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Outline 
•  Motivation, examples of anisotropic grain 

boundary properties 
•  Grain boundary energy 

–  Overview of GB energy 
–  Low angle boundaries 
–  Measurement methods 
–  Herring relations, Young’s Law 
–  Extraction of GB energy from dihedral angles 
–  Surface Grooves 
–  High angle boundaries 
–  Boundary plane vs. CSL 
–  Simulation of grain growth 
–  Capillarity Vector 
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Example: Bi-doped Ni 
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Why learn about grain boundary 
properties? 

•  Many aspects of materials processing, properties and 
performance are affected by grain boundary 
properties. 

•  Examples include: 
- stress corrosion cracking in Pb battery electrodes, 
Ni-alloy nuclear fuel containment, steam generator 
tubes, aerospace aluminum alloys 
- creep strength in high service temperature alloys 
- weld cracking (under investigation) 
- electromigration resistance (interconnects) 

•  Grain growth and recrystallization 
•  Precipitation of second phases at grain boundaries 

depends on interface energy (& structure). 
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Properties, phenomena of interest 
1. Energy (interfacial excess free energy → 

grain growth, coarsening, wetting, 
precipitation) 

2. Mobility (normal motion in response to 
differences in stored energy → grain growth, 
recrystallization) 

3. Sliding (tangential motion → creep) 
4. Cracking resistance (intergranular fracture) 
5. Segregation of impurities (embrittlement, 

formation of second phases) 
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Grain 
Boundary 
Diffusion 

•  Especially for high symmetry boundaries, 
there is a very strong anisotropy of diffusion 
coefficients as a function of boundary type. 
This example is for Zn diffusing into a series 
of <110> symmetric tilt boundaries in copper.  
Since this was an experiment on diffusion 
induced grain boundary migration (DIGM), 
see the figure above, the upper graph shows 
the migration velocity.  The lower graph 
shows grain boundary diffusion coefficients. 

•  Note the low diffusion rates along low energy 
boundaries, especially Σ3. 

Schmelze et al., Acta mater. 40 997 (1992) 

SCHMELZLE et al.: DIFFUSION INDUCED GRAIN BOUNDARY MIGRATION 1001 

results of Chen et  al. [12] and King and Dixit [13]. 
They attributed the lack of migration of low angle 
boundaries to both the lack of a coherency strain 
driving force because of symmetry and the lack of 
steps in the structure of the boundary necessary for 
the dislocation climb mechanism [20, 21] to be oper- 
ative. The lack of migration of •3{111} boundaries 
is attributed to the relatively low diffusivities ex- 
pected for these boundaries because of their relatively 
coherent structure. 

The observation that segments of symmetric 
boundaries migrated randomly into both grains of a 
bicrystal contradicts the observation of Chen et al. 
[7, 10, 12] that symmetric (001) tilt boundaries Fig. 5. DIGM of a symmetric high angle (45 °) tilt boundary 

exhibiting an oscillating type of boundary migration. 195 h 
tended to migrate in one direction. The only expla- at 733 K, z = 40 #m; LM. 
nation which suggests itself for this discrepancy is 
that perhaps the grain boundaries in the naturally 

of motion were also observed at these higher tem- grown bicrystals of Chen et  al. were slightly asymmet- 
ric because of boundary migration during processing peratures. These observations are more or less in 
while the synthetic bicrystals of the present study agreement with those of others [1, 11] on DIGM in 
showed no such deviation from symmetry, polycrystalline copper resulting from zinc diffusion. 

Figure 4 shows the cross sections of specimens, in In addition, the tendency toward oscillation de- 
which segments of boundary have migrated by creased with increasing depth below the surface and 
DIGM and from which the DIR layer has been varied from one boundary type to another. For 
removed. As can be seen, the distance of migration example, the L'19a{133} and $9{122} tilt boundaries 
decreases with increasing depth. 95% of all bound- exhibited less oscillation than the 45 ° tilt boundary. 
aries, which had migrated, exhibited a curvature that A unique faceted morphology was exhibited by the 
is convex toward the grain into which the boundary symmetric ~V19a{133} boundaries (Fig. 6), in which 
is migrating [Fig. 4(a-c)]. The ratio of the distance of the DIGM regions near the surface developed as 
migration to the depth of penetration varied from isosceles triangles having a {111} habit plane in one 
boundary to boundary. This shape is more or less in grain and a {113} in the other. This relationship 
agreement with the shapes reported by Chen and alternated from one side of the triangle to the other. 
King [10]. As can be seen in Fig. 6 the faceted structure gradu- 

For  annealing temperatures of 693 K and lower all ally disappears with increasing depth below the sur- 
face. Figure 3(a) shows no trace of it at z = 23/~m. boundaries appeared to migrate from their initial to 
In general, the faceted regions form relatively rapidly their final position in a single sweep of the boundary 

while above 693 K some boundaries appeared to ( < 24 h), and, as such, the development of the surface 
migrate with a back and forth oscillating motion 
(Fig. 5). "Ghost"  lines indicating a stop and go type 

Fig. 4. Cross sections through DIGM regions at a 
S 19a{133} boundary after removal of the DIR layer show- 
ing different shapes of cross sections. The most frequently Fig. 6. DIGM of a symmetric -r19a{133} tilt boundary 
observed shapes are shown in (a) and (b). AZ = alloyed exhibiting facets. Note that the sharp facets round off with 

zone, Cu = pure copper. 400 h at 693 K; LM. increasing depth z beneath the surface. 14 h at 693 K; LM. 
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Grain Boundary 
Sliding 

•  Grain boundary sliding should 
be very structure dependent.  
Reasonable therefore that 
Biscondi’s results show that 
the rate at which boundaries 
slide is highly dependent on 
misorientation; in fact there is 
a threshold effect with no 
sliding below a certain 
misorientation at a given 
temperature.  

Biscondi, M. and C. Goux (1968).  
"Fluage intergranulaire de bicristaux orientés d'aluminium." Mémoires Scientifiques Revue de Métallurgie 55 167-179. 

640°C 

600°C 

500°C 
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Mobility: Overview 

•  Highest mobility observed for 
<111> tilt boundaries.  At low 
temperatures, the peaks occur at 
a few CSL types - Σ7, especially. 

•  This behavior is inverse to that 
deduced from classical theory 
(Turnbull, Gleiter). 

•  For stored energy driving force, 
strong tilt-twist anisotropy 
observed. 

•  No simple theory available. 
•  Grain boundary mobilities and 

energies (anisotropy thereof) are 
essential for accurate modeling of 
evolution. 

<111> Tilts 

general boundaries 

V = M γ κ	



“Bridging Simulations and Experiments in Microstructure Evolution”, Demirel et al., Phys. Rev. Lett., 90, 016106 (2003) 
Grain Boundary Migration in Metals, G. Gottstein and L. Shvindlerman, CRC Press, 1999 (+ 2nd ed.). 



Mobility vs. Boundary Type 

•  At 350ºC, only boundaries  close to 38°<111>, or Σ7 are mobile 

R1 

R2 

Taheri et al. (2005)  Z. Metall. 96 1166 

“Classical” peak at 38°<111>, Σ7 

Al+.03Zr - individual recrystallizing grains 

<111> tilts 

general 
Σ7 



Grain Boundary Energy: Definition 
•  Grain boundary energy is defined as the excess free energy 

associated with the presence of a grain boundary, with the 
perfect lattice as the reference point. 

•  A thought experiment provides a means of quantifying GB 
energy, γ.  Take a patch of boundary with area A, and increase 
its area by dA.  The grain boundary energy is the proportionality 
constant between the increment in total system energy and the 
increment in area.  This we write: 
                                                       γ = dG/dA 

•  The physical reason for the existence of a (positive) GB energy 
is misfit between atoms across the boundary.  The deviation of 
atom positions from the perfect lattice leads to a higher energy 
state.  Wolf established that GB energy is correlated with excess 
volume in an interface.  There is no simple method, however, for 
predicting the excess volume based on a knowledge of the grain 
boundary crystallography. 

