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Lecture	Objectives	
•  Show	how	to	convert	from	a	descripHon	of	a	crystal	

orientaHon	based	on	Miller	indices	to	matrices	to	Euler	
angles.	

•  Give	examples	of	standard	named	components	and	their	
associated	Euler	angles.	

•  The	overall	aim	is	to	be	able	to	describe	a	texture	component	
by	a	single	point	(in	orienta=on	space,	which	is	parameterized	
with	some	set	of	coordinates	such	as	Euler	angles)	instead	of	
needing	to	draw	the	crystal	embedded	in	a	reference	frame.	

•  Homework	exercises	will	be	converHng	Miller	indices	to	Euler	
angles.	

Obj/notation		AxisTransformation		Matrix		EulerAngles		Components	
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(hkl)[uvw],	Miller	Index	DeFinition		
of	a	Crystal	Orientation	

•  We	use	a	set	of	three	orthogonal	(mutually	perpendicular)	direcHons	as	the	reference	
frame.		MathemaHcians	set	up	a	basis	set	of	unit	vectors	called	e1	e2	and	e3.		All	
direcHons	can	then	be	described	as	(linear)	combinaHons	of	the	three	basis	vectors.		See	
the	Supplemental	Slides	for	explanaHons	of	vectors	and	unit	vectors.	

•  In	many	cases	we	use	the	metallurgical	names	Rolling	DirecHon	(RD)	//	e1,	Transverse	
DirecHon	(TD)	//	e2,	and	Normal	DirecHon	(ND)	//	e3.	

•  We	then	idenHfy	a	crystal	(or	plane	normal)	parallel	to	3rd	axis	(ND)	and	a	crystal	direcHon	
parallel	to	the	1st	axis	(RD),	wri>en	as	(hkl)[uvw].		The	second	axis	is	then	completely	
specified	by	the	other	two.		This	situa=on	is	some=mes	referred	to	as	“biaxial	texture”,	to	
dis=nguish	it	from	“uniaxial	texture”	in	which	only	one	crystal	axis	of	each	grain	is	aligned	
with	the	specimen.	

•  In	thin	films,	we	must	sHll	use	a	reference	frame	with	3	axes	but	very	oWen,	only	the	
normal	direcHon	(ND)	or	film-plane-normal	ma>ers	because	only	one	crystal	direcHon	is	
aligned	with	the	ND,	which	is	the	uniaxial	texture	referred	to	above.		Be	aware,	however,	
that	an	epitaxial	thin	film	can	be	biaxially	aligned	to	the	substrate	in	which	case	all	3	axes	
are	relevant.		This	la>er	case	is	important	to	High	Temperature	Superconductor	
processing,	for	example.	



Orientation	speciFication	via		
Miller	indices:	(hkl)[uvw]		
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[uvw]	

(hkl)	

≡Z≡e3	

≡Y	
≡e2	

≡X≡e1	

∕	∕	Z	

∕	∕	X	
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We specify a texture component by the Miller indices of a 
plane normal that is parallel to sample Z, and Miller 
indices of a direction parallel to sample X. 



Active	versus	Passive	Rotations	
•  Before	we	discuss	the	details	of	how	to	calculate	orientaHon	matrices,	it	is	a	good	idea	to	

summarize	the	difference	between	“acHve”	and	“passive”	rotaHons,	as	mathemaHcians	
know	them.			

•  In	materials	science,	we	are	mostly	concerned	with	describing	anisotropic	properHes	of	
crystals	and	the	aggregate	anisotropy	of	polycrystalline	materials,	for	which	it	is	convenient	
to	use	tensors	to	describe	those	properHes.	

•  For	tensor	quanHHes,	we	commonly	need	their	coefficients	in	either	the	sample	frame	or	
the	crystal	frame.		For	this	we	use	“transformaHons	of	axes”,	which	are	“passive	rotaHons”,	
in	the	sense	that	the	two	frames	share	a	common	origin	and	differ	by	only	a	(proper)	
rotaHon.		The	tensor	quanHHes	do	not	rotate	in	real	space,	however.	

