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Objectives

e To instruct in methods of measuring
characteristics of microstructure: grain size,
shape, orientation; phase structure; grain
boundary length, curvature etc.

e To describe methods of obtaining 3D information
from 2D planar cross-sections: stereology.

e Toillustrate the principles used in extracting grain
boundary properties (e.g. energy) from geometry
+crystallography of grain boundaries:
microstructural analysis.
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Objectives, contd.

[Stereology] To show how to obtain useful microstructural quantities
from plane sections through microstructures.

[Image Analysis] To show how one can analyze images to obtain data
required for stereological analysis.

[Property Measurement] To illustrate the value of stereological
methods for obtaining relative interfacial energies from
measurements of relative frequency of faceted particles.

Note that true 3D data is available from serial sectioning,
tomography, and 3D microscopy (using diffraction). All these
methods are time consuming and therefore it is always useful to be
able to infer 3D information from standard 2D sections.
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Motivation: grain size

e Secondary recrystallization in Fe-3Si at 1100°C

e How can we obtain the average grain size (as, say, the caliper
diameter in 3D) from measurements from the micrograph?

e Grain size becomes heterogeneous, anisotropic: how to
measure?
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Motivation: precipitate sizes,
frequency, shape, alignment

e Gamma-prime precipitates
in Al-4a/oAg.

e Precipitates aligned on {111}
planes, elongated: how can
we characterize the
distribution of directions,
lengths?

e Given crystal directions, can | .- _
We eXt ra Ct th e h a bit p I a ne? =z 3.42 Electron micrograph showing the Widstéte morph(;logyvf v ére-

=oitates in an Al-4 atomic % Ag alloy. GP zones can be seen between the v',e.g.atH
= 7000). (R.B. Nicholson and J. Nutting, Acta Metallurgica, 9 (1961) 332.)

[Porter & Easterling]
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Stereology: References

o These slides are based on: Quantitative Stereology, E.E. Underwood, Addison-Wesley, 1970.
- equation numbers given where appropriate.

. Practical Stereology, John Russ, Plenum (1986, IDBN 0-306-42460-6).

. A very useful, open source software package for image analysis: ImageJ, http://rsb.info.nih.gov/ii/.

) A more comprehensive commercial image analysis software is FoveaPro, http://www.reindeergraphics.com.
. Also useful, and more rigorous: M.G. Kendall & P.A.P. Moran, Geometrical Probability, Griffin (1963).

. More modern textbook, more mathematical in approach: Statistical Analysis of Microstructures in Materials Science, J.
Ohser and F. Miicklich, Wiley, (2000, ISBN 0-471-97486-2).

J Stereometric Metallography, S.A. Saltykov, Moscow: Metallurgizdat, 1958.

. Many practical (biological) examples of stereological measurement can be found in Unbiased Stereology, C.V. Howard &
M.G. Reed, Springer (1998, ISBN 0-387-91516-8).

. Random Heterogeneous Materials: Microstructure and Macroscopic Properties, S. Torquato, Springer Verlag (2001, ISBN
0-387-95167-9).

. D. Sahagian and A. Proussevitch (1998) 3D particle size distributions from 2D observations: Stereology for natural
applications, J Volcanol Geotherm Res, 84(3-4), 173-196.

J A. Brahme, M.H. Alvi, D. Saylor, J. Fridy, A.D. Rollett (2006) 3D reconstruction of microstructure in a commercial purity
aluminum, Scripta mater. 55(1):75-80.

) A.D. Rollett, R. Campman, D. Saylor (2006), Three dimensional microstructures: Statistical analysis of second phase
particles in AA7075-T651, Materials Science Forum 519-521: 1-10 Part 1-2, Proceedings of the International Conference
on Aluminium Alloys (ICAA-10), Vancouver, Canada.

. A.D. Rollett, S.-B. Lee, R. Campman and G.S. Rohrer, “Three-Dimensional Characterization of Microstructure by Electron
Back-Scatter Diffraction,” Annual Reviews in Materials Science, 37: 627-658 (2007).

. M.A. Przystupa (1997) Estimation of true size distribution of partially aligned same-shape ellipsoidal particles, Scripta
Mater., 37(11), 1701-1707.

o D. M. Saylor, J. Fridy, B El-Dasher, K. Jung, and A. D. Rollett (2004) Statistically Representative Three-Dimensional
Microstructures Based on Orthogonal Observation Sections, Metall. Trans. A, 35A, 1969-1979.
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Problems

e What is Stereology useful for?

e Problem solving:
— How to measure grain size (in 3D)?

— How to measure volume fractions, size distributions of a second
phase

— How to measure the amount of interfacial area in a material
(important for porous materials, e.g.)

— How to measure crystal facets (e.g. in minerals)
— How to predict strength (particle pinning of dislocations)
— How to predict limiting grain size (boundary pinning by particles)

— How to construct or synthesize digital microstructures from 2D
data, i.e. how to re-construct a detailed arrangement of grains or
particles based on cross-sections.
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Measurable Quantities

N := number (e.g. of points, intersections)

e P :=points

L :=linelength

e Blue = easily measured directly from images
e A:=area

e S :=surface or interface area

 V :=volume

e Red = not easily measured directly
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10 TABLE 1.1
List of basic symbols and their definitions

Symbol Dimensions* Definition
P Number of point elements, or test points
° ° Pp Point fraction. Number of points (in areal
features) per test point
D efi n l t-l 0 nS Py, mm™! Number of point intersections per unit
length of test line
Py mm™?2 Number of points per unit test area
Py mm™? Number of points per unit test volume
L3 L mm Length of lineal elements, or test line
Subscripts:
Ly, mm/mm Lineal fraction. Length of lineal intercepts

per unit length of test line

P :: p e r te St E Oi nt Ly mm/mm? ;A:;gth of lineal elements per unit test

Ly mm/mm? Length of lineal elements per unit test
L := per unit of |i
* p _I n e A mm? Planar area of intercepted features, or

test area

A : - p e r u n it a r e a S mm? igﬁ:ﬁ;} or interface area (not necessarily

Ay mm?/mm? Area fraction. Area of intercepted features
per unit test area

V : —_ p e r u n it VO I u m e Sy mm?/mm? Surface area per unit test volume

14 mm?® Volume of three-dimensional features, or

Z 0 = t Ot a | test volume
° i Vy mm?/mm? Volume fraction. Volume of features per

unit test volume

over b ar.= avera g e N Number of features (as opposed to points)

Ny, mm-™! Number of interceptions of features per
unit length of test line

< X> —_ a Ve r a g e Of X Ny mm™? fnli;ntl:; ;fe;nterceptions of features per

Ny mm~™? Number of features per unit test volume
0 =mmm
E ° g ° P A « = L mm Average lineal intercept, Lz/Np
A mm? Average areal intercept, 44/N 4
P ° . S mm? Average surface area, Sy/Ny
OI ntS per u n It a rea 14 mm? Average volume, Vy /Ny

*Arbitrarily shown in millimeters,

[Underwood]
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Other Quantities

e A :=nearest neighbor spacing, center-to-center (e.g.
between particles)

* A :=mean free path (uninterrupted distance between
particles); this is important in calculating the critical
resolved shear stress for dislocation motion, for example.

* (N,),is the number of particles per unit area in contact

with (grain) boundaries

* Ngis the number of particles (objects) per unit area of a

surface; this is an important quantity in particle pinning of
grain boundaries, for example.
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Quantities measurable in a section

e Or, what data can we readily extract from a micrograph?

e We can measure how many points fall in one phase versus another
phase, P, (points per test point) or P, (points per unit area). Similarly,
we can measure area e.g. by counting points on a regular grid, so that
each point represents a constant, known area, 4 ,.

e We can measure lines in terms of line length per unit area (of section), L ,.
Or we can measure how much of each test line falls, say, into a given
phase, L,.

e We can use lines to measure the presence of boundaries by counting the
number of intercepts per line length, P,.

e We can measure the angle between a line and a reference direction; for a
grain boundary, this is an inclination.
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Relationships between Quantities

V,=A4A,=L, =P, mm’

* S,=(4/r)L,=2P, mm!