11 



Grain boundary energy, γ: overview 
•  Grain boundary energies can be extracted from 3D images by 

measurement of dihedral angles at triple lines and by exploiting the 
Herring equations at triple junctions. 

•  The population of grain boundaries are inversely correlated with grain 
boundary energy. 

•  Apart from a few deep cusps, the relative grain boundary energy varies 
over a small range, ~ 40%. 

•  The grain boundary energy scales with the excess volume; unfortunately 
no model exists to connect excess volume with crystallographic type. 

•  The average of the two surface energies has been demonstrated to be 
highly correlated with the grain boundary energy in MgO.   

•  For metals, population statistics suggest that a few deep cusps in energy 
exist for both CSL-related and non-CSL boundary types (e.g. in fcc, Σ3, 
Σ11), based on both experiments and simulation. 

•  Theoretical values of grain boundary energy have been computed by a 
group at Sandia Labs (Olmsted, Foiles, Holm) using molecular statics, and 
GB mobilities using molecular dynamics. 

12 Olmsted et al. (2009) “… Grain boundary energies" Acta mater. 57 3694;  
Rohrer, et al. (2010) “Comparing … energies.” Acta mater. 58 5063 
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G.B. Properties Overview: Energy 
•  Low angle boundaries can be treated 

as dislocation structures, as 
analyzed by Read & Shockley 
(1951). 

•  Grain boundary energy can be 
constructed as the average of the 
two surface energies -  
γGB = γ(hklA)+γ(hklB). 

•  For example, in fcc metals, low 
energy boundaries are found with 
{111} terminating surfaces. 

•  In most fcc metals, certain CSL types 
are much more common than 
expected from a random texture. 

•  Does mobility scale with g.b. energy, 
based on a dependence on acceptor/
donor sites?  Answer: this 
supposition is not valid. 

one {111} 

two {111} 
planes (Σ3 …) 

Read-Shockley 

Shockley W, Read WT. “Quantitative Predictions From Dislocation Models 
Of Crystal Grain Boundaries.” Phys. Rev. (1949) 75 692. 
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Grain Boundary Energy 

•  First categorization of boundary type is into low-angle 
versus high-angle boundaries.  Typical value in cubic 
materials is 15° for the misorientation angle. 

•  Typical values of average grain boundary energies 
vary from 0.32 J.m-2 for Al to 0.87 for Ni J.m-2 (related 
to bond strength, which is related to melting point). 

•  Read-Shockley model describes the energy variation 
with angle for low-angle boundaries successfully in 
many experimental cases, based on a dislocation 
structure. 
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Read-Shockley model 

•  Start with a symmetric tilt boundary 
composed of a wall of infinitely straight, 
parallel edge dislocations (e.g. based 
on a 100, 111 or 110 rotation axis with 
the planes symmetrically disposed). 

•  Dislocation density (L-1) given by: 
 
1/D = 2sin(θ/2)/b ≈ θ/b    for small 
angles. 

Read-Shockley applies to Low 
Angle Grain Boundaries (LAGB) 



16 

Tilt boundary 
b 

D 

Each dislocation accommodates the mismatch between the two lattices; for 
a <112> or <111> misorientation axis in the boundary plane, only one type of 
dislocation (a single Burgers vector) is required. 
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Read-Shockley model, contd. 
•  For an infinite array of edge dislocations the long-

range stress field depends on the spacing.  Therefore 
given the dislocation density and the core energy of 
the dislocations, the energy of the wall (boundary) is 
estimated (r0 sets the core energy of the dislocation): 
 

  γgb = E0 θ (A0 - lnθ), where 
 
E0 = µb/4π(1-ν);  A0 = 1 + ln(b/2πr0) 

•  Note that differentiation of the Eq above leads to a 
maximum energy when exp(θ) = (A0 - 1), or, 
θ = b/2πr0, which shows that the choice of the cut-off 
radius, r0, determines the maximum in the energy. 
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Read-Shockley model, contd. 

•  If the non-linear form for the dislocation 
spacing is used, we obtain a sine-law 
variation (Ucore= core energy): 
 
 γgb = sin|θ| {Ucore/b - µb2/4π(1-ν) ln(sin|θ|)} 
 

•  Note: this form of energy variation may also 
be applied to CSL-vicinal boundaries.  
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LAGB experimental results 

Gjostein & Rhines, Acta metall. 7, 319 (1959) 

•  Experimental results on copper.  Note the lack 
of evidence of deep minima (cusps) in energy at 
CSL boundary types in the <001> tilt or twist 
boundaries. Also note that the sine curve 
appears to apply over the entire angular range, 
not just up to 15°. 

Dislocation Structure 

Disordered Structure 
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Boundary Plane Normal, n (unit vector, 2 parameters) 

Lattice Misorientation, ∆g (rotation, 3 parameters) 

Physical Meaning of Grain Boundary Parameters!

Grain Boundaries have 5 Macroscopic Degrees of Freedom 

gB	

gA	


θ	
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Measurement of GB Energy 

•  We need to be able to measure grain boundary 
energy. 

•  In general, we do not need to know the absolute 
value of the energy but only how it varies with 
boundary type, i.e. with the crystallographic nature of 
the boundary. 

•  For measurement of the anisotropy of the energy, 
then, we rely on local equilibrium at junctions 
between boundaries.  This can be thought of as a 
force balance at the junctions. 

•  For not too extreme anisotropies, the junctions 
always occur as triple lines. 
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Experimental 
Methods for 
g.b. energy 

measurement 
G. Gottstein & L. 
Shvindlerman, Grain 
Boundary Migration 
in Metals, CRC (1999)	



Method (a), with dihedral angles at triple lines, is most generally 
useful; method (b), with surface grooving also used. 
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Herring Equations 
•  We can demonstrate the effect of 

interfacial energies at the (triple) 
junctions of boundaries. 

•  Equal g.b. energies on 3 GBs implies 
equal dihedral angles: 

120°	



1	



2	

 3	



γ1=γ2=γ3	
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Definition of Dihedral Angle 
•  Dihedral angle, χ:= angle between the 

tangents to an adjacent pair of 
boundaries (unsigned).  In a triple 
junction, the dihedral angle is assigned 
to the opposing boundary. 

120°	



1	



2	

 3	



γ1=γ2=γ3	



χ1 : dihedral���
angle for g.b.1	
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Dihedral Angles 

•  An material with uniform grain boundary energy should have dihedral 
angles equal to 120°. 

•  Likely in real materials?  No!  Low angle boundaries (crystalline 
materials) always have a dislocation structure and therefore a 
monotonic increase in energy with misorientation angle (Read-
Shockley model). 

•  The inset figure is taken from Barmak et al. Progr. Matls. Sci. 58 987 
(2013) and shows the distribution of dihedral angles measured in a 0.1 
µm thick film of Al, along with a calculated distribution based on an GB 
energy function from a similar film (with two different assumptions 
about the distribution of misorientations).  Note that the measured 
dihedral angles have a wider distribution than the calculated ones. 

51 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 39 – The dihedral angle distribution for the stagnant structure of the 100 nm-thick Al film is 
compared with the distributions calculated using the grain boundary energy as a function of 
misorientation for <111> fiber-textured, 1.7 Pm-thick Al films reported by Barmak et al. (2006) 
and shown in Fig. 37. For one of the calculated dihedral angle distributions, the misorientation 
distribution (MD) is assumed to be constant as a function of the misorientation angle. For the 
other calculated dihedral angle distribution, the experimentally measured misorientation 
distribution for the 1.7 Pm -thick Al film shown in Fig. 38 is used. The numbers in parentheses 
give the size of the data set for each distribution. Bin size is 10 degrees. Lines are drawn to guide 
the eye. 
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Unequal energies 

•  If the interfacial energies are not equal, then 
the dihedral angles change.  A low g.b. energy 
on boundary 1 increases the corresponding 
dihedral angle. 

χ1>120°	



1	



2	

 3	



γ1<γ2=γ3	
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Unequal Energies, contd. 