•  In	solid	mechanics,	however,	it	is	more	typical	to	need	to	describes	the	moHons	of	objects.		
Certain	moHons	are	just	rotaHons	and	one	can	think	of	rotaHng	a	vector,	for	example,	
about	the	origin,	in	which	case	one	is	describing	an	“acHve	rotaHon”.		Some	object	is	
rotated	about	the	origin	and	moves	through	the	frame.	

•  When	we	deal	with	Miller	indices,	remember	to	divide	by	the	magnitude	of	the	vector	so	as	
to	obtain	a	unit	vector.	

•  For	all	work	in	texture	we	will	consistently	use	axis	transforma5ons,	
a.k.a.	passive	rota5ons.		
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Why	do	we	need	Axis	Transformations?	
•  The	reason	that	we	need	axis	transformaHons	is	because	in	order	to	compute	

the	anisotropic	properHes	of	a	polycrystal,	we	need	to	be	able	to	transfer	
(single	crystal)	properHes	from	the	each	crystal	frame	to	the	sample	frame.		
Equally,	we	need	to	transfer	stresses,	strains	and	other	fields	from	the	
sample	frame	to	the	crystal	frame.	

•  In	order	for	a	quanHty	to	“qualify”	as	a	tensor	it	has	to	obey	the	axis	
transforma=on	rule,	as	discussed	in	the	previous	slides.	

•  The	tensor	transforma=on	rule	defines	relaHonships	between	transformed	
and	untransformed	tensors	of	various	ranks.	
	
Vector: 	 	 	V’i  = aijVj�
2nd	rank 	 	 	T’ij  = aikajlTkl	
3rd	rank 		 	 	T’ijk  = ailajmaknTlmn	
4th	rank	 	 	 	T’ijkl  = aimajnakoalpTmnop		
and	so	on	and	so	forth	(without	limit	in	the	rank)	
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7	 Rotation	of	axes	in	the	(2D)	plane:	
x,	y	=	old	axes;	x’,y’	=	new	axes	

! v =
cosθ sinθ
− sinθ cosθ
$ 

% 
& 

' 

( 
) v

N.B.	Passive	Rotation/	Transformation	of	Axes	
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θ	

v	

€ 

x ≡ ˆ e 1€ 

" x ≡ ˆ " e 1
€ 

y ≡ ˆ e 2

€ 

" y ≡ ˆ " e 2

We transform the coefficients of, e.g., a vector, v, from one set of axes to another; 
note that the vector does not change position in real space 



Reference	Frames	
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Initial position, crystal frame (green, KB 
in Bunge) aligned with reference 

(sample, KA in Bunge) frame (orange) 

New position, crystal frame (green) 
rotated with respect to the reference 

(sample) frame (orange) 



Vector	Represented	in	Two	
Different	Frames	
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New position, crystal frame (green, KB 
in Bunge) rotated with respect to the 

reference (sample, KA in Bunge) frame 
(orange) 

Now we add a vector (the blue stick) 
that we wish to represent in two 

different frames (sample vs. crystal) 



10	 DeFinition	of	an	Axis	Transformation:	
ê	=	old	axes;	ê′=	new	axes	

aij = ˆ ! e i • ˆ e j

From	Sample	to		
Crystal	(primed)	

=

a11 a12 a13
a21 a22 a23
a31 a32 a33

! 

" 

# 
# 

$ 

% 

& 
& 
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ê1	 ê’1	

ê2	

ê’2	

ê3	ê’3	
v	

We transform the coefficients of, e.g., a vector, v, from one set of axes to another; 
note that the vector does not change position in real space 
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Geometry	of	{hkl}<uvw>	

e1	//	[uvw]	
^	

e’1	
^	

e2	//	t	
^	

e’2	
^	

e3	//	(hkl)	
^	e’3	

^	

^	

[001]	
[010]	

[100]	

Miller index 
notation of 
texture component 
specifies direction 
cosines of crystal 
directions // to 
sample axes.  Form 
the second axis from 
the cross-product of 
the 3rd and 1st axes.	

