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Outline 
•  Re-cap of Herring relations at triple lines 
•  The “n-6 rule” 
•  Integration of turning angle around a grain 
•  Test of the n-6 rule 
•  Stability of 2D networks 
•  Grain growth, self-similarity 
•  Grain growth, basic theory 
•  Grain growth exponent 
•  Coarsening theory, Hillert model 
•  Grain size distributions 
•  Full equation for migration rate of a boundary 
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Interfacial Energies 
•  Practical Applications: Rain-X for 

windshields.  Alters the water/glass:glass/
vapor ratio so that the contact angle is 
increased.  Water droplets “bead up” on the 
surface. 

“streaky”                   “clear” 
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Impact on Materials 

•  Surface grooving where grain boundaries 
intersect free surfaces leads to surface 
roughness, possibly break-up of thin films. 

•  Excess free energy of interfaces (virtually 
all circumstances) implies a driving force 
for reduction in total surface area, e.g. grain 
growth (but not recrystallization). 

•  Interfacial Excess Free Energy:= γ, or σ 
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Force Balance 

•  Consider only interfacial energy: vector 
sum of the forces must be zero to satisfy 
equilibrium. 
 

•  These equations can be rearranged to give 
the Young equations (sine law): 

γ1b1 +γ2b2 +γ3b3 =

0

γ 1
sin χ1

=
γ 2
sin χ2

=
γ 3
sin χ3
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Dihedral Angles from Energies 
•  If the energies of 

the 3 boundaries 
are known, it is 
simple to 
compute the 
dihedral angles. 

•  Example for one 
angle shown: 
others obtained 
by permutation. 
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Herring’s Relations 

C. Herring in The Physics of Powder Metallurgy. 
(McGraw Hill, New York, 1951) pp. 143-79  

Θ
γ i

∂γi
∂ϑ

ˆ l 

γ gb ˆ t 3

γ s2 ˆ t 2

γ s1 ˆ t 1

ˆ n 3

ˆ n 2

ˆ n 1

grain boundary

surface 1
surface 2

γ iˆ t i + = 0ˆ n i
∂γ i
∂θ
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Expanded Young Equations 

•  Project the force balance along each grain 
boundary normal in turn, so as to eliminate 
one tangent term at a time: 
σ j ˆ b j +

∂σ
∂φ
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σ1ε1 +σ2 sin χ3 + σ2ε2 cosχ3 −σ3 sin χ2 + σ3ε3 cos χ2
σ1ε1σ2 sin χ3 /σ2 sin χ3 +σ 2 sin χ3 + σ2ε2 cosχ3 = σ3 sin χ2 + σ3ε3 cos χ2

1 +σ1ε1 /σ2 sin χ3( )σ2 sin χ3 + σ2ε2 cosχ3 = σ3 sin χ2 + ε3 cos χ2( )
1 +σ1ε1 /σ2 sin χ3( )sin χ3 + ε2 cos χ3{ }σ 2 = σ3 sin χ2 + ε3 cos χ2( )
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Why Triple Junctions? 

•  For isotropic g.b. energy, 4-fold junctions 
split into two 3-fold junctions with a 
reduction in free energy: 

90° 120° 
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The “n-6 Rule” 

•  The “n-6 rule” is the rule previously shown 
pictorially that predicts the growth or 
shrinkage of grains (in 2D only) based 
solely on their number of sides/edges.  For 
n>6, grain grows; for n<6, grain shrinks. 

•  Originally derived for gas bubbles by von 
Neumann (1948) and written up as a 
discussion on a paper by Cyril Stanley 
Smith (W.W. Mullins’ advisor). 
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Curvature and Sides on a Grain 
•  Shrinkage/growth depends on which way the 

grain boundaries migrate, which in turn 
depends on their curvature. 

•  velocity = mobility * driving force; 
 driving force = g.b. stiffness * curvature 
  v = Mf = M (γ+ γ”) κ	


•  We can integrate the curvature around the 
perimeter of a grain in order to obtain the net 
change in area of the grain. 