•  A high g.b. energy on boundary 1 decreases 
the corresponding dihedral angle. 

•  Note that the dihedral angles depend on all 
the energies. 

χ1< 120°	



1	



2	

 3	



γ1>γ2=γ3	



See Fisher & Fullman JAP 
22 1350 (1951) for 
application to analysis of 
annealing twin formation. 
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Wetting 
•  For a large enough ratio, wetting can 

occur, i.e. replacement of one boundary 
by the other two at the TJ. 

χ1< 120°	



1	



2	

 3	



γ1>γ2=γ3���
Balance vertical ���
forces ⇒ ���
 γ1 = 2γ2cos(χ1/2)	


      Wetting ⇒	


    γ1 ≥ 2 γ2	



γ3cosχ1/2	



γ1	



γ2cosχ1/2	
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Triple Junction Quantities 

χ 3

χ
1χ

b1
^

b2
^

b3
^

2

n^ 1

n 2
^

n3
^

gA

gB

gC

φ2
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Triple Junction Quantities 

•  Grain boundary tangent (at a TJ): b 
•  Grain boundary normal (at a TJ): n 
•  Grain boundary inclination, measured anti-

clockwise with respect to a(n arbitrarily 
chosen) reference direction (at a TJ): φ	



•  Grain boundary dihedral angle: χ	


•  Grain orientation:g 
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Force Balance Equations/  
Herring Equations 

•  The Herring equations [(1951). Surface tension as a motivation 
for sintering. The Physics of Powder Metallurgy. New York, 
McGraw-Hill Book Co.: 143-179] are force balance equations at 
a TJ.  They rely on a local equilibrium in terms of free energy. 

•  A virtual displacement, δr, of the TJ (L in the figure) results in no 
change in free energy. 

•  See also: Kinderlehrer D and Liu C, Mathematical Models and 
Methods in Applied Sciences, (2001) 11 713-729; Kinderlehrer, 
D.,  Lee, J., Livshits, I., and Ta'asan, S. (2004) Mesoscale 
simulation of grain growth, in Continuum Scale Simulation of 
Engineering Materials, (Raabe, D. et al., eds),Wiley-VCH 
Verlag, Weinheim,  Chap. 16, 361-372 
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Derivation of Herring Equs. 

1
2

3

L

δr

A virtual displacement, δr, of the TJ results in ���
no change in free energy.	



See also: Kinderlehrer, D and Liu, C Mathematical Models and Methods in Applied Sciences {2001} 11 
713-729; Kinderlehrer, D.,  Lee, J., Livshits, I., and Ta'asan, S.  2004  Mesoscale simulation of grain 
growth, in Continuum Scale Simulation of Engineering Materials, (Raabe, D. et al., eds), Wiley-VCH 
Verlag, Weinheim,  Chapt. 16, 361-372 
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Force Balance 
•  Consider only interfacial energy: vector 

sum of the forces must be zero to 
satisfy equilibrium. Each “b” is a tangent 
(unit) vector. 
 
 

•  These equations can be rearranged to 
give the Young equations (sine law): 

  

€ 

γ1b1 +γ 2b2 +γ 3b3 =
 
0 

γ 1
sin χ1

=
γ 2
sin χ2

=
γ 3
sin χ3
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Surface 2 

γGb 

γS2 

γS1 

βtan
73.4

=
d
W

⎟
⎠

⎞
⎜
⎝

⎛ Ψ=
2

2 S

S

Gb Cos
γ
γ

Surface 

Crystal 2 

W 
Ψs 

Crystal 1 

d 

? 

β 

2W 

Analysis of Thermal Grooves to obtain GB Energy 

It is often reasonable to assume a constant surface energy, γS, and examine the 
variation in GB energy, γGb, as it affects the thermal groove angles 

See, for example: Gjostein, N. A. and F. N. Rhines (1959). "Absolute interfacial energies 
of [001] tilt and twist grain boundaries in copper." Acta metall. 7 319 



Δγ = 1.09 

Δγ = 0.46 

Ca solute increases the range of the γGB/γS ratio.  The variation of the relative energy in 
doped MgO is higher (broader distribution) than in the case of undoped material. 

Grain Boundary Energy Distribution is 
Affected by Alloying 

1 µm	



76 



Range of γGB/γS (on log scale) is smaller for Bi-doped Ni than for pure Ni, indicating 
smaller anisotropy of γGB/γS. This correlates with the plane distribution. 

Bi impurities in Ni have the opposite effect 

Pure Ni, grain size: 
20µm 

Bi-doped Ni, grain size: 
21µm 

77 
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Misorientation axis, e.g. 111,���
also the twist type location	



Separation of ∆g and n 

l=100

l=110

l=111

R1+R2+R3=1

(√2-1,0)
(√2-1,√2-1)

Plotting the boundary plane requires a full hemisphere which 
projects as a circle.  Each projection describes the variation at 
fixed misorientation.  Any (numerically) convenient discretization 
of misorientation and boundary plane space can be used. 

Distribution of normals 
for boundaries with Σ3 
misorientation 
(commercial purity Al) 
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Tilt versus Twist Boundaries 
Isolated/occluded grain (one grain enclosed within another) 
illustrates variation in boundary plane for constant misorientation.  
The normal is // misorientation axis for a twist boundary whereas 
for a tilt boundary, the normal is ⊥ to the misorientation axis.  Many 
variations are possible for any given boundary. 

Twist boundaries 

Misorientation axis 

gA	

gB	
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Inclination Dependence 

•  Interfacial energy can depend on inclination, 
i.e. which crystallographic plane is involved. 

•  Example?  The coherent twin boundary is 
obviously low energy as compared to the 
incoherent twin boundary (e.g. Cu, Ag).  The 
misorientation (60° about <111>) is the same, 
so inclination is the only difference. 
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Twin: coherent vs. incoherent 

•  Porter & 
Easterling 
fig. 3.12/
p123 
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The torque term 
Change in inclination causes a change in its energy,���
tending to twist it (either back or forwards)	



1
2

3

L

δr

dφ	



ˆ n 1	
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Inclination Dependence, contd. 
•  For local equilibrium at a TJ, what matters is 

the rate of change of energy with inclination, 
i.e. the torque on the boundary. 

•  Recall that the virtual displacement twists 
each boundary, i.e. changes its inclination. 

•  Re-express the force balance as (σ≡γ): 

  
σ j ˆ b j{

j = 1

3
∑ + ∂σ j ∂φ j( ) ˆ n j} =

 
0 

torque terms	

surface���
tension���
terms	
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Herring’s Relations 

C. Herring in The Physics of Powder Metallurgy. 
(McGraw Hill, New York, 1951) pp. 143-79 	



Θ
γ i

∂γi
∂ϑ

ˆ l 

γ gb ˆ t 3

γ s2 ˆ t 2

γ s1 ˆ t 1

ˆ n 3

ˆ n 2

ˆ n 1

grain boundary

surface 1
surface 2

γ iˆ t i + = 0ˆ n i
∂γ i
∂θ

NB: the torque terms can be just 
as large as the surface tensions  
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Torque effects 

•  The effect of inclination seems esoteric: 
should one be concerned about it? 

•  Yes!  Twin boundaries are only one example 
where inclination has an obvious effect.  
Other types of grain boundary (to be explored 
later) also have low energies at unique 
misorientations. 

•  Torque effects can result in inequalities* 
instead of equalities for dihedral angles. 

* B.L. Adams, et al. (1999). “Extracting Grain Boundary and Surface Energy 
from Measurement of Triple Junction Geometry.” Interface Science 7: 321-337."
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Aluminum foil, cross section 

•  Torque term 
literally twists 
the boundary 
away from 
being 
perpendicular 
to the surface 

θ
L

θ
S

surface	
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Why Triple Junctions? 

•  For isotropic g.b. energy, 4-fold junctions split 
into two 3-fold junctions with a reduction in 
free energy: 

90°	

 120°	
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How to Measure Dihedral ���
Angles and Curvatures: 2D microstructures	



Image 
Processing	

(1)	



(2) Fit conic sections to each grain boundary:	



Q(x,y)=Ax2+ Bxy+ Cy2+ Dx+ 
Ey+F = 0	



Assume a quadratic curve is adequate to describe the shape 
of a grain  boundary.	



