on the challenges of describing crystallographic
orientations

Review of previously studied orientation representations:
rotation matrices and Euler angles

Introduction of Rodrigues-Frank vectors
Introduction of unit quaternions
Useful math for using quaternions as rotation operators

Conversions between Euler angles, axis-angle pairs, RF
vectors, and quaternions



Why can it get challenging to work with
crystallographic orientations?

* Orientation is specified based on reference frames

—

Sample coordinates Crystal coordinates Lab coordinates

» Different choices of axes to convert crystal frames

* Hexagonal frame into orthonormal frame
— x=[1010] v=[1210] z=[0001] or  x=[2110] y=[0110] z=[0001]

* Personal experiences?
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Descriptors of orientation

Orientation matrix > | Misorientation matrix
. ' Rodrigues Unit
Miller indices Euler angles AX|s/a'ngIe 8 :
pair Vectors Quaternions

v
Pole Figure Euler space Axis/angle Rodrigues Quaternion
Inverse PF ODF and space ODF space ODF space (4D)
mODF and mODF and mODF ODF and
mODF
Computational

efficiency




Crystal Orientation: Rotation (direction cosine)
Matrices

* Crystallographic orientation is the position of crystal system with respect to the
specimen coordinate system.

* Asingle rotation can be described by a rotation axis and an angular offset about
the axis.
— Passive rotation: Rotation of axes, sample coordinate into crystal coordinate.
— Active rotation: Rotation of the object, crystal coordinate into sample
coordinate.

R cosf sinf vs. R= cosf —sinf

—sinf cosf sin@ cosf

e 3x3 rotation matrices, R, left-multiply column vectors
* Properties:
— R1=RTanddet(R)=1
— Rows and columns are unit vectors, and the cross product of two rows or
columns gives the third.



Crystal Orientation: Miller Indices Notation

Three orthogonal directions chosen as the reference frame

All directions can then be described as linear combinations of the three unit direction
vectors.

Most straightforward in orthonormal systems, e.g. cubic, as indices for plane and
direction are identical.

In many cases we use the metallurgical names Rolling Direction (RD) // x, Transverse
Direction (TD) // y, and Normal Direction (ND) // z.

We then identify a plane normal parallel to 37 axis (ND) and a crystal direction parallel
to the 1%t axis (RD), written as (hkl)[uvw].

ND =7
A
(hkl) /7
TD =Y
>
RD =X

—— [UVWV] //X




Crystal Orientation: Euler Angles

Euler showed three sequential rotations about different axes can describe orientations (18t
century)

Passive rotation (SCoord into CCoord)

There are 12 different possible axis-angle sequences.

The “standard” sequence varies from field to field.

Multiple conventions
— Proper Euler angles (z-x-z, x-y-x, y-z-y, z-y-z, X-2-X, y-X-y)
— Tait-Bryan angles (x-y-z, y-z-x, z-x-y, x-z-y, z-y-X, y-X-Z)

We use the Bunge convention.
— First angle ¢, about ND
— Second angle @ about new RD

— Third angle ¢, about newest ND

Sample symmetry effects the size of Euler space
— Most general, triclinic crystal system, no sample symmetry > 0= ¢, ¢, <360 0= ®=<180
— Cubic crystal system, rolled sample (orthonormal sample symmetry) = O0=<¢,, ¢, ®<90



Rotation matrices from Miller indices

[uvw]=RD  TD ND=(hkl)
) l l l ] Rows are the direction cosines for [100], [010],
[100] direction—— |a,, a,, a;; and [001] in the sample coordinate system,
[010] direction v |a a a columns are the direction cosines (i.e. hkl or uvw)
: : 2homer for the RD, TD and ND in the crystal coordinate
[001] direction —— |4, 4., a
(%31 32 33 system.
A (h,k,l) A (M,V’W) A ﬁXb
n=—r—0 b= t=t7
Vi + K+ 1 Vu? +v2 + w2 nxb
Sample
byt n
a; = Crystal b2 t2 n2
\ by t3 n; /

Challenge: With Miller indices, we define the closest family (can be degrees away)



Rotation matrices from Bunge Euler angles

cos¢, sing, O 1 0 0 cos¢, sing, O
Z =|-sin¢, cos¢, O], X=(0 cos® sind Z,=|-sin¢g, cos¢p, O
0 0 1 0 -sin® cosd 0 0 1