« L,=2P, mm-

« P,=05L,S,=2P,P, mm> (2.1-4).

e These are exact relationships, provided that
measurements are made with statistical

uniformity (randomly). Obviously experimental
data is subject to error.
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Measured vs. Derived Quantities

TABLE 2.1
Relationship of measured (QO) to calculated ([_]) quantities

Dimensions of symbols
(arbitrarily expressed in terms of millimeters)

Microstructural
feature

Points

Lines

Surfaces

Volumes

Remember that it is very difficult to obtain true 3D measurements
(squares) and so we must find stereological methods to estimate the 3D
quantities (squares) from 2D measurements (circles).

Objectives Notation Equations Delesse Sy-P; L,-P; Topology Grain_Size Distributions




15

Volume Fraction

e Typical method of measurement is to
identify phases by contrast (gray level,
color) and either use pixel counting (point

counting) or line intercepts.

e Volume fractions, surface area (per unit
volume), diameters and curvatures are

readily obtained.
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Point Counting

Small area A
containing P,
points,

"/ Total area AT
containing total

number of points PT'

® |ssues:
- Objects that lie partially in the test area should

be counted with a factor of 0.5.

- Systematic point counts give the lowest
coefficients of deviation (errors):

coefficient of deviation/variation (CV) = standard
deviation (o) divided by the mean (<x>),
CV=0(x)/<x>.
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J . . .
Delesse s Principle: Measuring
volume fractions of a second phase

e The French geologist Delesse pointed out (1848)
that4 =V, (2.11).

e Rosiwal pointed out (1898) the equivalence of
point and area fractions, P, = A, (2.25).

e Relationship for the surface area per unit volume
derived from considering lines piercing a body: by
averaging over all inclinations of the line
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Derivation:

y Basic idea:
Delesse s 1. V. =0 Integrate area
5 fractions over
le’mT/lla 2. A=l the volume
z 3. oV, =00x(V,)
4. OV, =A,(x)ox
< 5. Aa=f0Aa(x)dx/dex

S

V,= [ av,=Ia,
With Eqs. 1and 2,V /V, =A_ /A
V,=A,=A,

test
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Surface Area (per unit volume)

e S, =2P, (2.2).

e Derivation based on
random intersection of
lines with (internal)
surfaces. Probability of
intersection depends on

inclination angle, 6,
between the test line and
the normal of the
surface. Averaging 0 gives

factor of 2.

!

4
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S, =2P,

e Derivation based on
uniform distribution
of elementary areas.

e Consider the dA to be
distributed over the surface of a sphere. The sphere represents the
effect of randomly (uniformly) distributed surfaces.

e Projected area = dA cos®0.

e Probability that a line will intersect with a given patch of area on the
sphere is proportional to projected area on the plane.

e This is useful for obtaining information on the full 5 parameter grain
boundary character distribution (a later lecture).
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S, =2P,
dA =r’sinfd0dy,  dA

( poircs)  JJ dA cos
wa JJdA

= dAcos 6

projected

(Apmjected> f fmr schostGdg0 0 Sfmsin26d8
Aa [ 77 sintdode [ sin6ao
(A, jecrea) _ U4[-cos26]” 1/41-(-D] 2
Appra [cos 6] 1 4
(Aprojected> _ l _ i
Atotal 2 SV
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Length of Line per Unit Area, L, versus
Intersection Points Density, P,

e Set up the problem with a
set of test lines (vertical, /
arbitrarily) and a line to be /
sampled. The sample line /
can lie at any angle: what /
will we measure?

ref: p38/39 in Underwood

This was first considered by Buffon, Essai d’arithmetique morale, Supplément a 1" Histoire Naturelle, 4, (1777) and the
method has been used to estimate the value of 7. Consequently, this procedure is also known as Buffon’ s Needle.
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L,=n/2 P, contd.

The number of points of intersection
with the test grid depends on the angle
/ between the sample line and the grid.
/ [ cos © Larger 6 value means more

intersections. The projected length =/

4.1.0.0.0.0. sin =1 P, Ax. sin O

[ sin O PL= E
. LirTe length in'area,L ; I . — X 1 _ L
consider an arbitrary area of A xAx . x2 Ax

xbyx:

Therefore to find the relationship between P, and L, for the general case where we do

not know Ax, we must average over all values of the angle 6.

Objectives Notation Equations Delesse Sy-P; L,-P, Topology Grain_Size Distributions




24

L,=n/2 P, contd.

e Probability of intersection with test line given by
average over all values of 6

. fon [sinBdo =£[-cos@]g _ 2
[l1ae L [6]] m

e Density of intersection points, P,
to Line Density per unit area, L, is

given by this probability. Note that a simple experiment
estimates « (but beware of errors!).

Z
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Buffon s Needle Experiment

e |n fact, to perform an actual experiment by dropping a needle onto
paper requires care. One must always perform a very large number
of trials in order to obtain an accurate value. The best approach is to
use ruled paper with parallel lines at a spacing, d, and a needle of
length, [, less than (or equal to) the line spacing, [ <d. Then one may
use the following formula. (A more complicated formula is needed for
long needles.) The total number of dropped needles is N and the
number that cross (intersect with) a line is n.

_2(l/d)N

n

JU

See: http://www.ms.uky.edu/~mai/java/stat/buff.html
Also http://mathworld.wolfram.com/BuffonsNeedleProblem.html
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S, = (4/m)L ,

e |f we can measure the line length per unit area directly,
then there is an equivalent relationship to the surface
area per unit volume.

e This relationship is immediately obtained from the
previous equations:

Sv/2 =P, and P, = (2/m)L,.

e |nthe OIM software, for example, grain boundaries can be
automatically recognized and their lengths counted to
give an estimate of L ,. From this, the grain boundary
area per unit volume can be estimated (as §)).
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Line length per unit volume, L,
vs. Points per unit area, P,

e Equation 2.3 statesthat L, = 2P ,,.

e Practical application: estimating dislocation
density from intersections with a plane.

e Derivation based on similar argument to that for
surface:volume ratio. Probability of intersection
of a line with a section plane depends on the
inclination of the line with respect to (w.r.t.) the
plane:
therefore we average a term in cos(6).
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Oriented structures: 2D

e For highly oriented structures, it is sensible to
define specific directions (axes) aligned with the
preferred directions (e.g. twinned structures) and
measure L, w.r.t. the axes.

e For less highly oriented structures, orientation
distributions should be used (just as for pole

figures!):

total _ —fnLA(Q)dH
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Distribution of Lines on Plane

e The diagram in the What function can we fit to
top left shows asetof s dara?

lines, obviously not
uniformly distributed.

e The lower right
diagram shows the

corresponding //

distribution.

e Clearly the
distribution has
smoothed the exptl.
data.

In this case,
a function of the foym
r = a+sin(60) is reasonable
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Generalizations

e Now that we have seen what a circular distribution looks like, we can
make connections to more complicated distributions.

e 1-parameter distributions: the distribution of line directions in a plane
is exactly equivalent to the density of points along the circumference
of a (unit radius) circle.

e So how can we generalize this to two parameters?
Answer: consider the distribution or density of points on a (unit
radius) sphere. Here we want to characterize/measure the density of
points per unit area.

e How does this connect with what we have learned about texture?
Answer: since the direction in which a specified crystal plane normal
points (relative to specimen axes) can be described as the intersection
point with a unit sphere, the distribution of points on a sphere is
exactly a pole figure!
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Oriented structures: 3D

NO

_reference

Again, for less highly oriented
structures, orientation
distributions should be used .. ,
(just as for pole figures): note
the incorporation of the R
normalization factor on the RHS of
(Eq. 3.32).