13 Integrating inclination angle to 
obtain curvature 

•  Curvature = rate of change of tangent with 
arc length, s: 

   κ = dφ/ds 
•  Integrate around the perimeter (isolated 

grain with no triple junctions), k= M γ : 

dA
dt

= −k dφ = −2πk∫
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Effect of TJs on curvature 

•  Each TJ in effect subtracts a finite angle 
from the total turning angle to complete the 
perimeter of a grain: 

1 

2 

3 

φ1-φ3	
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Isotropic Case 

•  In the isotropic case, the turning angle 
(change in inclination angle) is 60°. 

•  For the average grain with <n>=6,  
the sum of the turning angles = 
<n>60°=6*60° =360°. 

•  Therefore all the change in direction of the 
perimeter of an n=6 grain is accommodated 
by the dihedral angles at the TJs, which 
means no change in area. 
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Isotropy, n<6, n>6 
•  If the number of TJs is less than 6, then not all the 

change in angle is accommodated by the TJs and 
the GBs linking the TJs must be curved such that 
their centers of curvature lie inside the grain, i.e. 
shrinkage 

•  If n>6, converse occurs and centers of curvature 
lie outside the grain, i.e. growth. 

•  Final result:  dA/dt = πk/6(n-6) , k= M γ 
•  Known as the von Neumann-Mullins Law. 

von Neumann, J. (1952). discussion of article by C.S. Smith. Metal 
Interfaces, Cleveland, Amer. Soc. Testing of Materials.	

Mullins, W. W. (1956). "Two-dimensional motion of idealized grain 
boundaries." Journal of Applied Physics 27 900-904.	
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Test of the n-6 Rule 

Note the scatter in dA/dt within each 
topological class; this indicates that the local 
neighborhood of each grain has an effect on 
its growth. 

•  Grain growth experiments 
in a thin film of 2D 
polycrystalline 
succinonitrile (bcc 
organic, much used for 
solidification studies) 
were analyzed by Palmer 
et al. 

•  Averaging the rate of 
change of area in each size 
class produced an 
excellent fit to the (n-6) 
rule. 

•  Scripta metall. 30, 
633-637 (1994). 



Stability of 
2D Networks 

Von Neumann (1952) and Mullins (1956) proposed on the basis of surface tension
requirements, that the growth of a 2-D cell of area A with N sides is given by

dA

dt
¼ cðN# 6Þ ð11:11Þ

or, if written in terms of grain radius (R)

dR

dt
¼ cðN# 6Þ

2R
ð11:12Þ

Fig. 11.4. Schematic diagram of growth of a 2-dimensional grain structure. (a) A grain
of less than or more than 6 sides introduces instability into the structure, (b)–(f)

Shrinking and disappearance of the 5-sided grain, (Hillert 1965).

Fig. 11.3. A 2-dimensional array of equiaxed hexagonal grains is stable.
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Note that a precisely 
hexagonal network of 
grain boundaries is 
metastable (not stable as 
stated in the caption).  
Any perturbation will set 
up a net driving force for 
a grain smaller than the 
average to shrink.	




19 Grain Growth 
•  One interesting feature of grain growth is that, in a given material subjected 

to annealing at the same temperature, the only difference between the 
various microstructures is the average grain size.  Or, expressed another 
way, the microstructures (limited to the description of the boundary 
network) are self-similar and cannot be distinguished from one another 
unless the magnification is known.  This characteristic of grain growth has 
been shown by Mullins (1986) to be related to the kinetics of grain growth. 
The kinetics of grain growth can be deduced in a very simple manner based 
on the available driving force.   

•  Curvature is present in essentially all grain boundary networks and 
statistical self-similarity in structure is observed both in experiment and 
simulation.  This latter observation is extremely useful because it permits 
an assumption to be made that the average curvature in a network is 
inversely proportional to the grain size.  In other words, provided that self-
similarity and isotropy hold, the driving force for grain boundary migration 
is inversely proportional to grain size.  