Combine the 3 rotations via matrix multiplication; 15t on the right, last on the left:

( COS (| COSQP»H . singy cos @y

: . sing, sin CI)
‘—sin @ Sin @5 cosCD +COS @ SIn @, cosP

A=Z2,XZ;=|'—cos@sinp, — sIn @ SIn > COS» SIn (I)
\—sin ¢y cos @, cOS (I) +C0S @y COS @y cOs D :

\ sing; sin® —CoS @ SInP cosP /



Miller indices from Bunge Euler angles

e Compare the indices matrix from slide 6 with the Euler angle
matrix from slide 8.

h = nsin ®sin @,
k = nsin dcos ¢,
[ =ncosd
U = n’(cos (1 COS Uy — SIN g SIN @ COS (I))
V= n’(— COS (o1 SIN @y — SiN @] COSEPH COS CI))

w =n'sin® sing;

n,n’ = factors to make integers towards the closest family



Bunge Euler angles from rotation matrices

Notes:

The range of inverse cosine
(ACOS) is O0-mt, which is
sufficient for @;

from this, sin(®) can be
obtained;

The range of inverse tangent
is 0-2m, (must use the ATAN2
function) which is required for
calculating ¢, and ¢,.

=cos ™ (ay;)
. (aB/smCI))
(ays/sin®)

r (a31/sm<I>)

=tan
(-a,,/sin®)

tan” 1(a% )
ifa, =1, ®=0, ¢ =

,and @, =



Bunge Euler angles from miller indices

W V2 + k2 + 12
\/u2 + V2 4+ w? \/h2 +k°

Caution: when one uses the inverse trig functions, the range of result is limited to
0°<cos16<180°, or -90°<sin"'#<90°. Thus it is not possible to access the full 0-360°
range of the angles. It is more reliable to go from Miller indices to an orientation
matrix, and then calculate the Euler angles. Extra credit: show that the following
surmise is correct. If a plane, /kl, 1s chosen in the lower hemisphere, /<0, show that
the Euler angles are incorrect. 11

SIn @, =




Crystal Orientation: Axis-angle Pair

Axis-angle pair is defined such that the crystal frame and the sample
frame is overlapped by a single rotation, 6, along a common axis [u
vV W].

Commonly written as (7,0) or (n,m)

Active rotation

The rotation can be converted to a matrix
(passive rotation)

Common in misorientation representation

- Difference of misorientation vs. rotation difference is S
the choice of reference axis

X1
Easy conversion into Rodrigues-Frank
vectors



Rotation matrices from Axis-angle

For(r,0) or (n,m)

g, =0, cos0+ rr(1-cosb)
+ Eeijkrk sinf
k=13
[ cosO + u*(1-cosf)  uv(l-cos@)+wsind uw(l-cosf)-v sinf)

=|uv(l1-cosf)-wsin@ cos@+v*(1-cosf) vw(l-cosf)+ usinf

\uw(l—c080)+vsin9 yw(l-cosB) - usin@ COS@+W2(1—COSH))

This form of the rotation matrix is a passive rotation,
appropriate to axis transformations



Axis-Angle from Rotation matrices

Rotation axis, n:

(a,;— a,),(ay,—a5),(aq, —a,,)

n

- > > >
‘/(a23—a32) +(a;,—a,5)" +(a,—-a,))

Note the order (very important) of the coefficients in each subtraction;
again, if the matrix represents an active rotation, then the sign is inverted.

Rotation angle, 6:

a,=3cosO+ (1-cosO)n; =1+2cos0

therefore,
cos 8= 0.5 (trace(a) — 1).

14



Crystal Orientation: Rodrigues-Frank Vectors

* Rodrigues vectors were popularized
by Frank [“Orientation mapping.”
Metall. Trans. 19A: 403-408 (1988)],
hence the term Rodrigues-Frank
space

e Easily converted from axis-angle

* Most useful for representation of
misorientations, also useful for
orientations

The RF representation from axis

angle R(r, o)
scales r by the tangent of /2

0 = ftan(o;/ 2)

Note semi-angle

15



Rodrigues-Frank Space

Population of vectors

Smallest R results from the smallest 8, and it lies closest to the origin of the RF
space

Lines in RF space represent rotation about fixed axis

Further, when the RF space is divided into subvolumes, the misorientations that lie
on the boundary of the subvolume are geometrically special, by having a low index
axis of misorientation.