"Measuring relative grain boundary energies and mobilities in an aluminum foil from triple junction geometry", C.-C. 
Yang, W. W. Mullins and A. D. Rollett, Scripta Materialia 44: 2735-2740 (2001).  
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(3) Calculate the tangent angle and curvature at a triple 
junction from the fitted conic  function, Q(x,y):	



Q(x,y)=Ax2+ Bxy���
+ Cy2+ Dx+ ���
Ey+F=0	



  

€ 

" y =
dy
dx

=
−(2Ax + By + D)

Bx + 2Cy + E

" " y =
d 2 y
dx2 =

−(2A + 2B " y + 2C " y 2 )
2Cy + Bx + E

κ = " " y 

(1+ " y 2 )
3
2

;     θ tan = tan−1 " y 

Measuring Dihedral Angles and Curvatures	
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Application to G.B. Properties 

•  In principle, one can measure many 
different triple junctions to characterize 
crystallography, dihedral angles and 
curvature. 

•  From these measurements one can 
extract the relative properties of the 
grain boundaries. 
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Energy Extraction 

• D. Kinderlehrer, et al. , Proc. of the Twelfth International Conference on Textures of Materials, Montréal, 
Canada, (1999) 1643. 
• K. Barmak, et al., "Grain boundary energy and grain growth in Al films: Comparison of experiments and 
simulations", Scripta Mater., 54 (2006) 1059-1063: following slides …  

(sinχ2) σ1 - (sinχ1) σ2 = 0	



(sinχ3) σ2 - (sinχ2) σ3 = 0	


	

 sinχ2   -sinχ1       0     0 …0	



  0        sinχ3   -sinχ2  0 ...0	


  *          *           0      0 ...0	


   :          :            :       :     :	



    0          0          *      *    0	



σ1	



σ2	



σ3	



 :	


σn	



= 0	


Measurements at���
many TJs; bin the���
dihedral angles by g.b. type; average the sinχ; 
each TJ gives a pair of equations	
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•  Assume: 
–  Equilibrium at the triple junction 

(TJ) 
–  Grain boundary energy to be 

independent of grain boundary 
inclination 

•  Sort boundaries according to 
misorientation angle (θ) – use 2o 
bins 

•  Symmetry constraint: θ ≤ 62.8o 

Type Misorientation Angle 
1 1.1-4 
2 4.1-6 
3 6.1-8 
4 8.1-10 
5 10.1-15 
6 15.1-18 
7 18.1-26 
8 26.1-34 
9 34.1-42 

10 42.1-46 
11 46.1-50 
12 50.1-54 
13 54.1-60 

Determination of Grain Boundary Energy 
via a Statistical Multiscale Analysis Method 

θ - misorientation angle 
χ - dihedral angle 

Example: {001}c [001]s textured Al foil K. Barmak, et al. 
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bj - boundary tangent 
nj - boundary normal 
χ - dihedral angle	


σ - grain boundary energy 

Equilibrium at Triple Junctions 

For example use Linefollow 
(Mahadevan et al.) 

Example: {001}c [001]s  textured Al foil 

Since the crystals have strong {111} fiber 
texture, we assume ; 
   - all grain boundaries are pure {111} tilt     
     boundaries 
   - the tilt angle is the same as the      
     misorientation angle 

K. Barmak, et al. 
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Cross-Sections Using OIM 

 Nearly columnar grain structure 

3 µm 

Al film 

[010] sample 

[001] sample 
scanned cross-section 

[001]sample inverse pole figure map, raw data 

[001]sample inverse pole figure map, cropped cleaned data 
  - remove Cu (~0.1 mm) 
  - clean up using a grain dilation method (min. pixel 10) 

[010]sample inverse pole figure map, cropped cleaned data 

SEM image 

more examples 

3 µm K. Barmak, et al. 

This film: {111}crystal// [010]sample textured Al foil 



54 

3

3

2

2

1

1

sinsinsin χ
σ

χ
σ

χ
σ

==
0sinsin
0sinsin
0sinsin

1331

2332

1221

=−

=−

=−

χσχσ

χσχσ

χσχσ
Young’s Equation 

Linear, homogeneous equations 
 

Type 3 

Type 1 
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Type 2 - Type 3 = Type 3 - Type 2 

Type 1 - Type 3 = Type 3 - Type 1 
 

χ2 

Grain Boundary Energy Calculation : Method 

Pair boundaries and put 
into urns of pairs 

K. Barmak, et al. 
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Grain Boundary Energy Calculation : Method 
N×(N-1)/2 equations 
N unknowns 
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K. Barmak, et al. 
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# of total TJs : 8694 
# of {111} TJs : 7367 (10° resolution) 
22101 (=7367×3) boundaries 

2° binning  
(0°-1°, 1° -3°, 3° -5°, …,59° -61°,61° -62°) 
32×31/2=496 pairs 
no data at low angle boundaries (<7°) 

i

N

j
jij bA =∑

=1
γ i=1,….,N(N-1)/2 

Kaczmarz iteration method 

calculation of dihedral angles 
- reconstructed boundary line segments from  
  TSL software  

Assuming columnar grain structure 
and pure <111> tilt boundaries 

Grain Boundary Energy Calculation : Summary 

Reconstructed 
boundaries 

B.L. Adams, D. Kinderlehrer, W.W. Mullins,  
   A.D. Rollett, and Shlomo Ta’asan, 
   Scripta Mater. 38, 531 (1998) 

K. Barmak, et al. 

This film: {111}crystal// [001]sample 
textured Al foil 
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<111> Tilt Boundaries: Results 

•  Cusps at tilt angles of 28 and 38 degrees, corresponding to CSL type 
boundaries Σ13 and Σ7, respectively. 
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K. Barmak, et al. 
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Energy of High Angle Boundaries 

•  No universal theory exists to describe the energy of HAGBs. 
•  Based on a disordered atomic structure for general high angle 

boundaries, we expect that the g.b. energy should be at a 
maximum and approximately constant. 

•  Abundant experimental evidence for special boundaries at (a 
small number) of certain orientations for which the atomic fit is 
better than in general high angle g.b’s. 

•  Each special point (in misorientation space) expected to have a 
cusp in energy, similar to zero-boundary case but with non-zero 
energy at the bottom of the cusp. 

•  Atomistic simulations suggest that g.b. energy is (positively) 
correlated with free volume at the interface. However, no simple 
way exists to predict the free volume based on the 
crystallographic type, so this does not help much. 
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Exptl. vs. Computed Egb 

Hasson & Goux, Scripta metall. 5 889 

<100> 
Tilts 

<110> 
Tilts 

Σ3, 111 plane: CoherentTwin 

Σ11 with (311) plane 

Note the 
presence of 
local minima 
in the <110> 
series, but 
not in the 
<100> 
series of tilt 
boundaries. 



Atomistic Calculations 

•  Olmsted, Foiles and Holm computed 
grain boundary energies for a set of 388 
grain boundaries using molecular statics 
and embedded-atom interatomic 
potentials that represent nickel and 
aluminum [“Survey of computed grain 
boundary properties in face-centered 
cubic metals: I. Grain boundary 
energy,”Acta Materialia 57 (2009) 
3694–3703]. 
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Atomistic Calculations, contd. 

•  It is important to 
understand that each 
result i.e. an energy 
value for a particular 
grain boundary type, 
was the minimum value 
from a large number of 
trial configurations of 
that boundary. 
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always deleted from crystal B; or both atoms were deleted
and an atom inserted at their average position. The cutoff
was varied from one-third of the nearest-neighbor distance
to 85% of the nearest-neighbor separation in steps of 0.1 Å.
In some cases, e.g. if the only atoms being deleted were
exactly coincident, two or all three of the deletion methods
produced the same starting configuration, so a few starting
configurations for a given boundary may be identical. In
summary, the initial configuration is a combination of
the offset vector, the boundary placement in the normal
direction, the deletion method and the deletion cutoff. This
process is similar to that used to examine the concept of
multiplicity of grain boundary structures [35,64]; however,
the focus here is on finding a single, minimum-energy struc-
ture rather than on examining the range of generated
structures.