1 /2 |
- fs“ j;’ Ly/(¢.0)sin ¢dpd0

See also Ch. 12 of Bunge’ s book; in this case, surface spherical harmonics are useful
(trigonometric functions of ¢ and 6). See,e.g.

http://imaging.indyrad.iupui.edu/projects/ SPHARM/SPHARM-docs/CO1 Introduction.html
for a Matlab package.

Lt‘gtal

Objectives Notation Equations Delesse Sy-P; L,-P, Topology Grain_Size Distributions




33

Orientation distributions

e Given that we now understand how to describe a 2-parameter
distribution on a sphere, how can we connect this to orientation
distributions and crystals?

e The question is, how can we generalize this to three parameters?
Answer: consider the distribution or density of points on a (unit
radius) sphere with another direction associated with the first one.
Again, we want to characterize/measure the density of points per unit
area but now there is a third parameter involved. The analogy that
can be made is that of determining the position and the heading of a
boat on the globe. One needs latitude, longitude and a heading angle
in order to do it. As we shall see, the functions required to describe
such distributions are correspondingly more complicated (generalized
spherical harmonics).
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Second Phase Particles

e Now we consider second phase particles

e Although the derivations are general, we mostly
deal with small volume fractions of convex,

(nearly) spherical particles

e Quantities of interest:
— intercept length, P, or N,
— particle spacing, A
— mean free path, A (or uninterrupted distance between
particles)
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S, and 2nd phase particles

e Convex particles:= any two points on
particle surface can be connected by a
wholly internal line.

e Sometimes it is easier to count the number
of particles intercepted along a line, N,;
then the number of surface points is double
the particle number. Also applies to non-
convex particles if interceptions counted.

S, = 4N, (2.32)
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S:V and Mean Intercept Length

e Mean intercept length in 3 dimensions, <L .,>,
from intercepts of particles of a (dispersed) alpha

phase:
<L,>=1I/N2 (L,), (2.33)
e Can also be obtained as:
<L>=L,/N, (2.34)
e Substituting:
<L>=4V,/§S,, (2.35)
where fractions refer to the (dispersed) alpha

phase only.
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S:V example: sphere

e For a sphere, the volume:surface ratio (=V}/S)) is
Dliameter]/6.

e Thus <L,> =2D/3.

sphere

e |n general we can invert the relationship to obtain
the surface:volume ratio, if we know (or measure)
the mean intercept:

<SWV>_. . =4/<L> (2.38)

alpha
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Table 2.2
<L;>:=mean
intercept length, 3D
objects

<V>:=mean
volume

[ .= length (constant)
of test lines
superimposed on
structure

p:= number of (end)
points of /-lines in
phase of interest

L;:= test line length

TABLE 2.2 Three-dimensional cells and particles

(a) Space-filling contigu-
ous cells of one phase
(Vy = 1)

Two-dimensional in-
ternal surfaces* with

(b) Dispersed particles of
a-phase [(Vy)e < 1] in
a matrix phase

Two-dimensional inter-
faces? not shared with

(e) Isolated single particle

(volume = V) not asso-
ciated with a matrix

Two-dimensional
external particle

sharing between con- other c-particles. surface S.§
tiguous cells.
NL=%+4+%=5 NL=4 NL=1,2,..-
Pr=5 Pr=38 Pr=2,4,...
PL=N],=1/L—3 PL=2NL=2(VV)4/L-3 PL:2NL
Saltykov [5,27]
S 2P,
SV=2PL=2NL (SV)a=2PL=4NL = = 705
V Pp
Tomkeieff [14]
- V 2 4V _ 4(Vy) ro 4V
Ly=2—==— L,=>328=23 T L, = ==
3 8§ Sy '8, (Sv)a 3T8
Chalkley [18] ! % ] AV
[, — P _%2Ya .= _ 2%
L; = lp/2P Ea—P— 5 Li=% =3

*Internal surface area
referred to test volume
(Sy) or to mean cell
volume (5/7V).

tInterface area of «-
particles referred to test
volume (Sy ), or to mean
particle volume (S,/V ).

§External surface area
referred to particle vol-
ume (S/T).

[Underwood]
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Grain size measurement. intercepts

e From Table 2.2 [Underwood], column (a), illustrates
how to make a measurement of the mean intercept
length, based on the number of grains per unit length
of test line.

<L;> = I/N,

e |mportant: use many test lines that are randomly
oriented w.r.t. the structure.

e Assuming spherical® grains, <L;> = 4r/3, [Underwood,
Table 4.1], there are 5 intersections and if we take the
total test line length, L= 25um, then L N,=5, so N, =
1/5 pm-!

d=2r=6<L;>/4=6/N;4=6%5/4= 7.5nm.

T Ask yourself what a better assumption about grain shape might be!
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Particles and Grains

e “Where the rubber meets the road”, in stereology, that
is! By which we mean that particles and pores are very
important in materials processing therefore we need to
know how to work with them.

e Mean free distance, A:= uninterrupted interparticle
distance through the matrix averaged over all pairs of
particles (which is not the same as the interparticle
distance for nearest neighbors).

P W aa)

Number of interceptions with particles is same as
number of interceptions with the matrix. Thus lineal N L

fraction of occupied by matrix is AN , equal to the
volume fraction, 1-Vy,_ ;..
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Mean Random Spacing

e The number of interceptions with particles per
unit test length =N, = P,/2. The reciprocal of
this quantity is the mean random spacing, o,
which is the mean uninterrupted center-to-center
length between all possible pairs of particles (also

known as the mean free path). Thus, the particle
mean intercept length, <L,>:

<L,>=0-A [mm] (4.8)
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Particle Relationships

Application: particle coarsening
in a 2-phase material;
strengthening of solid against
dislocation flow.

Egs. 4.9-4.11, with
L,=nP,/2=rN, = ©8\/4
dimension: length

units (e.g.): mm

This allows one to use
measurements (L,) on a

micrograph to deduce particle
mean free paths in 3D

(a)
(Ly)=4 V{a)
Sv
(@)
p=4! SZ‘V)
V
1-V,%
A - <L3> V(O!)
V
(@)
A=m 1 gv)
LA
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Mean free path, A, versus
Nearest neighbor spacing, A

It is useful (and therefore important) to keep the difference
between mean free path and nearest neighbor spacing separate and
distinct.

Mean free path is how far, on average, you travel from one particle
until you encounter another one.

Nearest neighbor spacing is how far apart, on average, two nearest
neighbors are from each other. Matters for diffusion distances, e.g.

They appear at first glance to be the same thing but they are not!

They are related to one another, as we shall see in the next few
slides.

This matters, e.g., when considering dislocations moving past
obstacles, which may be effectively rigid lines (weak obstacles) or
flexible (strong obstacles).
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Nearest-Neighbor Distances, A

e For distances between nearest neighbors, see
“Stochastic problems in physics and astronomy’,
S. Chandrasekhar, Rev. Mod. Physics, 15, 83
(1943).

e Note how the nearest-neighbor distances, A,
grow more slowly than the mean free path, A.

e y:=particle radius
e 2D:4,=0.5/\P, (4.18a)
e 3D:A,=0.554 (P)*3 (4.18)

e Based on A~1/N; , A, =0.554 (mr? )17
forsmall 1y, A, =0.500 (7/2 rA)"?
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Application of A, to Dislocation Motion

e Percolation of dislocation lines
through arrays of 2D point
obstacles.

e Caution! “Spacing” has many
interpretations: select the (@
correct one!

e In general, if the obstacles are weak
(lower figure) and the dislocations are °, ,

nearly straight then the relevant spacing is
the mean free path, A. Conversely, if the

(b)

obstacles are strong (upper figure) and the .
dislocations bend then the relevant Huu & Bacon,
spacing is the (smaller) nearest neighbor ﬁg - 10.17

spacing, A,.
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Particle Pinning - Summary

e Strong obstacles + flexible r

spacing, A, applies.

e Weak obstacles + inflexible
entities: mean free path, A,

r
applies. )\, ~ —
e This applies to dislocations or f
grain boundaries or domain
walls or diffusion distances.