As the Rodrigues vector is so closely linked to the rotation axis, which is

meaningful for the crystallography of grain boundaries, the RF representation of
misorientations is very common.

T T p — /7
SNA_S A (S X
N /Y N.) N
) / 2%
. | ( i ! ,
f © x | | | l A x l
2 A | | 12 |
\ N 'l. '\ l\‘ . ,' B _\_._ 1 / ".u
Y N SN
a) D) c)
Cubic crystal symmetry Cubic Cubic

. 16
no sample symmetry orthorhombic cubic



R-F Vector from Rotation matrices

* Simple formula, due to Morawiec:

(0, |(ay; —ap) [1+tr(a)]
0, (a;, —a,)/|1+ tr(a)
\0;) |(a,-a,)/|\1+1tr(a)|

Trace of a matrix:
tr(a) = a;; + ay, + as;



R-F Vector from Bunge Euler angles and Bunge
Euler from R-F vectors

= tan(a/2) = V{(1/[cos(D/2) cos{(¢p, + ¢,)/2} > — 1}
" 0= tan(®/2) [cos{(¢; - ¢,)/2}/cos{(¢; + ¢,)/2}]

" 0= tan(@/2) [sin{(¢; - ¢,)/2}/[cos{(¢; + ¢,)/2}]
" py=tan{(¢; + ¢,)/2}

P. Neumann (1991). “Representation of orientations of symmetrical
objects by Rodrigues vectors.” Textures and Microstructures 14-18: 53-58.

Conversion from Rodrigues to Bunge Euler angles:
sum = atan(R;) ; diff =atan (R,/R;)

¢, = sum + diff; d = 2. * atan(R2 * cos(sum) / sin(diff) ); ¢, = sum - diff
1 2



Rotation matrix from R-F vectors

e Due to Morawiec:

Gij = 1 (1 = p1pi]0ij + 2pipj + 2¢€ijkpk)
L+ pipi
Example for the 12 entry:
a12 = : ([1 — pip1ld12 + 2p1p2 + 2p3)
1+ pipi

2(p1p2 + p3)
L+ pipr

NB. Morawiec’s Eg. on p.22 has a minus sign in front of the last term; this will give an .
active rotation matrix, rather than the passive rotation matrix seen here.




Crystal Orientation: Unit Quaternions

What is a quaternion?

A quaternion (1843 by Hamilton) is an q = qo+iq1 + Jg2 + kg3
ordered set of four real numbers q,, g, 9>, = (g0, 91,92, q3)
and g,. -
Here, i, j, k are the familiar unit vectors that Scalar part — Vector part

correspond to the x-, y-, and z-axes, resp.

[1] Quaternion multiplication is non-commutative (pg#qp)
[2] An extension to 2D complex numbers
[3] Of the 4 components, oneisa ‘real’ scalar number, and the other 3 form a
vector in imaginary ijk space!
q=4q,+iq, + jq, + kq,

i’ =j =k’ =ijk=-1

i = jk=-kj

j=ki=-ik

k=ij=-]i




Quaternions as rotations

A quaternion can represent a rotation by an angle 6 around a unit axis n=
(xy2):
0

=| COS— XxSIin— sin— zsin—
4 2 2 4 2

or

q= <cosg nsing>
27 2

 Checking the magnitude of the quaternion, ¢ + la/* =1

o=@ + @i+ + 4

= \/cosz o +x”sin’ o +y’sin’ o +z°sin’ o
2 2 2

_ 20 .20, 2 o
—\/cos 5+sm E(x +y +x )

= coszg+sinzgn2 =\/coszg+sinzg
2 2 2

Unit!  =+1=1 =



Unit Quaternion from Rotation Matrices

Formulae, due to Morawiec:

cos%=é\/l+tr(Ag) =g, =i\/1+tr(Ag)

Note: passive rotation/ gijkAg Jjk
axis transformation (axis 6]l- ==
changes sign for for active 4\/1 + tr(Ag)

rotation)

(4 |£1Ag(2,3) - Ag(3.2)1/2,1+ 1r(Ag)]
q,| |[Ag(3,1)-Ag(1,3)1/241+ tr(Ag)
q; | | £[Ag(1,2) - Ag(2,1)]/21 + tr(Ag)
\44 i\/1 + tr(Ag) /2

Note the coordination of choice of sign!