Fig. 1 shows two examples of the results of the energy
search. The energy after the conjugate-gradient minimiza-
tion is plotted for each of the starting configurations used,
sorted by increasing energy. Fig. 1a shows the results for a
R111 boundary. About half of the configurations minimize
to essentially the same energy, consistent with the possibil-
ity that this is the global minimum, at least for the cell size
used. Some of the starting configurations minimized to sig-
nificantly higher energies, demonstrating the need for the
search. In particular note that, for this case, if a single con-
figuration was considered there is about a 50% chance that
one would obtain an incorrect high energy and that the
error in the energy could be more than a factor of two.
The importance of this observation has been demonstrated
by recent studies of grain boundaries in silicon in which
failure to consider alternative grain boundary structures
led to qualitatively incorrect conclusions about boundary
properties [63,65]. Fig. 1b shows the results for an asym-
metric R5 boundary with normals of h1 0 0ih4 3 0i. In this
case more than half of the configurations give essentially

the same energy. However, a few configurations give
slightly lower energies. This case suggests that even with
the extensive sampling performed here, some boundary
energies reported in this study may not be global minima.
Fortunately, the behavior shown suggests that the errors
in those cases are small. No search can guarantee to find
true global minima, but we believe that the substantial care
we have taken in this matter has produced results that are
fully precise enough to support our conclusions.

3. Results

The computed energies for Ni grain boundaries are
shown in Fig. 2 as a function of the disorientation angle
between the two grains. The corresponding plot for Al is
similar. The disorientation angle is the minimum rotation
angle in an axis-angle description of the rotation between
the two crystals. It is computed by

cosðaÞ ¼
TrðR

$
Þ $ 1

2

where R
$

is the rotation matrix between the two grain orien-
tations and the angle is minimized over the symmetry oper-
ations of the two crystals. Note that the disorientation
angle is independent of the orientation of the grain bound-
ary plane. The results shown are for the 388 boundaries de-
scribed above plus some selected smaller angle boundaries
and some boundaries closer to the coherent twin (plotted as
triangles in Fig. 2), selected to fill in gaps in the data set.
(Note that these extra boundaries were studied using the
same methods described above, but with a larger computa-
tional cell size to accommodate their larger repeat

Fig. 1. The minimized energy of the set of initial structures discussed in
the text for (a) a R111 grain boundary and (b) a asymmetric R5 (1 0 0)/
(4 3 0) grain boundary. The energies are sorted by increasing energy in the
plot. Note that in (a) about half of the initial structures yield the same,
minimum, boundary energy, while in (b) a small number of boundaries
have energies somewhat below the most common energy.
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Fig. 2. The computed grain boundary energies for Ni plotted against the
disorientation angle between the two grains. The red points correspond to
R3 misorientations, the cyan points correspond to h1 1 1i twist grain
boundaries, the grey symbols correspond to h1 0 0i twist grain boundaries,
the yellow symbols correspond to h1 1 0i symmetric tilt grain boundaries
and dark blue symbols correspond to all other boundaries. Triangles
indicate data for boundaries outside the group of 388 boundaries defined
by Lmax ¼ 15a0=2 as discussed in the text.

D.L. Olmsted et al. / Acta Materialia 57 (2009) 3694–3703 3697

Acta Materialia 57 (2009) 3694 



Atomistic Calculations, contd. 

There are several key results.  
One is that, for any given CSL 
value, there is a wide range of 
energies, especially for 41 
different Σ3 GBs.  Also note that 
{111} twist boundaries are 
particularly low in energy, as 
expected from the argument 
about low energy surfaces giving 
low energy GBs.  One outlier is 
the low energy Σ11 symmetric tilt 
with {113} normals.  The excess 
free volume provides a weak 
correlation with energy, as 
previously noted. 
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always deleted from crystal B; or both atoms were deleted
and an atom inserted at their average position. The cutoff
was varied from one-third of the nearest-neighbor distance
to 85% of the nearest-neighbor separation in steps of 0.1 Å.
In some cases, e.g. if the only atoms being deleted were
exactly coincident, two or all three of the deletion methods
produced the same starting configuration, so a few starting
configurations for a given boundary may be identical. In
summary, the initial configuration is a combination of
the offset vector, the boundary placement in the normal
direction, the deletion method and the deletion cutoff. This
process is similar to that used to examine the concept of
multiplicity of grain boundary structures [35,64]; however,
the focus here is on finding a single, minimum-energy struc-
ture rather than on examining the range of generated
structures.

Fig. 1 shows two examples of the results of the energy
search. The energy after the conjugate-gradient minimiza-
tion is plotted for each of the starting configurations used,
sorted by increasing energy. Fig. 1a shows the results for a
R111 boundary. About half of the configurations minimize
to essentially the same energy, consistent with the possibil-
ity that this is the global minimum, at least for the cell size
used. Some of the starting configurations minimized to sig-
nificantly higher energies, demonstrating the need for the
search. In particular note that, for this case, if a single con-
figuration was considered there is about a 50% chance that
one would obtain an incorrect high energy and that the
error in the energy could be more than a factor of two.
The importance of this observation has been demonstrated
by recent studies of grain boundaries in silicon in which
failure to consider alternative grain boundary structures
led to qualitatively incorrect conclusions about boundary
properties [63,65]. Fig. 1b shows the results for an asym-
metric R5 boundary with normals of h1 0 0ih4 3 0i. In this
case more than half of the configurations give essentially

the same energy. However, a few configurations give
slightly lower energies. This case suggests that even with
the extensive sampling performed here, some boundary
energies reported in this study may not be global minima.
Fortunately, the behavior shown suggests that the errors
in those cases are small. No search can guarantee to find
true global minima, but we believe that the substantial care
we have taken in this matter has produced results that are
fully precise enough to support our conclusions.

3. Results

The computed energies for Ni grain boundaries are
shown in Fig. 2 as a function of the disorientation angle
between the two grains. The corresponding plot for Al is
similar. The disorientation angle is the minimum rotation
angle in an axis-angle description of the rotation between
the two crystals. It is computed by

cosðaÞ ¼
TrðR

$
Þ $ 1

2

where R
$

is the rotation matrix between the two grain orien-
tations and the angle is minimized over the symmetry oper-
ations of the two crystals. Note that the disorientation
angle is independent of the orientation of the grain bound-
ary plane. The results shown are for the 388 boundaries de-
scribed above plus some selected smaller angle boundaries
and some boundaries closer to the coherent twin (plotted as
triangles in Fig. 2), selected to fill in gaps in the data set.
(Note that these extra boundaries were studied using the
same methods described above, but with a larger computa-
tional cell size to accommodate their larger repeat

Fig. 1. The minimized energy of the set of initial structures discussed in
the text for (a) a R111 grain boundary and (b) a asymmetric R5 (1 0 0)/
(4 3 0) grain boundary. The energies are sorted by increasing energy in the
plot. Note that in (a) about half of the initial structures yield the same,
minimum, boundary energy, while in (b) a small number of boundaries
have energies somewhat below the most common energy.
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Fig. 2. The computed grain boundary energies for Ni plotted against the
disorientation angle between the two grains. The red points correspond to
R3 misorientations, the cyan points correspond to h1 1 1i twist grain
boundaries, the grey symbols correspond to h1 0 0i twist grain boundaries,
the yellow symbols correspond to h1 1 0i symmetric tilt grain boundaries
and dark blue symbols correspond to all other boundaries. Triangles
indicate data for boundaries outside the group of 388 boundaries defined
by Lmax ¼ 15a0=2 as discussed in the text.
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Atomistic 
Calculations, 

contd. 
When the GB energies 
calculated in this manner for Al 
and Ni are compared, there is a 
very strong correlation.  It 
appears that the proportionality 
factor is is very similar to the 
Voigt average shear modulus, 
which is the last entry in Table 1. 
This suggests (without proof!) 
that the properties of 
dislocations may be relevant to 
GB energy. This last point 
remains to be substantiated. 