e Note the same dependence on
particle size, r, but very (O{)
different dependence on f = VV
volume fraction, 1|

entities: nearest neighbor A 3 =~ O 8 1 1 7
Pz
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Smith-Zener Pinning of Boundaries
e

Limiting Grain Size:

R —_—

max

Limiting Assumptions:

Zener Model Assumptions (1948)

Rigid Grain Boundary

Spherical Grains

Isotropic Interfacial Energy

Uniform Particle Size

Spherical Particle Shape

Random Distribution

Uniform Grain Size Distribution

Maximum Pinning (Drag) Pressure

Incoherent Particles

Inert Particles

(Q)

Zener, C. (1948). communication to C.S. Smith. Trans. AIME. 175: 15.
Srolovitz, D. J., M. P. Anderson, et al. (1984), Acta metall. 32: 1429-1438.
E. Nes, N. Ryum and O. Hunderi, Acta Metall., 33 (1985), 11
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Smith-Zener Pinning

The literature indicates that
the theoretical limiting grain
size (solid line) is significantly
higher than both the
experimental trend line (dot-
dash line) and recent
simulation results. The
volume fraction dependence,
however, corresponds to an
interaction of boundaries
with particles based on mean
free path, A, m=1, not nearest
neighbor distances, A, m=0.33
(in 3D).

RIr
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10000
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1

Aol

o K

ownik (Simulation)
NL (Simulation)
toberts Simulation)

0.00001

0.0001

C.G. Roberts, Ph.D. thesis, Carnegie Mellon University, 2007.

B. Radhakrishnan, Supercomputing 2003.

0.001

Miodownik, M., E. Holm, et al. (2000), Scripta Materialia 42: 1173-1177.
P.A. Manohar, M.Ferry and T. Chandra, IS1J Intl., 38 (1998), 913.

Vy

0.01
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From discussion with C. Roberts, 16 Aug 06

Particles on boundaries, in cross-section

An interesting question is to
compare the number of particles
on boundaries, as a fraction of the
total particles in view in a cross-
section. We can use the analysis
provided by Underwood to arrive
at an estimate. If, for example,
boundaries have pinned out
during grain growth, one might
expect the measured fraction on
boundaries to be higher than this
estimate based on random
intersection.

- (NV,),, is the number of particles
per unit area in contact with
boundaries.

- L, is the line length per unit area
of (grain) boundary.

- The other quantities have their
usual meanings.

Underwood 4.36: N, =

Underwood 4.48: N =

%, uniform spherical particles
r

(NA)b

2rS,

Underwood 4.49: N; =2rN,,

N

Combine 4.36 & 4.49: Ny=—22r=N,

2rS,Ns=(N,)

4
ZrELANA =(N,),

b

8
(NA )b - _rLANA
As a fraction:
(NA)b — 8r LA

2r

See: "Particle-Associated
Misorientation Distribution in a
Nickel-Base Superalloy". Roberts
C.G., Semiatin S.L., Rollett A.D.,
Scripta materialia 56 899-902
(2007).
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Grain Size Measurement

Measurement of grain size is a classic problem in stereology. There are two
different approaches (for 2D images), which rarely yield the same answer.

Method A: measure areas of grains; calculate grain size based on an assumed
shape (that determines the size:projected_area ratio.)

Method B: measure linear intercepts of grains; calculate grain size based on an
assumed shape (that, in this case, determines the ratio of size to projected
length).

Underwood recommends the latter approach because the mean intercept
length, <L;> is closely related to the surface area per volume, <L;>=2/S,,.

Grain size number based on the E112 ASTM standard.
The problem of plane sections (stereology).

The problem of grain shape.

See: http://www.metallography.com/grain.htm

Useful references: Quantitative Stereology, E.E. Underwood, Addison-Wesley,
1970; Practical Stereology by John C. Russ.
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Method A: typical section

— Eb=30

[Underwood]
e ¢ =15
° Cy=15
n| 4 5 6 7 8 9
Fols 5|5 2]2]|1 )F, =20
6-n| 2|10 |-1]-2|-3
F(6-n)l10| 5|0 |-2|-4|-3

2 (6-nF =E -2Cq+6
6=30-30+6

Fig. 7.12. Topological analysis of typical section [8] through metal grains.

e Correction terms (£}, C, ,C, ") allow finite
sections to be interpreted.

C, ":=number of incomplete corners against 1 polygon;
C, ":= same for 2 polygons
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Method A: area based

[Underwood]
Fig. 7.12

e Grain count method:
<A>=1/N,

e Number of whole grains= 20
Number of edge grains= 21
Effective total = N . TN yoe

=30.5
Total area= 0.5 mm?

Thus, N,= 61 mm?; <4>=16,400 pum?
e Assume spherical* grains, <4> mean intercept area=

/2

Fig. 7.12. Topological analysis of typical sectior

2/31r?
d = 2\(3<A>2m)= 177 pm.
*Do you think this is a reasonable assumption?! [Underwood]
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Method B: linear intercept

From Table 2.2 [Underwood], column (a), illustrates
how to make a measurement of the mean intercept
length, based on the number of grains per unit length
of test line.

<L;>=1/N,
Important: use many test lines that are randomly
oriented w.r.t. the structure.

Assuming sphericalt grains, <L;> = 4r/3, [Underwood,
Table 4.1], if we take the total line length (diameter of
test area), L= 798um, and draw a line that intersects
7 boundaries, then N;=1/114 uym™?

ig. 7.12. Topological analysis of typical sectior

d=6<L;>/4=6/N;4=6%114/4= 171 pm. t Ask yourself what a
Clearly the two measures of grain size are similar but better assumption
not necessarily the same. about grain shape

might be!
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More about the Line Intercept Technique

e One can either count the number of
intercepts per unit length along a
straight line (which is sensitive to the
orientation of the line)

e Or, one can count intercepts around a
circle (eliminates any anisotropy in the
microstructure) and divide by the
perimeter length of the circle to
obtain P,.

e Grainsize=<L,>=P*

e Note some elementary image analysis:
increasing the contrast on the original
images made it much easier to
perceive the two separate phases.

http://callisto.my.mtu.edu/my3200/lab1/steel.html
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Alternative Representation:
ASTM Grain Size Number

ASTM has defined a standard, E112, for grain size
measurement.

ASTM has a grain size parameter, G, which can be

calculated based on either area or linear measurements.

Equation Units
G =(3.321928 log,,N,) - 2.954 N, in mm™
G = (6.643856 log,oN,) - 3.288 N, in mm™’
G = (6.643856 log,oP,) - 3.288 P, in mm™!
G = (—6.643856 log,,f) - 3.268 ¢ in mm

This ASTM grain size number, G, is commonly employed
within industry and earlier research efforts (before
computer technologies were available).

Higher grain size number means smaller grain size.

American Standards and Test Methods, Designation E112, (1996).
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Ay E 112 - 96<2

TABLE 4 Grain Size Relationships Computed for Uniform, Randomly Oriented, Equiaxed Grains