Mullins, W. (1986). "The statistical self-similarity hypothesis in grain growth and 
particle coarsening." Journal of Applied Physics 59 1341.	




Self-Similarity 

11.1.2 Factors affecting grain growth

The main factors which influence grain growth, and which will be considered later in
this chapter include:

! Temperature
Grain growth involves the migration of high angle grain boundaries and the kinetics will
therefore be strongly influenced by the temperature dependence of boundary mobility as
discussed in §5.3.1. Because the driving force for grain growth is usually very small,
significant grain growth is often found only at very high temperatures.

! Solutes and particles
Although grain growth is inhibited by a number of factors, the pinning of grain
boundaries by solutes (§5.3.3) and by second-phase particles (§4.6) is particularly
important.

! Specimen size
The rate of grain growth diminishes when the grain size becomes greater than the
thickness of a sheet specimen. In this situation the columnar grains are curved only in
one direction rather than two, and thus the driving force is diminished. The grain
boundaries, where they intersect the surface, may also develop grooves by thermal
etching, and these will impede further grain growth.

! Texture
A strongly textured material inevitably contains many low angle boundaries of low
energy, and there is therefore a reduced driving force for grain growth.

11.1.3 The Burke and Turnbull analysis of grain growth kinetics

Burke (1949) and Burke and Turnbull (1952) deduced the kinetics of grain growth
on the assumption that the driving pressure (P) on a boundary arises only from the

Fig. 11.1. Schematic representation of the change in grain size distribution during (a)
Normal grain growth and (b) Abnormal grain growth, (After Detert 1978).
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Grain Growth Kinetics 
•  The rate of change of the mean size, d<r>/dt, must be related to the 

migration rate of boundaries in the system.  Thus we have a 
mechanism for grain coarsening (grain growth) and a quantitative 
relationship to a single measure of the microstructure.  This allows us 
to write the following equations. 
 

  v = α M γ / r = d<r>/dt 
 
One can then integrate and obtain 
 

  <r>2 - <rt=0>2= α M γ  t 
 

•  In this, the constant α is geometrical factor of order unity (to be 
discussed later).  In Hillert’s theory, α = 0.25.  From simulations,  
α ~ 0.40.  

Burke, J. E. (1949). "Some Factors Affecting the Rate of Grain Growth in Metals." 
Trans. AIME 180: 73-91.	




Grain Growth Exponent 

11.1.4 Comparison with experimentally measured kinetics

The use of equations 11.5 and 11.6 to describe grain growth kinetics was first suggested
empirically by Beck et al. (1949). These authors found that n was generally well above 2
and that it varied with composition and temperature. It is significant that very few
measurements of grain growth kinetics have produced the grain growth exponent of 2
predicted by equations 11.5 or 11.6, and values of 1/n for a variety of metals and alloys
as a function of homologous temperature are shown in figure 11.2. The trend towards
lower values of n at higher temperatures, seen in this figure, has been reported in many
experiments.

Data for some zone-refined metals in which the impurity levels are no more than a few
ppm are shown in table 11.1. The values of n range from 2 to 4, with an average of
2.4! 0.4. Grain growth kinetics have been extensively measured in ceramics, and
compilations of the data (Anderson et al. 1984, Ralph et al. 1992) reveal a similar range
of grain growth exponents as is shown in table 11.2.

Much effort has been expended in trying to explain why the measured grain growth
exponents differ from the ‘theoretical’ value of 2 given by the Burke and Turnbull
analysis, and the earlier explanations fall into two categories:

(i) The boundary mobility (M) varies with the boundary velocity
The boundary mobility, as discussed in §5.1.3, may under certain circumstances be a
function of boundary velocity, in which case the linear dependence of velocity on
driving pressure (equation 5.1), which is assumed in the Burke and Turnbull analysis
will not apply. An example of this is the case of solute drag on boundaries (§5.4.2).
Figure 5.32 shows that the velocity is not linearly proportional to the driving pressure
except for very low or very high boundary velocities. However, the shape of these curves

Fig. 11.2. The temperature dependence of the grain growth exponent n for isothermal
grain growth in a variety of materials, (Higgins 1974).
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Experimental grain growth data 

•  Data from  
Grey & Higgins  
(1973) for  
zone-refined Pb  
with Sn  
additions,  
showing deviations  
from the  
ideal grain  
growth law (n<0.5). 