Rotation Matrices from Unit Quaternions

For ¢ = qo+1q1 + jg2 + kg3

Orientation matrix:

1-29,-2q5  29,9,%29,95 29,95-29,9,
= |29,:9,-2q09s 1-2q; =295 24,4,+2q,4,
29145424049, 24,95-2909,  1-247 -2,

Quaternions are

Computationally efficient — multiplication requires fewer computations
Axis-angle and R-F into quaternion conversion is simple

23



Rotation of a vector by a quaternion

W = q'Vvq Passive rotation
— * . 0
S = gqvq Active rotation
Rotation axis: r= (1/\/57 1/\/5’ 1/\/§>
Consider rotating the vector i by an angle g = cos (a/2) + rsin (a/2)
of a = 2n/3 about the <111> direction. 1 1 1 1\ V3
= -+ |i=+j—F=+k—=| =
4 2 <\/§ "3 \/5) 2
— 1 — 1 + 1 + lk
“=75 Ad=351791 75
.1 .11
q-1= 5 q X 1= 2J 2k
> .
] For an active rotation:
s = qiq"
. 1 3 1 1\ /1, 1
i (22 - N e
(i-1)i2() o2 () (3-2¢)
1, 1, 1 1

1+ -1+ '+1k+ ik

xs = ——i+-i+=j+= —j— =

For a passive rotation: W=4q14q . 2 2 20 2 27 2
— :J

24
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Properties of Quaternions

Magnitude of a quaternion: Conjugate of a quaternion:

¢ =q —q

I =q'q=qi+ ¢ + & + ¢ C.
= qo — iq1 — jg2 — kg3

Addition of quaternions:

p+q=((pPo+q)+i(pi+aq)+Jjp2+ q) +k(ps+ g3)

Product of two arbitrary quaternions

g =poqo — (P11 + P2q2 + P3qs)
po (ig1 + jgo +kq3) + qo (ip1 + jp2 + kps)
+1(p2qs — p3q2) +j (psq1 — p1q3) + k (p1g2 — p2q1)

pq = [pogo — P - 4] + [poa + qop + P X ]
. : Scalar part Vector part
Using more compact notation: P P
again, note the + in front of the vector product

On a New Species of Imaginary Quantities Connected with a Theory of Quaternions,
by William Rowan Hamilton, Proceedings of the Royal Irish Academy, 2 (1844), 424—434.
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Cubic Crystal Symmetry Operators

Symmetry Operator Rodrigues Vector | Unit Quaternion
2-fold on <100> L,. |(1,00) +(1,0,0,0),
(0,1,0) +(0,1,0,0)
(0,0,1) +(0,0,1,0)
4-fold on <100> L, |=(100) +1/V/2(x1,0,0,1),
+(0,1,0) +1/7/2 (0, =1,0,1)
+(0,0,1) +1/7/2 (0,0, +1,1)
2-fold on <110> L, |o(1,=10) +1/V2 (x1,1,0,0),
(1,0, =1) +1/7/2 (0,1, +1,0)
(0,1, =1) +1/7/2 (1,0,1,0)
3-fold on <111> L,’ =11, +1/2 (=1,1,1,1),
+(1,-1,1) +1/2 (1,-1, 1,1),
+(1,1,-1) +1/2 (1,1,~1,1),
+(-1,-1,1) +1/2 (-1~1, 1,1)

+1/2 (-1,1,-1,1),
+1/2 (1,-1,-1,1)
+1/2 (-1,-1,-1,1))

The numerical values of these symmetry operators can be found at:

http://pajarito.materials.cmu.edu/rollett/texture_subroutines: quat.cubic.symm etc:




Combining Rotations as RF vectors

 Two Rodrigues vectors combine to form a
third, p., as follows, where pg follows after
p,. Note that this is not the parallelogram
law for vectors!

Pc = (Par Pg) =
Pat Pg - Pa X Pe}/{1-pacpst

/

addition vector product scalar product
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