Grain Size No. N, Grains/Unit Area A Average Grain Area @ Average Diameter T Mean Intercept N,
G No.fin.? at 100X  No./mm? at 1X mm? pm? mm pm mm pm No./mm
00 0.25 3.88 0.2581 258064 0.5080 508.0 0.4525 4525 2.21
0 0.50 7.75 0.1290 129032 0.3592 3502 0.3200 320.0 3.12
0.5 0.71 10.96 0.0912 91230 0.3021 3021 0.2691 269.1 3.72
1.0 1.00 15.80 0.0645 64516 0.2540 2540 0.2263 226.3 442
1.5 141 21.92 0.0456 45620 0.2136 2136 0.1903 190.3 5.26
2.0 2.00 31.00 0.0323 32258 0.1796 179.6 0.1600 160.0 6.25
25 283 43.84 0.0228 22810 0.1510 151.0 0.1345 1345 743
3.0 4.00 62.00 0.0161 16120 0.1270 127.0 0.1131 1131 8.84
3.5 566 87.68 0.0114 11405 0.1068 106.8 0.0951 95.1 10.51
4.0 8.00 124.00 0.00806 8065 0.0898 89.8 0.0800 80.0 12.50
45 11.31 175.36 0.00570 5703 0.0755 755 0.0673 67.3 14 .87
5.0 16.00 248.00 0.00403 4032 0.0635 63.5 0.0566 56.6 17.68
55 263 350.73 0.00285 2851 0.0534 534 0.0476 476 21.02
6.0 32.00 496.00 0.00202 2016 0.0449 449 0.0400 400 25.00
6.5 4525 701.45 0.00143 1426 0.0378 378 0.0336 336 273
7.0 64.00 992.00 0.00101 1008 0.0318 318 0.0283 28.3 35.36
7.5 a0.51 1402.9 0.00071 713 0.0267 26.7 0.0238 238 42 .04
8.0 128.00 1984.0 0.00050 504 0.0225 225 0.0200 200 50.00
8.5 181.02 2805.8 0.00036 356 0.0189 189 0.0168 16.8 50 .46
9.0 256.00 3968.0 0.00025 252 0.0159 159 0.0141 14.1 70.71
95 362.04 5611.6 0.00018 178 0.0133 133 0.0119 119 84.09
10.0 512.00 7936.0 0.00013 126 0.0112 1.2 0.0100 10.0 100.0
10.5 724 .08 11223.2 0.000089 89.1 0.0094 04 0.0084 8.4 118.9
11.0 1024 .00 15872.0 0.000063 63.0 0.0079 79 0.0071 7.1 1414
11.5 1448.15 22446.4 0.000045 46 0.0067 6.7 0.0060 59 168.2
12.0 2048.00 317441 0.000032 315 0.0056 56 0.0050 50 200.0
125 2896.31 448929 0.000022 23 0.0047 47 0.0042 42 2378
13.0 4096.00 63488.1 0.000016 158 0.0040 40 0.0035 35 2828
13.5 579262 89785.8 0.000011 1.1 0.0033 33 0.0030 30 3% 4

14.0 8192.00 126976.3 0.000008 79 0.0028 28 0.0025 25 400.0




59

Outline

Objectives °
Motivation *
Quantities,
— definitions
— measurable
— Derivable

Problems that use .
Stereology, Topology

Volume fractions
Surface area per unit volume

Facet areas
Oriented objects
Particle spacings

— Mean Free Path

— Nearest Neighbor
Distance

Zener Pinning
Grain Size

Sections through objects
— Size Distributions




60

3D Size Derived from 2D Sections

e Purpose: how can we relate measurements in plane
sections to what we know of the geometry of regularly
shaped objects with a distribution of sizes?

e |n general, the mean intercept length is not equal to the
grain diameter, for example! Also, the proportionality
factors depend on the (assumed) shape.

e Example: for monodisperse spherical particles (all the
same size) distributed (randomly) in space, sectioning
through them and measuring the size distribution will
show a spread in apparent size.

Objectives Notation Equations Delesse Sy-P; L,-P; Topology Grain_Size Distributions
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Sections through
dispersions of
spherical objects

e Even mono-disperse spheres
exhibit a variety of diameters

In cross section.

 Only if you know that the B

second phase is monodisperse © ©
may you measure diameter A @@ ;d 'B
from maximum cross-section! L |
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[Russ & DeHoff, Ch. 12]
‘ —

Frequency

Sectioning

Spheres i
p R RIR'-r%) » /R
R >
: T ¢ '
‘—82

B [e—5r

e The radius, r, of a circle sectioned at a distance h from the center is

r = V(R2-I?).
e Since the sectioning planes intersect a sphere at a random location relative to
its size, R, we can assume that the probability of observing a circle between a
given intercept radius, r, and r+dr, is equal to the relative thickness, dz/R, of
the corresponding slice.
e The result is a distribution of intercept sizes that varies between zero and the

actual sphere size.
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Circle Sampling: example

e Numbers for each plot
indicate the number of
samples taken

e A random number was
generated in the range 0..1

¢ Value of radius of

“sampled circle” taken to
be RAN(O/AV(1-RAN?)

% in each bin

e Values binned in 16 bins -
note how noisy random
sampling often is, which
means that a large number
of samples must be taken
to obtain an accurate
distribution

This analysis leads to the Saltykov method for reconstructing a 3D distribution

35

Circle_Sampling

Sum of bins = 100%

30 |

25 t

20 |
15 |

10 |

100
1000
> 10,000
rIN(1-r*2)
O g
EZ O (@)
0.2 0.4 0.6 0.8

r'R

of particles sizes from 2D data. See later slides.
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Distributions of Sizes

Measurement of an average quantity is
reasonably straightforward in stereology.

Deduction of a 3D size distribution from the
projection of that distribution on a section plane
is much less straightforward (and still
controversial in certain respects).

Example: it is useful to be able to measure
particle size and grain size distributions from
plane sections (without resorting to serial
sectioning).

Assumptions about particle shape must be made.
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True dimension(s) from
measurements: examples

e Measure the number of objects per unit area, N,. Also
measure the mean number of intercepts per unit length, N,.

e Assume that the objects are spheres: then their radius,
r=8N,/3xN,.

e Alternatively, assume that the objects are truncated
octahedra, or tetrakaidcahedra: then their edge length,
a,=L;/1.69=10.945 N,/N,.

Volume of truncated octahedron
=11.314a° = 9.548 (N;/N ,)°.
Equivalent spherical radius, based on

‘phere
equating volumes:
= 1.316 N,/N,.

= 4n/3 r* and

r sphere
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Measurements on Sections

5 Oe ¢@®e O
o e@ ®@

(c) Chords \

(a) Diameters (b) Areas

e Areas are convenient if automated pixel counting available
e Either areas or diameters are a type of planar sampling involving

measurement of circles (or some other basic shape)
e Chords are convenient for use of random test lines, which is a type of linear

sampling: n, := number of chords per unit length
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Extraction of Size Distribution

e Whenever you section a distribution of particles of a finite
size, the section plane is unlikely to cut at the maximum
diameter (of, say, spherical particles).

e Therefore the observed sizes are always an underestimate
of the actual sizes.

e Any method for estimating size distributions in effect
starts with the largest size class and, based on some
assumption about the shape and distribution of the
particles, reduces the volume fraction of the next smallest
size class by an amount that is proportional to the fraction
of the current size class.
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Size distributions from measurement

e Distribution of cross sections very different from
3D size distribution, as illustrated with monosize

spheres.

e Measurement of chord lengths is most reliable,
i.e. experimental frequency of n, (/) versus I.

e See articles by Lord & Willis; Cahn & Fullman;
book by Saltykov

e <D>:=mean diameter;
o(D):= standard deviation
N, :=number of particles (grains) per unit
volume.
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Chord lengths

http://131.111.17.74/issue51/features/buckley/index.html
gy N [ N BN
It happens that making random (ﬂ Cﬁl} Cd}: CHD ‘?‘63
intersections of a test line (L)
with a sphere leads to a rather

simple probability distribution Intersection with Sphere

1+
(in contrast to planar intercepts :
and diameters). In the graph, sl
the value of the intercept length ’
is normalized by the sphere > 06/
diameter (effectively the largest § ’
observed length). £ o4
0.2}
0 J ) ) ) | ) ) ) | ) ) ) | ) ) ) | ) ) )
0 0.2 0.4 0.6 0.8 1

Intercept Length



Multiple sphere
sizes

Frequency

= h’(D()
& N
B i » [ 2
Dy D, D3 D4 Ds S
(8] -
Figure 5. Superposition of intercept length curves for E ¢ D¢ 4
several sphere sizes. £ R
s
. - s .. by 6
A consequence of the linear probability distribution is 2 //,,//;L
. . oy e . _'-‘_’_,_,——»—"‘
a particularly simple superposition for different sphere 32 e D 8
: . = — 10
sizes, fig. 5 above. : &6 o
This also means that the sphere size distribution can nterceptiens

be obtained purely graphically, fig. 6: one starts with Figure 6. Extraction of the relative abundance of different sphere sizes
the vertical intercept (RH axis) for the smallest size and from the measured histogram of intercept lengths.

subtracts off the intercept for the next largest size.
Each intercept on the right-hand axis represents the
value of the 3D sphere diameter density.