•  In general, the grain growth exponent (in terms of radius) 
is often appreciably less than the theoretical value of 0.5 
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Grain Growth Theory 
•  The main objective in grain growth theory is to be able 

to describe both the coarsening rate and the grain size 
distribution with (mathematical) functions. 

•  What is the answer?  Unfortunately only a partial 
answer exists and it is not obvious that a unique 
answer is available, especially if realistic (anisotropic) 
boundary properties are included. 

•  Hillert (1965) adapted particle coarsening theory by 
Lifshitz-Slyozov and Wagner [Scripta metall. 13, 
227-238]. 

Lifshitz, I. M. and V. V. Slyozov (1961). "The Kinetics of Precipitation from 
Supersaturated Solid Solutions." Journal Of Physics And Chemistry Of Solids 19 35-50. 
Wagner, C. (1961). "Theorie Der Alterung Von Niederschlagen Durch Umlosen (Ostwald-
Reifung)." Zeitschrift Fur Elektrochemie 65 581-591.	




25 Hillert Normal Grain Growth 
Theory 

•  Coarsening rate: 
 <r>2 - <rt=0>2  = 0.25 k t = 0.25 Mγ t 

•  Grain size distribution (2D), f: 
 
 
 
 
 
Here, ρ = r/<r>, also known as the reduced grain 
size. 
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23e2ρ
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Hillert Normal Grain Growth Theory 

•  Grain size distribution (3D), f: 
 
 
 
 
 
Here, ρ = r/<r>. 

•  General formula: 
  € 

f ρ( ) =
2e( )33ρ
2 − ρ( )5

exp
−6
2 − ρ
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Grain Size 
Distributions 

a) Comparison of theoretical distributions due to Hillert (dotted line), Louat 
(dashed) and the log-normal (solid) distribution.  The histogram is taken from 
the 2D computer simulations of Anderson, Srolovitz et al.   
b) Histogram showing the same computer simulation results compared with 
experimental distributions for Al (solid line) by Beck and MgO (dashed) by 
Aboav and Langdon. 
Later lecture: we will see in a subsequent lecture that grain size 
distributions are best characterized with probability plots. 

results revealed a growth exponent of 2.04 in 2-D and 2.12 for a 3-D simulation, which are
very close to the n¼ 2 parabolic kinetics which are predicted on most theories, and
Anderson concluded that the asymptotic long-time growth exponent is 2.

The grain size distributions obtained by the Monte-Carlo simulations have been
analysed by Srolovitz et al. (1984a) and Anderson et al. (1989a). The grain size
distribution function, expressed in terms of R= !RR is found to be time invariant and close
to experimental measurements as shown in figure 11.6. The grain size distribution
determined from 2-D sections of the 3-D grain structure is closest to the Rayleigh
distribution suggested by Louat (1974).

11.2.5 Recent theoretical developments

As noted in §11.1.1, modelling of grain growth remains a remarkably active area, and
over the past decade over 20 papers have, on average, been published annually, most of
these being refinements of earlier models. The mean field approach has been improved
by taking account of spatial correlation among grains of different sizes (Marthinsen et
al. 1996), and whilst this gives the correct kinetics, the size distributions are not in
agreement with experiment unless further modifications are made (Mullins 1998a).
Stochastic theories, often using the Fokker–Planck formulation, are based on a given
grain growing in an environment which varies from grain to grain, and this gives a more
complete description of grain growth (Mullins 1998a,b, Pande and Rajagopal 2001).
However, a universally accepted stochastic theory of coarsening is not yet available
(Pande and Rajagopal 2001). Models which take into account the fact that the grain
boundary energies and mobilities in real materials are not isotropic have also been
formulated (Kazaryan et al. 2002).