Sample	to	Crystal	(primed)	

t	=	hkl	x	uvw	
Obj/notation		AxisTransformation		Matrix		EulerAngles		Components	
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Form	matrix	from	Miller	Indices	

ˆ b = (u, v, w)
u2 + v2 + w2ˆ n = (h, k, l)

h2 + k2 + l2

ˆ t =
ˆ n × ˆ b 
ˆ n × ˆ b aij =Crystal

Sample

b1 t1 n1
b2 t2 n2
b3 t3 n3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
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Basic idea: we can construct the complete rotation matrix from two 
known, easy to determine columns of the matrix.  Knowing that we 
have columns rather than rows is a consequence of the sense of 
rotation, which is equivalent to the direction in which the axis 
transformation is carried out. 
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(Bunge)	Euler	Angle	DeFinition	
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•  The	three	reference	axes	are	
labeled	as	X,	Y	&	Z;	also	
commonly	known	as	ND,	RD,	
and	TD.	

•  The	three	crystal	axes	are	
labeled	as	X’,	Y’	&	Z’	;	also	
commonly	known	as	[100],	[010]	
&	[001]	in	cubic	crystals.	

•  The	reference	(sample)	frame	is	
labeled	as	“KA”	in	the	figure,	and	
the	crystal	frame	as	“KB”.	

•  Each	diagram	shows	successive	
rotaHons,	more	properly	
thought	of	as	transformaHons	of	
axes.	

[Bunge]	
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Euler	Angles,	Animated	

[010]	

[100]	

[001]	

Crystal	

e1=Xsample=RD

e2=Ysample=TD

e3=Zsample=ND

Sample	Axes	

RD!

TD!

e”2
e”3

=e”1

2nd	position	

ycrystal=e2’’’

φ2	

xcrystal=e1’’’

zcrystal=e3’’’�
=

3rd	position	(9inal)	

e’1

e’2

φ1	

e’3=

1st	position	

Φ	

Obj/notation		AxisTransformation		Matrix		EulerAngles		Components	



Named	Texture	Components	
15	

•  In	metals,	especially	rolled	fcc	metals	it	is	common	to	give	proper	names	
to	parHcular	texture	components	that	commonly	occur.		Thus,	you	will	
encounter	“cube”,	“brass”,	“copper”,	“S”	and	the	like.		Each	component	
has	parHcular	Euler	angles,	as	we	will	now	explain.		Along	with	these	
names	go	names	of	so-called	fibers	such	as	alpha	and	beta.	

•  In	rolled	bcc	metals,	it	is	typical	to	refer	to	fibers	only,	such	as	the	alpha	
fiber	in	which	the	orientaHons	all	have	<110>//RD,	and	the	gamma	fiber	
for	which	<111>//ND.		One	excepHon	to	this	is	the	“Goss”	component,	
named	aWer	the	person	who	idenHfied	the	textures	criHcal	to	transformer	
steels.	

•  In	hexagonal	metals,	the	texture	is	mostly	evident	in	the	basal	pole	figure	
and	so	the	names	generally	refer	to	the	deviaHon	of	the	<0001>	with	
respect	to	a	parHcular	sample	direcHon	such	as	ND.		This	is	described	in	
more	detail	later	on.	

•  In	thin	films	of	all	kinds,	unless	an	epitaxial	texture	is	present,	the	texture	
is	described	in	terms	of	which	crystal	direcHon	is	most	commonly	found	
parallel	to	the	normal	of	the	film	plane.	
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Cube	Texture	(001)[100]:		
cube-on-face	

•  Observed	in	recrystallizaHon	of	fcc	metals	
•  The	three	crystal	axes,	<001>,	are	parallel	to	
the	three	sample	axes,	i.e.	ND≡Z,	RD≡X,	and	
TD≡Y	direcHons.	