Examples shown from Russ's Practical Stereology and
is explained in more detail in Underwood's book. Note
that in order to obtain the number of spheres, N, the
vertical line on the RHS of the graph must be drawn at
an intercept length = 2/t in the same units as the
length measurement.

Number per Unit Vol. (Ny)

0

4 6 8
Sphere Diameter

Figure 7. Plot of number of spheres versus diameter
derived from the graph in Figure 6.
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Number per unit volume

4 )
( w
Current size class ——_ ||PL (l)]/ nr, (l)j.|.1
2
Ny, =2 All | Al
J . .
Next largest size class L aj Aj+l

LK j P

e Lord & Willis also described a numerical procedure, based on
measurement of number of chords of a given length, which
accomplishes the same procedure as the graphical procedure. One
simply starts with the smallest size value and proceeds to
progressively larger sizes. For the last bin (largest size), no
subtraction is performed.

e Al :=size interval
a;:= median of class intervals (can use average of the size, [, in the j*
interval)

e ASTM Bulletin 177 (1951) 56.
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Number per unit volume:
Cahn & Fullman

e Cahn & Fullman:
Trans AIME 206 (1956) 610.
D:=diameter =/
numerical differentiation of n, (/) required.

e Can be applied to systems other than spheres.

Ny(D) = %{”Ll(l) . dc% }
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Projections of Lines: Spektor

Spektor developed a method of o750 P, Circulor section
extracting a distribution of sizes of
spheres from chord length data (very
similar result to Lord & Willis).

o Z="([D2]?-[LI2]?)

e Consider a cylindrical volume of length L,
and radius Z centered on the test line.
Volume is tZ°L and the intercepted chord
lengths vary between [ and D.
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Projections of Lines, contd.

e Number of chords per unit length of line:
n, = /?’N, = /4 (D? - I)N;,
where N, is the no. of spheres per unit vol.
e For a dispersion of spheres, sum up:

D D=D 1 Y g o)
(”L)z max _ P maXZ(Dj _] )NV]

2
_ 1 QD=Dmax T~ ~Q D=Drax
ED—Z nD; iV = 2 VY
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Projections of Lines, contd.

e The terms on the RHS can be related to the total
surface area, S,, and the total no of particles per
unit volume, N, respectively:

Differentiating this expression gives:

2
g ) mos = ()P = Ty ) = 2 vy )
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Projections of Lines, contd.

2
g ) mes = ()P = Ty ) = S vy )

e The first two terms cancel out; also we note that
d(n,)Pme = - d(n;),’, so that we obtain:

o) =2
(N )DmaX _21 d(”L)é

VI TRl al
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Projections of Lines, contd.

e |n order to relate a distribution of the number of
spheres per unit volume to the distribution of
chord lengths, we can take differences: n, is a
number of chords over an interval of lengths, Al is
the length interval (essentially the Lord & Willis

result).

r

L1+Al/2 Ih+A /2
(NV)ZZ o2 <(”L)zitAZ/z_(”L)étAZ/z

b mAl A b
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Artificial Digital Particle Placement

To test the system of particle analysis and generation of a 3D digital
microstructure of particles, an artificial 3D microstructure was generated using
a Cellular Automaton on a 400x200x100 regular grid (equi-axed voxels or
pixels). Particles were injected along lines to mimic the stringered distributions
observed in 7075. The ellipsoid axes were constrained to be aligned with the
domain axes (no rotations).

This microstructure was then sectioned, as if it were a real material, the
sections were analyzed, and a 3D particle set reconstructed.

The main analytical tool employed in this technique is the (anisotropic) pair
correlation function = pcf (to be explained in a later lecture).

The length units for this calculation are pixels or voxels.

See: “Three-Dimensional Characterization of Microstructure by Electron Back-
Scatter Diffraction”, A.D. Rollett, S.-B. Lee, R. Campman, G.S. Rohrer, Annual
Review of Materials Research, 37: 627-658 (2007).
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Simulation Domain with Particles

Particles distributed
randomly along lines to
reproduce the effect of
stringers.

Series of slices through
the domain used to
calculate pcfs, just as for
the experimental data.

Averaged pcfs used with
simulated annealing to
match the measured pair
correlation functions.
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Sections through 3D Image
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Generated Particle Structure: Sections

Ellipsoids were inserted into the
domain with a constant aspect

i~ B T o ratio of a:b:c=3:2:1. The
& target correlation length was
Cno. 7T .. .| 0.07x400 = 28, with 10

particles per colony

Rolling plane (Z) - Transverse (X) - Longitudinal (Y)



Pair Correlation Function: example

The PCF is the probability of finding neighboring particle at a certain

distance & direction relative to the any particle.

Input (500X500)

Center of 1 dot to end of 5th dot is 53

pixels

PCRxYI=S Fl/N )

Output (401X401)
Center of image to end of red dot is 53

pixels

See also: Tewari, A.M Gokhale, J.E Spowart, D.B Miracle, Quantitative characterization of spatial clustering in three-dimensional
microstructures using two-point correlation functions, Acta Materialia, Volume 52, Issue 2, 19 January 2004, Pages 307-319; also
chemwiki.ucdavis.edu/Physical_Chemistry/Statistical_Mechanics/Advanced_Statistical_Mechanics/Distribution_Function_Theory/

The_pair_correlation_function
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Generated Particle Structure: PCFs

e Pair Correlation Functions were calculated on a
50x50 grid. The x-direction correlation length was
~29 pixels (half-length of the streak), in good

agreement with the input.

Rolling plane (Z) - Transverse (X) - Longitudinal (Y)
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Frequency

2D section size distributions

e A comparison of the shapes of

ellipses shows reasonable
agreement between the fitted
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Comparison of 3D Particle Shape, Size

Comparison of the semi-axis size distributions between the set of 5765
ellipsoids in the generated structure and the 1,000 ellipsoids generated
from the 2D section statistics shows reasonable agreement, with some

13 b4 .
leakage ™ to larger sizes.

Much larger data sets clearly needed to test the reconstruction of
ellipsoidal particles
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Comparison of PCFs for Original and
Reconstructed Particle Distribution

Q

-y .\
.‘ ’ 5
k

.. .

Rolling plane (2) - Transverse (X) - Longltudmal (Y)
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Reconstructed 3D particle distribution
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Geometric Relationships

e For each regular shape, whether sphere or
tetrakaidecahedron, there is a set of analytical expressions
that relate the dimensions of the object in 3D to its
geometry in cross section.

e The following tables reproduced from Underwood
summarize the available formulae.

e Note the difference between projected quantities and
mean intercept quantities. Example: for spheres, the
projected area is the equatorial area, nir?, whereas the
mean intercept area is only 2/3 nir?.

e First slide is for bodies of revolution; second slide is for
polyhedral shapes.