Fig. 11.6. Histogram of the grain size distributions from 2-DMonte-Carlo simulations
compared with: (a) Theoretical distributions - log-normal (Feltham 1957), Hillert (1965)
dotted, and Rayleigh (Louat 1974) dashed, (b) Experimental data - for aluminium (Beck

1954) and MgO (Aboav and Langdon 1969), dashed line, (after Srolovitz 1984a).
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Development of Hillert Theory 
•  Where does the solution come from? 
•  The most basic aspect of any particle coarsening 

theory is that it must satisfy the continuity 
requirement, which simply says that the (time) rate 
of change of the number of particles of a given 
size is the difference between the numbers leaving 
and entering that size class. 

•  The number entering is the number fraction 
(density), f, in the class below times the rate of 
increase, v.  Similarly for the size class above. 

   
   ∂f/∂t = ∂/∂r(fv) 
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Grain Growth Theory (1) 
•  Expanding the continuity requirement gives the 

following: 
 
 
 

•  Assuming that a time-invariant (quasi-stationary) 
solution is possible, and transforming the equation 
into terms of the relative size, ρ: 
 
 
 

•  Clearly, all that is needed is an equation for the 
distribution, f, and the velocity of grains, v. 

€ 

∂f
∂t

=
∂
∂r

fv( ) = f ∂v
∂r

+ v ∂f
∂r

€ 

4 f ρ( ) + ρ
∂f ρ( )
∂t

−
∂
∂ρ

v ρ( ) f ρ( )( ) = 0
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Grain Growth Theory (2) 

•  General theories also must satisfy volume 
conservation: 
 
 

•  In this case, the assumption of self-
similarity allows us to assume a solution for 
the distribution function in terms of ρ only 
(and not time). € 

r 3 f 0dr = constant
0

∞

∫
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Grain Growth Theory (3) 
•  A critical part of the Hillert theory is the link 

between the n-6 rule and the assumed relationship 
between the rate of change, v=dr/dt. 

•  N-6 rule:   dr/dt = Mγ(π/3r)(n-6) 
•  Hillert:  dr/dt = Mγ /2{1/<r>-1/r} 

          = Mγ /2<r>  {ρ - 1} 
•  Note that Hillert’s (critical) assumption means that 

there is a linear relationship between size and the 
number of sides: 

  n = 6{1 +0.5 (r/<r> - 1)} =3 {1 + ρ} 
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Anisotropic grain boundary energy 
•  If the energies are not isotropic, the dihedral 

angles vary with the nature of the g.b.s making up 
each TJ. 

•  Changes in dihedral angle affect the turning angle. 
•  See: Rollett and Mullins (1996). “On the growth of 

abnormal grains.” Scripta metall. et mater. 36(9): 
975-980.  An explanation of this theory is given in 
the second section of this set of slides."
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v = Mf, revisited 

•  If the g.b. energy is inclination dependent, 
then equation is modified: g.b. energy term 
includes the second derivative.  Derivative 
evaluated along directions of principal 
curvature.	

v = n̂imi (γ i +γ iφ1φ1 )κ i1

+ (γ i +γ iφ 2φ 2 )κ i2

•  Care required: curvatures have sign; sign of 
velocity depends on convention for normal. 
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Sign of Curvature 

(a) singly curved; (b) zero curvature, zero 
force; (c) equal principal curvatures, opposite 
signs, zero (net) force. 

Porter & 
Easterling, 
fig. 3.20, 
p130 



Questions (1) 
1.  What is the relationship between interfacial 

energies and contact angle, e.g. for droplets of 
liquid on a solid surface? 

2.  Why do grain boundaries develop surface 
grooves if the material is annealed at 
sufficiently high temperature? 

3.  What is the “n-6 rule”?  Under what 
circumstances is it valid? 

4.  What terms enter the equation for the 
migration rate (velocity) of a grain boundary? 
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Questions (2) 
1.  What do you obtain by integrating the rate of 

change of the tangent to the grain boundary 
around the perimeter of a grain? 