{010}

{100}

{001}

RD

ND

TD
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[100]	

[0-10]	

[001]	
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Sharp	Texture	(Recrystallization)	

{010}

{100}

{001}

RD

ND

TD

RD

TD
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•  Figure	on	the	leW	shows	the	{001}	pole	figures	(PFs)	for	this	texture	
component:	maxima	correspond	to	{100}	poles	in	the	standard	
stereographic	projecHon	aligned	with	the	sample	axes.		Note	that	this	
pole	figure	could	not	be	measured	experimentally	unless	transmission	
and	reflecHon	methods	were	to	be	combined	because	the	reflecHons	on	
the	edge	of	the	PF	cannot	be	detected	(see	lecture	on	PF	measurement).	
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Euler	angles	of	Cube	component	
•  The	Euler	angles	for	this	

component	are	simple,	and	yet	
not	so	simple!	

•  The	crystal	axes	align	exactly	with	
the	specimen	axes,	therefore	all	
three	Euler	angles	are	exactly	
zero:		
(φ1,	Φ,	φ2)	=	(0°,	0°,	0°).	

•  OrientaHon	Matrix:		

•  Rodrigues	vector:	[0,0,0]	
•  Unit	quaternion:	[0,0,0,1]	
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•  As	an	introducHon	to	the	effects	of	
crystal	symmetry:	consider	aligning	
[100]//TD,	[010]//-RD,	[001]//ND.		
This	is	evidently	sHll	the	cube	
orientaHon,	but	the	Euler	angles	
are		
(φ1,Φ,φ2)	=	(90°,0°,0°)!	

•  This	is	a	first	illustraHon	of	the	
confusing	(but	real)	situaHon	
where	the	same	physical	
orientaHon	has	mulHple	
mathemaHcal/numerical	
descripHons.		This	leads	eventually	
to	the	discussion	of	fundamental	
zones.	€ 

1 0 0
0 1 0
0 0 1

" 

# 

$ 
$ $ 

% 

& 

' 
' ' 
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{110}<001>:	the	Goss	Component	
•  This	type	of	texture	is	known	as	Goss	Texture	and	
occurs	as	a	RecrystallizaHon	texture	for	FCC	materials	
such	as	Brass,	…	

•  In	this	case	the	(011)	plane	is	oriented	towards	the	
ND	and	the	[001]	inside	the	(011)	plane	is	along	the	
RD.	

RD	

ND	

TD	

(110)	

[100]	
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[001]	



20	

{110}<001>:	cube-on-edge	
•  In	the	011	pole	figure,	one	of	the	poles	is	oriented	
parallel	to	the	ND	(center	of	the	pole	figure)	but	the	
other	ones	will	be	at	60°	or	90°	angles	but	Hlted	45°	
from	the	RD!	(Homework:	draw	the	(111)	pole	figure	by	
hand.)	

RD

TD

{110}	

RD	

ND	

TD	

(110)	

[100]	[001]	

RD 

TD 
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Euler	angles	of	Goss	component	
•  The	Euler	angles	for	this	

component	are	simple,	and	yet	
other	variants	exist,	just	as	for	
the	cube	component.	

•  Only	one	rotaHon	of	45°	is	
needed	to	rotate	the	crystal	
from	the	reference	posiHon	(i.e.	
the	cube	component)	to	(011)
[100];	this	happens	to	be	
accomplished	with	the	2nd	
Euler	angle.	

•  (φ1,Φ,φ2)	=	(0°,45°,0°).	
•  Other	variants	will	be	shown	

when	symmetry	is	discussed.	
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•  Matrix:	

•  Rodrigues	vector:	
		[	tan(22.5°),	0	,	0	]	

•  Unit	quaternion	(q1, q2, q3, q4):	
[	sin(22.5°)	,	0,	0,	cos(22.5°)]	

•  Note	that,	since	there	is	only	
one	non-zero	Euler	angle,	the	
rotaHon	axis	is	obvious	by	
inspecHon,	i.e.	the	x-axis.		For	
more	general	cases,	the	rotaHon	
axis	has	to	be	calculated.	

