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Why learn about grain boundary
properties?

Many aspects of materials processing, properties and
performance are affected by grain boundary

properties.

Examples include:

- stress corrosion cracking in Pb battery electrodes,
Ni-alloy nuclear fuel containment, steam generator
tubes, aerospace aluminum alloys

- creep strength in high service temperature alloys

- weld cracking (under investigation)

- electromigration resistance (interconnects)

Grain growth and recrystallization

Precipitation of second phases at grain boundaries
depends on interface energy (& structure).



Properties, phenomena of interest

1. Energy (interfacial excess free energy —
grain growth, coarsening, wetting,
precipitation)

2. Mobility (normal motion in response to
differences in stored energy — grain growth,
recrystallization)

3. Sliding (tangential motion — creep)
4. Cracking resistance (intergranular fracture)

5. Segregation of impurities (embrittlement,
formation of second phases)



Grain
Boundary
Diffusion
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Especially for high symmetry boundaries,
there is a very strong anisotropy of diffusion
coefficients as a function of boundary type.
This example is for Zn diffusing into a series

of <110> symmetric tilt boundaries in copper.

Since this was an experiment on diffusion
induced grain boundary migration (DIGM),
see the figure above, the upper graph shows
the migration velocity. The lower graph
shows grain boundary diffusion coefficients.

Note the low diffusion rates along low energy

boundaries, especially 3.

Schmelze et al., Acta mater. 40 997 (1992)

Fig. 6. DIGM of a symmetric £19a{133} tilt boundary
exhibiting facets. Note that the sharp facets round off with
increasing depth z beneath the surface. 14 h at 693 K; LM.
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Kinetics of diffusion induced grain boundary
migration in Cu bicrystals exposed to Zn
vapour in terms of a variation of bound_ary
velocity v, and b grain boundary chemical
diffusion triple product séDy, as function of
boundary misorientation angle 0 for diffusiqn
parallel () and perpendicular (1) to <011} '!:I|t
axis of symmetric grain boundaries (GBs) with
specific T values (see Ref. 100)



Figure 7.9 An array of
grains showing the cou-
pling between grain
boundary sliding and
diffusional elongation.
(Adapted from Cook and
Pharr, 1994, reproduced
courtesy of VCH
Publishers, Weinheim,
Germany.)

Grain boundary sliding should
be very structure dependent.
Reasonable therefore that
Biscondi’s results show that
the rate at which boundaries
slide is highly dependent on
misorientation; in fact there is
a threshold effect with no
sliding below a certain
misorientation at a given
temperature.

Biscondi, M. and C. Goux (1968).
"Fluage intergranulaire de bicristaux orientés d'aluminium."
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Mémoires Scientifiques Revue de Métallurgie 55 167-179.




Mobility: Overview
V=Mrvyk

» Highest mobility observed for
<111> tilt boundaries. At low
temperatures, the peaks occur at
a few CSL types - 27, especially.

« This behavior is inverse to that
deduced from classical theory
(Turnbull, Gleiter).

» For stored energy driving force,
strong tilt-twist anisotropy
observed.

* No simple theory available.

» Grain boundary mobilities and
energies (anisotropy thereof) are
essential for accurate modeling of
evolution.

Mobility [Arb. units]
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“Bridging Simulations and Experiments in Microstructure Evolution”, Demirel et al., Phys. Rev. Lett., 90, 016106 (2003)
Grain Boundary Migration in Metals, G. Gottstein and L. Shvindlerman, CRC Press, 1999 (+ 2nd ed.).



Mobility [Arb. units]

Mobility vs. Boundary Type

Al+.03Zr - individual recrystallizing grains
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» At 350°C, only boundaries close to 38°<111>, or 27 are mobile
Taher et al. (2005) Z. Metall. 96 1166
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Grain Boundary Energy: Definition

Grain boundary energy is defined as the excess free energy
associated with the presence of a grain boundary, with the
perfect lattice as the reference point.

A thought experiment provides a means of quantifying GB
energy, y. Take a patch of boundary with area 4, and increase
its area by d4. The grain boundary energy is the proportionality
constant between the increment in total system energy and the
increment in area. This we write:

y = dG/dA

The physical reason for the existence of a (positive) GB energy
is misfit between atoms across the boundary. The deviation of
atom positions from the perfect lattice leads to a higher energy
state. Wolf established that GB energy is correlated with excess
volume in an interface. There is no simple method, however, for
predicting the excess volume based on a knowledge of the grain
boundary crystallography.



Grain boundary energy, V: overview

Grain boundary energies can be extracted from 3D images by
measurement of dihedral angles at triple lines and by exploiting the
Herring equations at triple junctions.

The population of grain boundaries are inversely correlated with grain
boundary energy.