2.  What does a triple point do to the tangent (or 
turning angle)? 

3.  What can one say about the expected growth 
rate of grains with less than or greater than 6 
sides? 

4.  What is observed experimentally about the 
relationship between growth/shrinkage rate and 
topological class (i.e. number of sides)? 
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Questions (3) 
1.  What is the self-similarity principle in grain 

growth? 
2.  What simple derivation due to Burke shows 

that the average radius is expected to vary as 
√(time)? 

3.  Is the square root dependence actually 
observed? 

4.  What is the most basic grain growth theory 
that describes kinetics and predicts the grain 
size distribution? 
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Questions (4) 

1.  What grain size distributions are actually 
observed experimentally (and in 
simulations)? 

2.  What is the full description of the 
migration rate of grain boundaries? 

38 
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Summary (1) 
•  Force balance at triple junctions leads to the Herring 

equations.  These include both surface tension and torque 
terms.   

•  If the interfacial energy does not depend on inclination, the 
torque terms are zero and Herring equations reduce to the 
Young equations, also known as the sine law. 

•  In 2D, the curvature of a grain boundary can be integrated 
to obtain the ‘n-6’ rule that predicts the growth (shrinkage) 
of a grain. 

•  Normal grain growth is associated with self-similarity of 
the evolving structures which in turn requires the area to be 
linear in time. 

•  Hillert extended particle coarsening theory to predict a 
stable grain size distribution and coarsening rate. 
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Summary (2) 

•  The capillarity vector allows the force 
balance at a triple junction to be expressed 
more compactly and elegantly.   

•  It is important to remember that the Herring 
equations become inequalities if the 
inclination dependence (torque terms) are 
too strong. 
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Application to G.B. Properties 
•  In principle, one can measure many 

different triple junctions to characterize 
crystallography, dihedral angles and 
curvature. 

•  From these measurements one can extract 
the relative properties of the grain 
boundaries. 

•  The method for extracting relative GB 
energy was described in the lecture notes on 
that topic (L15 in 2014). 
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Energy Extraction 

D. Kinderlehrer, et al. , Proc. of the Twelfth International Conference on Textures of Materials, Montréal, 
Canada, (1999) 1643. 

(sinχ2) σ1 - (sinχ1) σ2 = 0 

(sinχ3) σ2 - (sinχ2) σ3 = 0 
 sinχ2   -sinχ1       0     0 …0 

  0        sinχ3   -sinχ2  0 ...0 
  *          *           0      0 ...0 
   :          :            :       :     : 

    0          0          *      *    0 

σ1 

σ2 

σ3 

 : 

σn 

= 0 
Measurements at 
many TJs; bin the 
dihedral angles by g.b. type; average the sinχ; 
each TJ gives a pair of equations 
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Mobility Extraction 

(σ1κ1sinχ1)m1 + (σ2κ2sinχ2)m2 + (σ3κ3sinχ3)m3 = 0 

σ1κ1sinχ1    σ2κ2sinχ2   σ3κ3sinχ3  0   0 …0 

       0                 *                  *       *    0 ...0 

       *                 0                  *       *    0 ...0 

        :                 :                   :        :     :     : 

           0                0                  *        *   *    0 

m1 

m2 

m3 

 : 

mn 

= 0 



44 Example of importance of 
interface stiffness 

•  The Monte Carlo model is commonly used for 
simulating grain growth and recrystallization. 

•  It is based on a discrete lattice of points in which a 
boundary is the dividing line between points of 
differing orientation.  In effect, boundary energy is 
a broken bond model. 

•  This means that certain orientations (inclinations) 
of boundaries will have low energies because 
fewer broken bonds per unit length are needed. 

•  This has been analyzed by Karma, Srolovitz and 
others. 
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Broken bond model, 2D 
•  We can estimate the 

boundary energy by 
counting the lengths of 
steps and ledges. 
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Interface stiffness 
•  At the singular point, 

the second derivative 
goes strongly positive, 
thereby compensating 
for the low density of 
defects at that 
orientation that 
otherwise controls the 
mobility! 
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