Objectives Notation Equations Delesse Sy-P; L,-P; Topology Grain_Size Distributions




TABLE 4.1
Properties of particles with surfaces of revolution

1. 2. 3. 4. 5. 6. 7. 8.
v s A I g A L, Ny rthlab
Surf: Viean a Viean a in?ei:pt inlii::pt S;:r?x]::: True dimensions Aok
. Volume urface projecte: projecte :
I:.rtlcle aron. height area length volumis of particles
shape
4r/3 = 2 2N; 3Vy Radius,
2 el -4
Sphere $ar 4mr? nr 2r gart 8N /37N 4 wNY4Ny | r = ZN,— iN, 7, 26 .
r = Ni/Ng Ratims,
Disk it 2mr? r?[2 7r(2 2rt 2t 2N%/xNy, 7 >t
t=Vy[2Ny Thickness, ¢
(ifr =h) | h = Vy/mNpr®
Ny
h 0.732557 r= Ny2N4+t rah
Cylinder arth 2zr(r + h) %—(‘r" + rh)| L(wr + h) :r“:_ % % N, 12N 4 7
= 2N | (N (x = LVr)” Radius, r
7r +h (4va T 27N, Height,
Radius, »
Rod wrtl 2mrl %rl 12 2mr? ;;vz N, | 2Nal r = Ny/zN4 7 Length, I
WxN4 1= 2NNy 1> r
. 2.3 2 800 kA 87r® ﬁ _ Ny Radius,
Herm&u)here 3T 3nr I (1 + i )r ——-3(4 T ) 8r/9 0.739NL r= 1.522NA 40 ,
Prolate 4mab? 27r(b2 n absin"e) 3 2
spheroid e 5.760 2.76b 3.025b7 | 1.46b 0.75611:7—,3‘ b ~ : Zé;;GNz\]f 26, 28
(worked out for bja = }) | = 8.38b% | = 23.04b%* I = 0. /N4 2a
Oblate _— ( 2, b2, 14 e)
spheroid gmat | 2 E T ) | 1easar | 1700 L235a* | 1278 | 0.56eld | = Vr/1278N, 26, 28 %
(worked out for bja = }) | = 2.10a® | = 6.58a%* Ny = 1.034N /N4 2
*¢ — /T — (bja); for bja = }, e = 0.866. 1For r > h, use + sign. For r < h use — sign.
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TABLE 4.2 Properties of regular polyhedrons

1. 2. 3. 4. 5.
Symbol vV S A a A
Mean Mean Mean
Particle Volume Surface projected projected | intercept
shape area height area
Cube a® 6a® 3a*/2 3a/2 2a%/3
Rectangular ab + be + ca a+b+c 2abe
parallelepiped abo Aab + be + ca) 2 2 a+b+c
Square N . .
plato a’t 2a* + 4at a*/2 a at
rS::a.re a’c 2a® + 4dac ac c/2 2a?
Hexagonal 32/3 -2 3/3a* | 3ac|3a+c 34/ 3a%
prism 3% | 3v/3a* + 6ac i T3 |z 3a+o
Tetrahedron 0.1179a* | 1.732a* 0.433a* 0.9123a 0.129a*
Octahedron 0.4714a° | 3.464a* 0.866a* 1.175a 0.4a*
Truncated s n N 3.0a 2
octahedron 11.314a® | 26.785a 6.696a W 3.77a
Rhombie 3/ 2
3 2 P, S 2
dodecahedron | 2 0/2a 2 ¢ 200 @
i;:ec"' ahgm“ll | 7.663a* | 20.646a° 5.161a? 2.57a 2.97a?
92 L
- - v &)

A~ L

6. 7. 8.
Ly Ny a, b, c,t
Mean Number . .
intercept per unit Tm: d'm‘_mlmons Ref.
length volume o pazticies
24, 25
2a/3 2N%/3N, a = NN, 26, 30 Edges, a
2abe (If e = 3a, b = 2a) | (If¢c = 3a, b = 2a) 26. 30 Edges,
ab + bc + ca | 11N%/18N a = 6N,/11N 4 ’ a#xb#c
Edge, a
2 N%/2N, a = 2N /N4 26, 30 Thickness, ¢
a>t
Ends, a
a 4aN%/cN a = Np/2N, 26, 30 Length, ¢
c>a
Edges,
24/ 3 ac (Ifc = a) (If ¢ = a) 24, 26 a
V3a+ 2 0.7N%/Ny, a = 0.715N /N, 30 Height,
¢
0.2725a 0.131N%/N a = 0.421N,//N, 26, 30 Edges, a
0.545a 0.625N% /N, a = 0.136N /N, 26, 30 Edges, a
22, 24
1.69a 0.744N%/N a = 045N /N, 25, 26 Edges, a
27, 30
‘ —
a 32 NY/Ny a = 0.945N /N4 24, 26 Edges, a
Q 2 8 30
25, 26
1.485a 0.784N%/N, a = 049TN /N4 31 Edges, a
93
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Questions

Which set of quantities are equal to each other? The point/line/area/volume
fractions.

How does Buffon’s needle relate to the measurement of m? The intersection of a test
line with a grid of parallel lines is related via 2L, =t P,.

Under what circumstances do we need to consider projected quantities rather than
intercepts? Projected areas, e.g., are appropriate when viewing a sample in
transmission (e.g. TEM) and the feature is, say, blocking the illumination, as opposed
to being viewed in cross-section.

In general, do size distributions measured in 2D show larger or smaller means than
their true 3D means? Since 2D sections cut objects in all possible locations, the
observed mean sizes are invariably smaller than the true sizes.

Why are intercepts of grain boundaries with a circle sometimes used for measuring
grain size? Using a circle ensures that any bias in the grain morphology does not
affect the results (of grain size measurement).

Why are nearest neighbor distances smaller than the mean free path for a given
volume fraction and size of particle? In qualitative terms, a nearest neighbor distance
is based on finding the nearest neighbor object (particle) regardless of direction,
whereas a mean free path is measured in a straight line and so is unlikely to pass
through the nearest neighbor (but rather a next-nearest neighbor). See also the Egs.
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Summary

e Provided that certain assumptions about
the way in which a section plane samples
the 3D microstructure are valid, statistically

based relationships exist between
experimental measures of points, lines and

areas and various corresponding 3D
guantities.
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Supplemental Slides

Following slides contain useful information of
various kinds.

Definitions of statistical terms

Measurement of area and circumference of
spheres that are instantiated on a regular grid
(voxelized).

Verification of Stereological Relationships for
(voxelized) objects on regular grids



1. Statistics: definitions

Population: a well defined set of
individual elements or
measurements (e.g. areas of
grains in a micrograph).
Parameter: a numerical quantity
that is defined for the population
(e.g. mean grain area).

Sampling Units: non-overlapping
sets of elements. The union of all
sampling units is equal to the
population.

Sample: a collection of sampling
units taken from the population.

Estimate: a numerical approximation
of a population parameter calculated
from a particular sample (e.g. mean
grain area calculated from a subset of
the areas).

Estimator: a well-defined numerical
method that describes how to

calculate an estimate from a sample.

Uniform random sample: a sample
taken so that all sampling units
within the population possess the
same probability of falling within the
sample.

Objectives Notation Equations Delesse Sy-P; L,-P; Topology Grain_Size Distributions
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Statistics: quantitative definitions

e Population mean of a e Coefficient of variation:

guantity R: CV(R) o

R +R,+. B u
w=E[R]= —ER
e Estimates:

e Population variance, or sample mean:

mean square deviation: oKtk +. _ER

1 N
o’ =Var(R)=E[(R—u)2]=NE(Ri )’ |
i=1 e Variance of samplmg

e Population standard distribution:

deviation: _ 2 2

Var(R) N-no 9 , for large n

0 =SD(R) = 4/Var(R) N-1n n

Quantities in turquoise apply to the entire population;
Estimates from samples are in red.

Objectives Notation Equations Delesse Sy-P; L,-P; Topology Grain_Size Distributions
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Quantitative definitions, contd.

e Standard Error of the
sampling distribution (SE)
and the Coefficient of
Error (CE): ®)

= — SE(R
SE(R)=4+/Var(R ); CE|R )=

(®)-VarR): CE(R,)-

e Sample Variance, s, the
square root of which is
the sample standard
deviation:

2= S(r-F,)

n-14

e Estimates of the

coefficient of variation
and the standard error:

wSE(R,) ==
. ..SE(R,
Jor(R)- = EE) s

Note the sample size
dependence of these
estimates of the
population quantities.

Objectives Notation Equations Delesse Sy-P; L,-P; Topology Grain_Size Distributions
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2. Sampling of Voxelized Sphere

This exercise attempts to measure how accurately the surface area and
circumference of a sphere can be measured on a rectilinear grid (i.e. the sphere
has been voxelized) using a simple ledge counting method.