€ 

1 0 0
0 1/ 2 1/ 2
0 −1/ 2 1/ 2

# 

$ 

% 
% % 

& 

' 

( 
( ( 
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Brass	component	

•  This	type	of	texture	is	known	as	Brass	Texture	
and	occurs	as	a	rolling	texture	component	for	
materials	such	as	Brass,	Silver,	and	Stainless	
steel.	

RD

ND

TD

(110)

[112]

(110)[1 12]
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Brass	component,	contd.	

RD

ND

TD

(110)

[112]

(100)	 (111)	 (110)	
(110)[1 12]
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•  The	associated	(110)	pole	figure	is	very	similar	to	the	
Goss	texture	pole	figure	except	that	it	is	rotated	
about	the	ND.		In	this	example,	the	crystal	has	been	
rotated	in	only	one	sense	(anHclockwise).	
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{110}<112>	Brass	component	

Think	of	rotaHng	
the	Goss	
component	
around	the	ND.		In	
this	example,	the	
xtal	has	been	
rotated	in	both	
clockwise	and	
anH-clockwise	
(two	variants).	 (110)

(112)
(111)_
_

Brass
{110}<112>

RD 

TD 

RD 

TD 
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Brass	component:	Euler	angles	

•  The	brass	component	is	convenient	
because	we	can	think	about	performing	
two	successive	rotaHons:	

•  1st	about	the	ND,	2nd	about	the	new	
posiHon	of	the	[100]	axis.	

•  1st	rotaHon	is	35°	about	the	ND;	2nd	
rotaHon	is	45°	about	the	[100].	

•  (φ1,Φ,φ2)	=	(35°,45°,0°).	
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Euler	Angle	Conventions	
•  An	inconvenient	fact	is	that	the	definiHon	of	Euler	angles	

that	we	have	given	so	far	is	not	unique.	
•  Many	other	variants	not	only	exist	but	have	names	and	

are	in	regular	use!	
•  The	differences	between	the	convenHons	lie	in	the	choice	

of	the	rotaHon	axes	(generally	only	the	second	axis)	and	
the	sense	of	rotaHon.	

•  Some	of	the	commonly	used	convenHons	are	Bunge,	
Kocks,	Roe	and	Canova*	(in	approximate	order	of	
decreasing	popularity).	

•  For	the	purposes	of	this	course	we	will	only	use	the	
Bunge	conven5on.	

*You	will	find	Canova	angles	inside	the	computer	code	LApp	
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Meaning	of	Bunge	Euler	angles	

•  In	the	Bunge	convenHon,	the	first	two	angles,	φ1	
and	Φ,	tell	you	the	posiHon	of	the	[001]	crystal	
direcHon	relaHve	to	the	specimen	axes.	

•  Think	of	rotaHng	the	crystal	about	the	ND	(1st	
angle,	φ1);	then	rotate	the	crystal	out	of	the	plane	
(about	the	[100]	axis,	Φ);		

•  Finally,	the	3rd	angle	(φ2)	tells	you	how	much	to	
rotate	the	crystal	about	[001].	
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Meaning	of	Roe	Euler	angles	

•  In	the	Roe	convenHon,	the	first	two	angles,	Ψ	and	
Θ,	tell	you	the	posiHon	of	the	[001]	crystal	
direcHon	relaHve	to	the	specimen	axes.	

•  Then	think	of	rotaHng	the	crystal	about	the	ND	or	
001	or	z-axis	(1st	angle,	Ψ);	then	rotate	the	
crystal	out	of	the	plane	(about	[010],	or	the	y-axis,	
Θ);		

•  Finally,	the	3rd	angle	(Φ)	tells	you	how	much	to	
rotate	the	crystal	about	[001].	
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Meaning	of	Kocks	Euler	angles	
•  In	the	Kocks	convenHon,	which	is	almost	the	same	as	the	

Roe	convenHon	with	the	excepHon	of	the	third	angle,	the	
first	two	angles,	Ψ	and	Θ,	tell	you	the	posiHon	of	the	[001]	
crystal	direcHon	relaHve	to	the	specimen	axes.	