63 

the measured energy of a nearby boundary. Many interpo-
lation schemes can be envisioned; one simple one is to
model the unknown boundary energy as the crystallo-
graphically nearest known energy, with an uncertainty
given by the upper bound in Fig. 6. Thus, a data set such
as this one enables prediction of the energies of arbitrary
boundaries; the accuracy of the predicted energy increases
with the number of measured boundary energies in the data
set. The present results provide insight into the accuracy of
such interpolations given the separation of points in the
data set.

An important question about grain boundary properties
is the degree to which boundaries with the same macro-
scopic geometrical degrees of freedom in different materials
have related properties. In Fig. 7, the energies of the grain
boundaries computed in Ni are plotted against the energies
of the boundaries computed in Al for the same macro-
scopic degrees of freedom. Note that while the macroscopic
degrees of freedom are the same, the microscopic structure
need not be the same; each boundary structure is optimized
separately in each material. For most boundaries, espe-
cially at moderate to high energies, the energies computed
in Ni and Al are approximately proportional to each other.
This suggests that, apart from a material dependent scaling
factor, the energy of boundaries in different fcc metals will
have about the same variation with the macroscopic geo-
metrical degrees of freedom. While this result is generally
assumed, this is the first direct confirmation of that
assumption. There are some notable exceptions to this
for the low-energy boundaries. The coherent twin bound-
ary energy, while small in both materials, does not fall on
this line. Instead, it is relatively lower in energy in Ni than
in Al, in proportion to the stacking fault energy of each
material. Similarly, the h1 1 1i twist boundaries and the
lower-energy R3 boundaries are relatively lower in energy
in Ni. The low-energy symmetric R11 boundary deviates
in the opposite direction; it is relatively lower in energy

in Al than in Ni. These results therefore suggest that gen-
eral boundaries obey this scaling relation but that certain
low-energy boundaries do not.

It is interesting to explore how the ratio of the grain
boundary energies observed for Ni and Al relates to the
ratio of simple materials properties of these metals. Table
1 shows the ratio of the melting temperatures, sublimation
energy (cohesive energy), vacancy formation energy, stack-
ing fault energy, low index surface energies, bulk modulus
and shear moduli. In all cases, the values are multiplied by
the required power of the lattice constant to obtain quan-
tities that have the same dimensions as the grain boundary
energy, energy per length squared. In addition, the results
in Table 1 are based on the material property values
obtained with the potentials used in the current study.
The ratio of the Ni and Al grain boundary energies that
best fits the computed values in Fig. 6 is 2.6. An obvious
possible scaling is that the boundary energies scale with
the cohesive energy, which sets the energy scale of the inter-
atomic interactions, divided by the square of the lattice
constant. This predicts a ratio of 1.7, which is clearly incon-
sistent with the data. This demonstrates that the ratio of
grain boundary energies in different materials reflects other
aspects of the interatomic interaction. Certain other of the
materials properties listed also do not provide reasonable
estimates of this ratio; in particular the vacancy formation
energy, stacking fault energy and bulk modulus do not pre-
dict a reasonable scaling. The melting temperature predicts
a ratio somewhat below the observed one. It has been sug-
gested that surface energies and grain boundary energies
should be related. The low index surface energies predict
a ratio of 2.2–2.3 which is reasonably close to the ratio
of the grain boundary energies. The best correlation is with
two shear moduli: the ratio of the Voigt average shear
modulus, which gives a ratio of 2.4, or C44, which gives a
ratio of 2.8. The relationship between a shear modulus
and the grain boundary energy can be rationalized by a
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Fig. 7. Scatter plot of the computed grain boundary energies for Ni and
Al. Each point represents the same macroscopic degrees of freedom
though the microscopic structures may differ in some cases. The line
indicates a by-hand linear fit constrained to pass through the origin to the
data. The symbols are the same as in Fig. 2.

Table 1
The ratio of selected materials properties calculated for Ni and Al using
the present interatomic potentials. The various properties are scaled by a
power of the lattice constant, if needed, to obtain quantities with
dimensions of energy/area. The properties listed are the melting temper-
ature, sublimation energy, vacancy formation energy, stacking fault
energy, free surface energies for (1 0 0), (1 1 0) and (1 1 1) faces, bulk
modulus, the two extreme shear moduli and the Voigt average shear
modulus.

Property Ratio

kBT M=a2
0 2.2

Esub=a2
0 1.7

Ef
v=a2

0 3.3
csf 1.2
c(1 0 0) 2.2
c(1 1 0) 2.3
c(1 1 1) 2.2
Ba0 1.9
C0 a0 1.6
C44 a0 2.8
lvoighta0 2.4
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the measured energy of a nearby boundary. Many interpo-
lation schemes can be envisioned; one simple one is to
model the unknown boundary energy as the crystallo-
graphically nearest known energy, with an uncertainty
given by the upper bound in Fig. 6. Thus, a data set such
as this one enables prediction of the energies of arbitrary
boundaries; the accuracy of the predicted energy increases
with the number of measured boundary energies in the data
set. The present results provide insight into the accuracy of
such interpolations given the separation of points in the
data set.

An important question about grain boundary properties
is the degree to which boundaries with the same macro-
scopic geometrical degrees of freedom in different materials
have related properties. In Fig. 7, the energies of the grain
boundaries computed in Ni are plotted against the energies
of the boundaries computed in Al for the same macro-
scopic degrees of freedom. Note that while the macroscopic
degrees of freedom are the same, the microscopic structure
need not be the same; each boundary structure is optimized
separately in each material. For most boundaries, espe-
cially at moderate to high energies, the energies computed
in Ni and Al are approximately proportional to each other.
This suggests that, apart from a material dependent scaling
factor, the energy of boundaries in different fcc metals will
have about the same variation with the macroscopic geo-
metrical degrees of freedom. While this result is generally
assumed, this is the first direct confirmation of that
assumption. There are some notable exceptions to this
for the low-energy boundaries. The coherent twin bound-
ary energy, while small in both materials, does not fall on
this line. Instead, it is relatively lower in energy in Ni than
in Al, in proportion to the stacking fault energy of each
material. Similarly, the h1 1 1i twist boundaries and the
lower-energy R3 boundaries are relatively lower in energy
in Ni. The low-energy symmetric R11 boundary deviates
in the opposite direction; it is relatively lower in energy

in Al than in Ni. These results therefore suggest that gen-
eral boundaries obey this scaling relation but that certain
low-energy boundaries do not.

It is interesting to explore how the ratio of the grain
boundary energies observed for Ni and Al relates to the
ratio of simple materials properties of these metals. Table
1 shows the ratio of the melting temperatures, sublimation
energy (cohesive energy), vacancy formation energy, stack-
ing fault energy, low index surface energies, bulk modulus
and shear moduli. In all cases, the values are multiplied by
the required power of the lattice constant to obtain quan-
tities that have the same dimensions as the grain boundary
energy, energy per length squared. In addition, the results
in Table 1 are based on the material property values
obtained with the potentials used in the current study.
The ratio of the Ni and Al grain boundary energies that
best fits the computed values in Fig. 6 is 2.6. An obvious
possible scaling is that the boundary energies scale with
the cohesive energy, which sets the energy scale of the inter-
atomic interactions, divided by the square of the lattice
constant. This predicts a ratio of 1.7, which is clearly incon-
sistent with the data. This demonstrates that the ratio of
grain boundary energies in different materials reflects other
aspects of the interatomic interaction. Certain other of the
materials properties listed also do not provide reasonable
estimates of this ratio; in particular the vacancy formation
energy, stacking fault energy and bulk modulus do not pre-
dict a reasonable scaling. The melting temperature predicts
a ratio somewhat below the observed one. It has been sug-
gested that surface energies and grain boundary energies
should be related. The low index surface energies predict
a ratio of 2.2–2.3 which is reasonably close to the ratio
of the grain boundary energies. The best correlation is with
two shear moduli: the ratio of the Voigt average shear
modulus, which gives a ratio of 2.4, or C44, which gives a
ratio of 2.8. The relationship between a shear modulus
and the grain boundary energy can be rationalized by a
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Fig. 7. Scatter plot of the computed grain boundary energies for Ni and
Al. Each point represents the same macroscopic degrees of freedom
though the microscopic structures may differ in some cases. The line
indicates a by-hand linear fit constrained to pass through the origin to the
data. The symbols are the same as in Fig. 2.