From the PhD
thesis work by
C.G. Roberts

The figure above reveals the steps on the surface of a sphere with a radius
equal to 50 pixels.
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Surface Area of Voxelized Sphere

________________________________________________________________________________

red SA / Analytical SA

Measu

1 18 1688

The surface area was measured and normalized by the analytical value (4str?).

A constant ratio of 1.5 is obtained for radii greater than or equal to 3.



Circumference of Voxelized Sphere

1.8 T

Measured Circumference - Analytical Circumference

1 18 1688

Spherical Radius

A two-dimensional cross section was removed from the equatorial plane of the sphere and the
circumference was measured and normalized by the analytical value (2mr).

Contrary to the surface area results, the ratio begins at a larger value for small radii and reaches an
asymptotic value of 1.27 for radii greater than 30 pixels.
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3. Verification of Stereological Relationships

Definition:
Stereology is the interpretation of three-dimensional structures based on two-

dimensional observations. The relationships between lower and higher
dimensionality are primarily mathematical in nature.

Practicality:

A majority of experimental investigations involve destructive evaluation of the
specimen wherein the researcher measures the parameter of interest on a cross-
sectional area; therefore, stereology provides the link between the planar and
volumetric quantities.
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Quick Statistics Review

Population Mean =u

Population Standard Deviation = o

— Sample
Sample Mean= X

Sample Standard Deviation = s

Usually the population mean and error are unknown, but we would like to be able to
estimate it using our sample subset. >

- x Xi N (2%)
X_ZF S=\2xiz_\f—1

The sample mean and standard deviation are the best estimates for the population mean
and standard deviation. N

X=u S=0O

How good is the fit between the sample and population mean? In this case, we need to find
the difference between ,. and @ . This is known as the “standard error” and is given

as: O S
S = ~
“ JN N
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L, Algorithm Verification

Using 15t nearest neighbors only (up, down, left, right)

Particle-Matrix Trace = 3 boxes * (4 x 41) + 1 box * (4 * 100) = 892

Cross-sectional Area = 500 x 500 41 x 41 pixels

s, =21, = 203568) = 0.045429 / \
JU JU l
H B B

_ , 100 x 100 pixels
Comparing this to the program output....

gS_methods.IYu W1S0r1ent. LYy SYNMETYY. It \\\
gs_methods.f90~ ntables.£90 syumetry.hy
croberts@mrsec0l?: ~/Fortran/Modules) § ./ssubv

image dimension 500 500

What is scaling factor? (pixels/um)

1

Lsuba= 0.003568

SsubV= 0.00454291860308497
croberts@ursec0l?: ~/Fortran/Modules) § I

memiim ___aAA Lo

s|axid 00S

A

Algorithm produces correct result 500 pixels

v
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Sy Algorithm Verification

Two cubes inserted into a 100 x 100 x 100 box.

a) Small Cube: a=3
SA = 6 faces * 9 pixels = 54 pixels

b) Large Cube: a=50
SA = 6 faces * 2500 pixels = 15000

(15000 +54)

g = 015054

SV

Output from Fortran...

croberts@mrsec0l?: ~/Fortran/Modules) § ./a.out
seed array size= 4

new seed wvalues= 1161789056 60210 3111 23280
Total SA= 15054

SsubV= 0.015054

Writing data to structure.modified
crobertsBmrsec0l7: ~/Fortran/Modules) § I

Algorithm produces correct result
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Particle Fractions

Estimation of volume fraction from cross-sectional areas is typically accomplished by
using the following equation:

Pé =L =A% =V

Since our images are a square grid, the point counting method is the easiest to
implement for each dimensionality.

INPUT V,, V, A, L,
0.001 0.001026 0.00097 #* 4x10° 0.00091 #4x10°°
0.01 0.010017 0.00991 #* 1.3x10™ 0.00851 # 1.4x10™

0.1 0.100008 0.10030 *+ 4.4x10™ 0.06422 + 4.1x10™
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Particle Fractions, contd.

: : : A
20 microstructures were generated and monosized (a=3) particles were
randomly inserted into each 100° domain.
For any linear or area-based measurements: 10 sections were randomly > 600
selected from the x, y, and z planes (total of 30) and the area and linear | Méasurements
fractions were measured.

0.12

At low volume fractions, the
agreement among all three o0 T
parameters is very close; however, 0.08 L
the L, parameter deviates

significantly from the A, and V,,
values are larger particle fractions. 0.04 |

QAA .LL

0.06

0.02

0.00 b
0 0.02 0.04 0.06 0.08 0.1 0.12
Vy

Recommendation: Use the area fraction (A,) as a replacement for any equation
or expression containing the linear fraction term.
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Stereology: Grains vs. Particles

Space-filling structures Dispersed Phase

N, =P, 2N, =P,

When we analyze the grain characteristics in typical metal alloys, we will use the left-hand
relationships; for particle statistics (VV<<1), the right-hand equation is valid.

It is apparent that a factor of 2 is the difference between the two approaches, which can be
attributed to the sharing of grain boundary area between 2 grains.

E.E. Underwood, Quantitative Stereology, Addison-Wesley, MA (1970).
J.C. Russ, Practical Stereology, Plenum Press, New York (1986).
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Stereology: L, and §),

Since most experimental studies involve two-dimensional statistical analyses, one
inevitably will need to apply stereology to obtain a 3D parameter. Quantities
highlighted with circles are easily measured on 2D planes.

TABLE 2.1 _
Relationship of measured (Q) to calculated ([]) quantities

Dimensions of symbols
(arbitrarily expressed in terms of millimeters)

Microstructural
feature

Points

Lines

Surfaces

Volumes

We are interested in finding out how accurate the highlighted relationship is using
computer generated three-dimensional structures.

4
SV =_LA
JT
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0.25

Stereology: L, and §),

Using the same particles microstructures, the two quantities S, and L, were measured.

0.20

0.15 |

0.10 f

Sv

0.05 |

0.00 P

-0.05

* Sy (3D)
m Sy (4L/w) .

- At larger volume fractions, the
stereological prediction appears to
under-estimate the true surface
area per unit volume.

' Particle Shape Effect??
0.00 0.02 0.04 0.06 0.08 0.10 0.12
Vy
INPUT V, Vv, S, (3D) S, = (4/7)L,
0.001 0.00101 0.00216 0.00176 = 7x10°
0.01 0.01001 0.02129 0.01789 * 2.4x10*
0.1 0.10002 0.205722 0.175084 + 7.6x10™

\

J Sy
VV

Is approximately constant
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Mean Intercept Length

Another quantity of interest is the mean intercept length since it is an integral part of the
relationship:

SV
4

= For particles ONLY

Measured Intercept -- Based on our previous results on particle fractions, the
mean intercept length can be obtained using:

)\. — VV — AA — LL
measured NL NL NL

Predicted Intercept — Knowledge of the 3D quantity, S,, enables us to predict the
mean intercept and compare it to the measured quantity.
But be very careful about how A is defined.

For dispersed particles.... = VV = f
NL NL
4V, 4
A =—+ oR A =—

estimated S estimated S
V |14
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Mean Intercept Length, contd.

How well does the 3D and 2D mean intercept measurements compare?

The constant ratio of S,/V,, creates a situation where the relationship
would imply that the mean intercept length must be a constant also.

The artificial condition of monosized particles may be responsible for

this behavior.

_ L
‘measured N

4V,

predicted = S
Vv

L
Vy Measured Predicted
0.001 3.25+1.96 2
0.01 2.75+0.83 2
0.1 2.74+0.20 2.1




111

Conclusions

e The area fraction measurements provide an accurate estimate of the three-
dimensional volume fraction for V,, < 0.1 while the line fraction significantly

underestimates the true 3D quantity.

e Line trace per unit area under-estimates the surface area per unit volume for
volume fractions above 1 percent.

e The predicted mean intercept length cannot be used as a substitute for the
measurement of the mean intercept length.