•  Then	think	of	rotaHng	the	crystal	about	the	ND	or	001	or	z-
axis	(1st	angle,	Ψ);	then	rotate	the	crystal	out	of	the	plane	
(about	[010],	or	the	y-axis,	Θ);		

•  Finally,	the	3rd	angle	(φ)	tells	you	how	much	to	rotate	the	
crystal	an=-clockwise	about	[001].		Here’s	the	difference	
between	Roe	and	Kocks	-	the	last	angle	is	a	negaHve	or	
clockwise	rotaHon	about	001,	instead	of	a	posiHve	or	
counter-clockwise	rotaHon.	
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Kocks	Euler	Angles:	
Ship	Analogy	

Kocks	vs.	Bunge	angles:	
to	be	explained	later!	
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[Kocks,	
Tomé,	
Wenk]	Analogy:	posiHon	and	the	

heading	of	a	boat	with	respect	
to	the	globe.		La=tude	(Θ)	and	
longitude	(ψ)	describe	the	
posiHon	of	the	boat;	third	angle	
describes	the	heading	(φ)	of	the	
boat	relaHve	to	the	line	of	
longitude	that	connects	the	
boat	to	the	North	Pole.	
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Euler	Angle	DeFinitions	

Bunge	and	Canova	are	inverse	to	one	another	
Kocks	and	Roe	differ	by	sign	of	third	angle	
Bunge	rotates	about	x’,	Roe/Kocks	about	y’	(2nd	angle)	
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[Kocks,	
Tomé,	
Wenk]	
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Euler	Angle	Conversions	

Convention 1st 2nd 3rd 2nd angle
about axis:

Kocks
(symmetric)

Ψ Θ φ y

Bunge φ1-π/2 Φ π/2−φ2
x

Matthies α β π−γ y
Roe Ψ Θ π−Φ y

Obj/notation		AxisTransformation		Matrix		EulerAngles		Components	
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Complete	orientations	in	the	Pole	
Figure	

φ1	

φ1	

Φ	

Φ	
φ2	

φ2	

Note	the	loss	of	
informaHon	
in	a	diffracHon	
experiment	if	
each	set	of	poles	
from	a	single	
component	
cannot	be	related	
to	one	another.		

(φ1,Φ,φ2)	~	
	(30°,70°,40°).	

Obj/notation		AxisTransformation		Matrix		EulerAngles		Components	

[Bunge]	
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Complete	
orientations	in	
the	Inverse	
Pole	Figure	
Think	of	yourself	as	an	
observer	standing	on	the	
crystal	axes,	and	
measuring	where	the	
sample	axes	lie	in	relaHon	
to	the	crystal	axes.	

Obj/notation		AxisTransformation		Matrix		EulerAngles		Components	

[Bunge]	
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Summary	

•  Conversion	between	different	forms	of	
descripHon	of	texture	components	
described.	

•  Physical	picture	of	the	meaning	of	Euler	
angles	as	rotaHons	of	a	crystal	given.	

• Miller	indices	are	descripHve	(and	typical	in	
physical	metallurgy),	but	matrices	are	useful	
for	computaHon,	and	Euler	angles	are	useful	
for	mapping	out	textures	(to	be	discussed).	



In-Class	Exercises:	1	
1.  Draw	three	orthogonal	axes	to	represent	the	reference	frame.	Draw	a	unit	

cube	to	represent	a	crystal	such	the	that	<100>	direcHons	are	aligned	with	the	
{x,y,z}	axes.		Explain	that	there	are	several	alternaHve	labels	for	such	sets	of	
axes	or	frames-of-reference,	such	as	{RD,TD,ND}.		DisHnguish	between	the	
use	of	{}	to	denote	a	family	of	plane	normals	and	{}	to	denote	a	set	of	objects	
(which	may,	or	may	not,	consHtute	a	group).		Explain	that	this	alignment	is	
called	the	“cube	component”.	