Table 1
The ratio of selected materials properties calculated for Ni and Al using
the present interatomic potentials. The various properties are scaled by a
power of the lattice constant, if needed, to obtain quantities with
dimensions of energy/area. The properties listed are the melting temper-
ature, sublimation energy, vacancy formation energy, stacking fault
energy, free surface energies for (1 0 0), (1 1 0) and (1 1 1) faces, bulk
modulus, the two extreme shear moduli and the Voigt average shear
modulus.

Property Ratio

kBT M=a2
0 2.2

Esub=a2
0 1.7

Ef
v=a2

0 3.3
csf 1.2
c(1 0 0) 2.2
c(1 1 0) 2.3
c(1 1 1) 2.2
Ba0 1.9
C0 a0 1.6
C44 a0 2.8
lvoighta0 2.4

3700 D.L. Olmsted et al. / Acta Materialia 57 (2009) 3694–3703

Acta Materialia 57 (2009) 3694 
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Surface Energies vs.  
Grain Boundary Energy 

•  A recently revived, but still surprising to materials scientists, is 
that the grain boundary energy is largely determined by the 
energy of the two surfaces that make up the boundary (and that 
the twist angle is not significant).   

•  This is has been demonstrated to be highly accurate in the case 
of MgO, which is an ionic ceramic with a rock-salt structure.  In 
this case, {100} has the lowest surface energy, so boundaries 
with a {100} plane are expected to be low energy. 

•  The next slide, taken from the PhD thesis work of David Saylor, 
shows a comparison of the GB energy computed as the average 
of the two surface energies, compared to the frequency of 
boundaries of the corresponding type.  As predicted, the 
frequency is lowest for the highest energy boundaries, and vice 
versa. 
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2-Parameter Distributions: Boundary Normal only!

λ(n)	


(MRD)	



• Index n’ in the crystal 
reference frame: 
n = gin' and n = gi+1n' 
(2 parameter description) 

i	


i+1	



i+2	



j	



These are Grain Boundary Plane Distributions (GBPD) 



Distribution of GB planes and energies in the 
crystal reference frame for Nickel 

(111) planes have the highest population and the lowest relative 
energy (computed from dihedral angles) 

Population, MRD 

(a) 

Energy, a.u. 

(b) 

Li et al., Acta Mater. 57 (2009) 4304 66	





Distribution of GB planes and energies in the 
bicrystal reference frame 

Σ3 – Grain Boundary, Population and Energy 

γ(n|60°/[111]), a.u. 

(b) 

ln(λ(n|60°/[111]), MRD) 

(a) 

[010] 

[100] 

Li et al., Acta Mater. 57 (2009) 4304 

High purity Ni 
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Boundary populations are inversely correlated with 
energy, although there are local variations 

Sidebar 
Simulations of 
grain growth 
with anisotropic 
grain boundaries 
shows that the 
GBCD develops 
as a 
consequence of 
energy but not 
mobility; 
Gruber et al. 
(2005) Scripta 
mater. 53 351 



Theoretical versus Experimental GB Energies 
Recent experimental [Acta mater. 57 (2010) 4304] and computational studies [Acta 
Mater. 57 (2009) 3694] have produced two large grain boundary energy data sets for 
Ni. Using these results, we perform the first large-scale comparison between 
measured and computed grain boundary energies. While the overall correlation 
between experimental and computed energies is minimal, there is excellent 
agreement for the data in which we have the most confidence, particularly the 
experimentally prevalent Σ3 and Σ9 boundary types. Other CSL boundaries are 
infrequently observed in the experimental system and show little correlation with 
computed boundary energies. Because they do not depend on observation frequency, 
computed grain boundary energies are more reliable than the experimental energies 
for low population boundary types. Conversely, experiments can characterize high 
population boundaries that are not included in the computational study.  

Unweighted 
fit 

Weighted 
fit 
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“Validating 
computed grain 
boundary energies 
in fcc metals using 
the grain boundary 
character 
distribution”, Holm 
et al. Acta mater. 
(2011) 59 5250 



Theoretical versus Experimental GB Energies 

GB populations obtained from serial sectioning of fine 
grain (~5 µm) grain size pure Ni.  GB energies 
calculated from dihedral angles at triple junctions. [1] 
   For high population Σ3 and mid population Σ9 
boundaries, the inverse correlation between GBCD 
and GBED (solid lines) is stronger than the direct 
correlation between experimental and calculated 
GBEDs. However, the low population boundaries 
remain poorly correlated, due to high experimental 
uncertainty. [2]  

Regression 
for Σ9 
boundaries è   

Regression 
for Σ3 
boundaries; 
outliers 
circled 
ç 

[1] Li, et al. (2010) Acta mater. 57 4304;    [2] Rohrer, et al. (2010) Acta mater. 58 5063 
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Grain Boundary Distribution in MgO: [100] 
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λ(n|35°/[100])	



Every peak in λ(Δg,n) is related to a boundary with a {100} plane	


Saylor DM, Morawiec A, Rohrer GS. Distribution and Energies of Grain Boundaries as a Function of Five Degrees 
of Freedom. Journal of The American Ceramic Society (2002) 85 3081. 
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Examples of 2-Parameter Distributions 
Grain Boundary 

Population (Δg averaged)	



MgO	



Measured Surface  
Energies	



Saylor & Rohrer, Inter. Sci. 9 (2001) 35.	



SrTiO3	



Sano et al., J. Amer. Ceram. Soc., 86 (2003) 1933.	
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For all grain boundaries in MgO	



Grain boundary energy and population 

Population and Energy are inversely correlated 

0.0 
0.5 

1.0 
1.5 

2.0 
2.5 

3.0 

0.70 0.78 0.86 0.94 1.02 
γgb (a.u) 

ln
(λ

+1
) 

Saylor DM, Morawiec A, Rohrer GS. Distribution and Energies of Grain Boundaries as a Function of Five Degrees 
of Freedom. Journal of The American Ceramic Society (2002) 85 3081. 
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ω= 10°	

 ω= 30°	



Grain boundary 
energy	



[100] misorientations in MgO	



Grain boundary energy and population 

Population and Energy are inversely correlated 

γ(n|ω/[100])	



Saylor, Morawiec, Rohrer, Acta Mater. 51 (2003) 3675	



ω=10°	



MRD	



ω= 30°	



Grain boundary 
distribution	


λ(n|ω/[100])	



MRD	
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Boundary energy and population in Al 
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G.C. Hasson and C. Goux 
Scripta Met. 5 (1971) 889.	



Energies:	



Symmetric [110] 
tilt boundaries 

Al boundary populations:���
Saylor et al. Acta mater., 52, 3649-3655 (2004).	
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•  From the PhD thesis project of Jason Gruber. 
•  MgO-like grain boundary properties were 

incorporated into a finite element model of grain 
growth, i.e. minima in energy for any boundary 
with a {100} plane on either side. 

•  Simulated grain growth leads to the 
development of a g.b. population that mimics the 
experimental observations very closely. 

•  The result demonstrates that it is reasonable to 
expect that an anisotropic GB energy will lead to 
a stable population of GB types (GBCD). 

Computer Simulation of  
Grain Growth 
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A.P. Kuprat: SIAM J. Sci. Comput. 22 (2000) 535.  Gradient Weighted 
Moving Finite Elements (LANL); PhD by Jason Gruber 

Initial mesh: 2,578 grains, 
random grain orientations 
(16 x 2,578 = 41,248) 

Elements move with a 
velocity that is proportional 
to the mean curvature 

Energy anisotropy modeled after that 
observed for magnesia: minima on {100}. 

Moving Finite Element Method 
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• Input energy modeled after MgO 
• Steady state population develops that 
correlates (inversely) with energy. 
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GWMFE Results 

“Effect of anisotropic grain boundary properties on grain boundary plane 
distributions during grain growth”, J. Gruber et al., Scripta Mater. 53 351 (2005). 
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Simulated data: 
Moving finite elements 
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Energy and population are strongly correlated in 
both experimental results and simulated results. 
Is there a universal relationship? 
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Capillarity Vector, ξ	


•  The capillarity vector is a convenient 

quantity to use in force balances at 
junctions of surfaces. 

•  It is derived from the variation in 
(excess free) energy of a surface. 

•  In effect, the capillarity vector combines 
both the surface tension (so-called) and 
the torque terms into a single quantity 

Hoffman, D. W. & Cahn, J. W., “A vector thermodynamics for anisotropic surfaces. I. 
Fundamentals and application to plane surface junctions.” Surface Science 31 368-388 
(1972).  
Cahn, J. W. and D. W. Hoffman, "A vector thermodynamics for anisotropic surfaces. II. 
curved and faceted surfaces." Acta metall. 22 1205-1214 (1974)."
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Equilibrium at TJ 
•  The utility of the capillarity (or “xi”) vector, ξ, can be illustrated by 

re-writing Herring’s equations as follows, where l123 is the triple 
line (tangent) vector. 

   (ξ1 + ξ2 + ξ3) x l123 = 0 
•  Note that the cross product with the TJ tangent implies resolution 

of forces perpendicular to the TJ. 
•  Used by the MIMP group to calculate the GB energy function for 

MgO.  The numerical procedure is very similar to that outlined for 
dihedral angles, except now the vector sum of the capillarity 
vectors is minimized (Eq. above) at each point along the triple 
lines. 
"Morawiec A. “Method to calculate the grain boundary energy distribution 
over the space of macroscopic boundary parameters from the geometry of 
triple junctions”, Acta mater. 2000;48:3525. 
Also, Saylor DM, Morawiec A, Rohrer GS. “Distribution and Energies of 
Grain Boundaries as a Function of Five Degrees of Freedom” J. American 
Ceramic Society 2002;85:3081."
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Capillarity vector definition 

•  Following Hoffman & Cahn, define a unit 
surface normal vector to the surface,     , and 
a scalar field, rγ(   ), where r is a radius from 
the origin.  Typically, the normal is defined 
with respect to crystal axes. 
 

ˆ n 
ˆ n 
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•  Definition: 
•  From which, Eq (1) 
•  Giving,     
•  Compare with the  

rule for products:       
gives:                     (2),  and,                            (3) 

•  Combining total derivative of (2), with (3): 
 
 
        Eq (4): 

  	



Capillarity vector: derivations 

0 = n̂ · d⇠
Another useful result is the force, f, on an 
edge defined by a unit vector, l: f = ⇠ ⇥ l̂
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•  The physical consequence of Eq (2) is that 
the component of ξ that is normal to the 
associated surface, ξn, is equal to the surface 
energy, γ. 

     
•  Can also define a tangential component of 

the vector, ξt, that is parallel to the surface: 
       

 
where the tangent vector is associated with 
the maximum rate of change of energy. 

•  With suitable manipulations, the Herring 
expression can be recovered. 

Capillarity vector: components 
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G.B. Energy: Metals: Summary 

•  For low angle boundaries, use the Read-Shockley 
model with a logarithmic dependence: well 
established both experimentally and theoretically. 

•  For high angle boundaries, use a constant value 
unless (for fcc metals only) near a CSL structure 
related to the annealing twin (i.e. Σ3, Σ9, Σ27, Σ81 
etc.) with high fraction of coincident sites and plane 
suitable for good atomic fit. 

•  In ionic solids, the grain boundary energy may be 
simply the average of the two surface energies 
(modified for low angle boundaries).  This approach 
appears to be valid for metals also, although there 
are a few CSL types with special properties, e.g. 
highly mobile Σ7 boundaries in fcc metals. 
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Summary 

•  Although the CSL theory is a useful 
introduction to what makes certain 
boundaries have special properties, grain 
boundary energy appears to be more closely 
related to the two surfaces comprising the 
boundary.  This holds over a wide range of 
substances and means the g.b. energy is 
more closely related to surface energy than 
was previously understood.  In fcc metals, 
however, certain CSL types are found in 
substantial fractions. 



Questions: 1 
•  From the review of general properties: 
1.  What are the general features of the 

variation of GB mobility with GB type? 
2.  How does GB sliding vary with 

misorientation? 
3.  For <110> tilt boundaries in an fcc 

metal, how do you expect the GB 
diffusivity to vary with misorientation 
angle? 
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Questions: 2 
•  From the section on the Read-Shockley 

model 
1.  What is the functional form associated with 

Read-Shockley? 
2.  What is the physical basis for the R-S 

model? 
3.  If the misorientation axis is not, say <110>, 

is the single family of straight and parallel 
dislocations a reasonable picture of GB 
structure? 

4.  How do we typically partition between LAGB 
and HAGB? 
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Questions: 3 
•  From the section on energy measurement: 
1.  What does local equilibrium at a triple junction (line) mean? 
2.  How does help us measure variations in GB energy with 

crystallographic type? 
3.  What are Young’s equations? 
4.  What are standard ways to measure GB energy? 
5.  Where does the “torque term” come from? 
6.  What are Herring’s equations? 
7.  What is a way to parameterize a curve (in 2D)? 
8.  How do we use the information about dihedral angles to 

calculate GB energy? 
9.  What variation in GB energy was observed for <111> tilt GBs 

in Al? 
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Questions: 4 
•  From the section on High Angle GBs: 
•  What is a general rule for predicting HAGB energy? 
•  How do GB energies relate to surface energies? 
•  What is the evidence about <100> tilt GBs in MgO 

that tells us that surface energy dominates over, say, 
expecting a minimum GB energy for a symmetric tilt 
boundary? 

•  What does the evidence for <110> tilt boundaries in 
Al suggest? 

•  What correlation is generally observed for GB 
population and energy? 

•  Which GBs generally exhibit low energy in fcc 
metals? 
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Questions: 5 

•  Which GBs might be expected to exhibit 
low energy in bcc metals? 

•  What was the main result found by 
Gruber in his computer simulations? 

•  How is the capillarity vector constructed 
from a knowledge of the GB energy and 
the torque term? 

•  What is the practical value of the 
capillarity vector? 
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Supplemental Slides 
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Young Equns, with Torques 

•  Contrast the capillarity vector expression with 
the expanded Young eqns.: 

γ1
1− ε2 −ε3( )sin χ1 + ε3 −ε2( )cosχ1

=

γ2
1− ε1 −ε3( )sin χ2 + ε1 −ε3( )cosχ2

=

γ3
1− ε1 −ε2( )sin χ1 + ε2 −ε1( )cosχ3

ε i =
1
γ i

∂γ i

∂φi



94 

Expanded Young Equations 
•  Project the force balance along each 

grain boundary normal in turn, so as to 
eliminate one tangent term at a time: 

σ j ˆ b j +
∂σ
∂φ
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σ1ε1 +σ2 sin χ3 + σ2ε2 cosχ3 −σ3 sin χ2 + σ3ε3 cos χ2
σ1ε1σ2 sin χ3 /σ2 sin χ3 +σ 2 sin χ3 + σ2ε2 cosχ3 = σ3 sin χ2 + σ3ε3 cos χ2

1 +σ1ε1 /σ2 sin χ3( )σ2 sin χ3 + σ2ε2 cosχ3 = σ3 sin χ2 + ε3 cos χ2( )
1 +σ1ε1 /σ2 sin χ3( )sin χ3 + ε2 cos χ3{ }σ 2 = σ3 sin χ2 + ε3 cos χ2( )