2.  StarHng	with	the	reference	frame,	also	called	the	sample	frame,	sketch	the	3	
successive	rotaHons	that	correspond	to	the	(Bunge)	Euler	angles,	{φ1, Φ, φ2}.		
Label	the	axes	of	rotaHon	for	each	one.		Explain	that	it	is	permissible	to	
describe	this	process	in	terms	of	rotaHons	about	the	crystal	z	axis,	then	the	x	
axis,	then	the	z	axis	again.	

3.  Draw	the	sample	frame,	with	labels,	and	then	draw	a	unit	cube	with	one	edge	
parallel	to	the	sample	x	axis	and	rotated	by	45°	about	this	axis.		State	that	this	
is	a	graphical	representaHon	of	the	texture	component	known	as	“Goss”.		
IdenHfy	the	Miller	indices	of	the	three	crystal	direcHons	parallel	to	{RD,	TD,	
ND}	as	{100,011,0-11}.	
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In-Class	Exercises:	2	
1.  For	the	Goss	component	shown	previously,	explain	that	the	Euler	angles	

that	parameterize	this	texture	component	are	{0,45,0}	(in	degrees).		Refer	
to	the	previous	explanaHon	of	the	definiHon	of	the	Bunge	Euler	angles	to	do	
this.	

2.  For	the	same	Goss	component,	draw	the	{110}	pole	figure.		Hint:	a	simple	
way	to	do	this	is	to	find	a	diagram	of	the	stereographic	projecHon	for	cubic	
materials	with	110	in	the	center	of	the	figure;	rotate	it	unHl	a	<100>	
direcHon	is	aligned	poinHng	to	the	right.		In	all	our	work	we	will	align	the	x	
axis	of	a	Cartesian	reference	frame	poinHng	to	the	right,	just	as	in	standard	
mathemaHcal	plots,	and	the	y	axis	poinHng	up.	

3.  For	the	same	Goss	component,	introduce	the	rotaHon	matrix.		Se}ng	aside	
its	properHes	as	an	orthogonal	matrix	for	the	Hme	being,	explain	how	one	
can	construct	it	as	a	2x2	45°	rotaHon	matrix,	which	can	then	be	embedded	
in	a	3x3	matrix	to	represent	the	45°	rotaHon	about	the	x	axis.	
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In-Class	Exercises:	3	
1.  Introduce	the	Brass	component	by	using	the	same	110	stereographic	

projecHon	as	before	but	rotaHng	it	so	that,	instead	of	having,	say,	001//RD,	
now	we	have	-112//RD.		Show	that	the	angle	required	to	rotate	from	Goss	
to	Brass	is	approximately	35°.		Show	that	this	rotaHon	is	about	the	center	of	
the	projecHon,	i.e.	110.			

2.  Picking	up	from	the	previous	exercise,	show	that	the	combinaHon	of	the	45°	
rotaHon	about	x	to	arrive	at	the	Goss	component,	combined	with	the	35°	
rotaHon	about	110	means	that	we	can	describe	the	Brass	component	with	
Euler	angles	{35,45,0}.	

3.  Show,	again	with	the	aid	of	the	projecHon,	that	the	3	crystal	direcHons	
parallel	to	the	sample	frame	are	{-112,	1-11,	110}.		Check	that	these	form	a	
right-handed	set!	

4.  Draw	the	definiHon	of	the	Roe	Euler	angles.		Explain	the	differences	
between	this	definiHon	and	the	Bunge	definiHon.	

5.  Draw	the	definiHon	of	the	Kocks	convenHon	for	Euler	angles.		Explain	the	
differences	between	this	definiHon	and	the	Bunge	definiHon.	

6.  List	the	conversions	between	the	different	definiHons	of	Euler	angles.	

38	



In-Class	Exercises:	4	
1.  Se}ng	aside	the	precise	definiHon	of	a	pole	figure	for	the	Hme	being,	

sketch	a	pole	figure	with	the	sample	X	poinHng	to	the	right,	the	Y	up	and	
the	Z	in	the	center.		(Later	on	we	will	discuss	the	confusing	pracHce	of	
drawing	pole	figures	with	RD	up	and	TD	to	the	right.)		Sketch	the	successive	
rotaHons	that	correspond	to	the	3	(Bunge)	Euler	angles.	

2.  Sketch	an	inverse	pole	figure	with	the	crystal	x	(i.e.	100)	poinHng	to	the	
right,	the	y	(010)	up	and	the	z	(001)	in	the	center.	Sketch	the	successive	
rotaHons	that	correspond	to	the	3	(Bunge)	Euler	angles.		You	will	find	it	
easier	to	start	with	the	last	angle,	φ2,	and	work	backwards.	

3.  AnHcipaHng	the	next	lecture,	discuss	how	to	use	the	informaHon	about	
hkl//Z	and	uvw//X	to	construct	a	set	of	3	mutually	orthogonal	unit	vectors	
as	a	preliminary	to	obtaining	an	orientaHon	matrix.	
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Supplementary	Slides	

•  The	following	slides	provide	supplementary	
informaHon	on	Miller	indices,	the	dot	
(scalar)	product	and	direcHon	cosines.	



41	

Miller	Indices	
•  Cubic	system:	direcHons,	[uvw],	are	equivalent	to,	and	

parallel	to	plane	normals	with	the	same	indices,	(hkl).	
•  Miller	indices	for	a	plane	specify	reciprocals	of	intercepts	

on	each	axis.	
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Miller	<->	vectors	

•  Miller	indices	[integer	representaHon	of	direcHon	
cosines]	can	be	converted	to	a	unit	vector,	n,	by	
dividing	by	the	square	root	of	the	sum	of	the	
squares:	{similar	for	[uvw]}.		This	is	known	as	
normaliza=on.	

€ 

ˆ n = (h,k,l)
h2 + k 2 + l2
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Miller	Index	DeFinition	of	a	
Texture	Component	

•  The	commonest	method	for	specifying	a	texture	
component	is	the	plane-direcHon.	

•  Specify	the	crystallographic	plane	normal	that	is	
parallel	to	the	specimen	normal	(e.g.	the	ND≡Z)	
and	a	crystallographic	direcHon	that	is	parallel	to	
the	long	direcHon	(e.g.	the	RD≡X).			
	

(hkl) // ND, [uvw] // RD, or (hkl)[uvw]
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Dot	Product	

•  Given	two	vectors,	a	and	b,	the	dot	product,	a•b	is	a	scalar	
quanHty	that	is	equal	to	the	product	of	the	magnitudes	
(lengths)	of	the	vectors,	mulHplied	by	the	cosine	of	the	
angle	between	them:	
																	a•b	=	a	b	cosθ	

•  If	both	vectors	are	unit	vectors	then	the	dot	product	is	
equal	to	the	cosine	of	the	angle.	

•  In	index	form,	a•b	=	ai	bi	.	
•  Given	a	set	of	unit	vectors	defining	an	axis	system,	ex,	ey,	
ez,a	vector	can	be	defined	on	that	system	by	taking	the	dot	
product	with	each	axis	vector	in	turn,	e.g.:	
																						ax	=	a•	ex	
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Direction	Cosines	
•  DefiniHon	of	direc=on	cosines:	In	analyHc	geometry,	the	

direcHon	cosines	of	a	vector	are	the	cosines	of	the	angles	
between	the	vector	and	the	three	coordinate	axes.	
Equivalently,	they	are	the	contribuHons	of	each	component	
of	the	basis	to	a	unit	vector	in	that	direcHon	
[en.wikipedia.org/wiki/DirecHon_cosine].	

•  The	components	of	a	unit	vector	are	equal	to	the	cosines	of	
the	angle	between	the	vector	and	each	(orthogonal,	
Cartesian)	reference	axis.	

•  We	can	use	axis	transforma=ons	to	describe	vectors	in	
different	reference	frames	(room,	specimen,	crystal,	slip	
system….)	