Apart from a few deep cusps, the relative grain boundary energy varies
over a small range, ~ 40%.

The grain boundary energy scales with the excess volume; unfortunately
no model exists to connect excess volume with crystallographic type.

The average of the two surface energies has been demonstrated to be
highly correlated with the grain boundary energy in MgO.

For metals, population statistics suggest that a few deep cusps in energy
exist for both CSL-related and non-CSL boundary types (e.qg. in fcc, Z3,
>11), based on both experiments and simulation.

Theoretical values of grain boundary energy have been computed by a
group at Sandia Labs (Olmsted, Foiles, Holm) using molecular statics, and
GB mobilities using molecular dynamics.

Olmsted et al. (2009) “... Grain boundary energies" Acta mater. 57 3694;
Rohrer, et al. (2010) “Comparing ... energies.” Acta mater. 58 5063

12



G.B. Properties Overview: Energy

as dislocation structures, as

analyzed by Read & Shockley f_
(1951).

Grain boundary energy can be
constructed as the average of the
two surface energies -

Yeg = Nhkla)+(hklp).

For example, in fcc metals, low
energy boundaries are found with
{111} terminating surfaces.

In most fcc metals, certain CSL types 0.2 two {1 11 }

are much more common than

expected from a random texture. p|aneS (23 )

Low angle boundaries can be treated Read_ShOCk|ey
1

0.8

0.6

one {111}

0.4

Grain Boundary Energy [Arb. units]

Does mobility scale with g.b. energy, 0
based on a dependence on acceptor/

donor sites? Answer: this
supposition is not valid.

Shockley W, Read WT. “Quantitative Predictions From Dislocation Models
Of Crystal Grain Boundaries.” Phys. Rev. (1949) 75 692.

0 10 20 30 40 50 60
Angle [°]
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Grain Boundary Energy

 First categorization of boundary type is into low-angle
versus high-angle boundaries. Typical value in cubic
materials is 15° for the misorientation angle.

« Typical values of average grain boundary energies
vary from 0.32 J.m for Al to 0.87 for Ni J.m (related
to bond strength, which is related to melting point).

« Read-Shockley model describes the energy variation
with angle for low-angle boundaries successfully in
many experimental cases, based on a dislocation
structure.
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Read-Shockley applies to Low
Angle Grain Boundaries (LAGB)

Read-Shockley model 74 \ V

30
AAAAA ]

« Start with a symmetric tilt boundary
composed of a wall of infinitely straight,
parallel edge dislocations (e.g. based
on a 100, 111 or 110 rotation axis with
the planes symmetrically disposed).

» Dislocation density (L!') given by:

1/D = 2sin(6/2)/b = 6/b  for small
angles.
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Tilt boundary
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Each dislocation accommodates the mismatch between the two lattices; for
a <112> or <111> misorientation axis in the boundary plane, only one type of

dislocation (a single Burgers vector) is required.
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Read-Shockley model, contd.

* For an infinite array of edge dislocations the long-
range stress field depends on the spacing. Therefore
given the dislocation density and the core energy of
the dislocations, the energy of the wall (boundary) is
estimated (r, sets the core energy of the dislocation):

Yoo = £ 0 (4, - In6), where

E,=ub/Ar(l-v); A, =1 + [n(b/2xr,)

* Note that differentiation of the Eq above leads to a
maximum energy when exp(60) = (4, - 1), or,
0 = b/2xr,, which shows that the choice of the cut-off
radius, r,, determines the maximum in the energy.
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Read-Shockley model, contd.

* |If the non-linear form for the dislocation
spacing is used, we obtain a sine-law
variation (U___= core energy):

corc

Yoo = Sin|6| {U,,,,/b - ub?/4x(1-v) In(sin|6))}

* Note: this form of energy variation may also
be applied to CSL-vicinal boundaries.
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LAGB experimental results

Experimental results on copper. Note the lack
of evidence of deep minima (cusps) in energy at
CSL boundary types in the <001> tilt or twist

boundaries. Also note that the sine curve

appears to apply over the entire angular range,

not just up to 15°.
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16. 5. Dependence of grain boundary energy on misorienta-
tion for [001] twist boundaries at 1065°C. The curve was
calculated from equation (1), using the large angle parameters,
and therefore it has no theoretical significance, but it can be
used to represent the experimental points.

tion for [001] tilt boundaries at 1065°C. Solid line represents D i S I Ocati O n Stru Ctu re

the curve caleulated from equation (1), using the large angle

parameters. Although the curve has no theoretical significance

it can be used as an empirical representation of the energy

data over the range 5° < 6 < 43°. Beyond 43°, the curve has
been drawn to fit the experimental points.

Gjostein & Rhines, Acta metall. 7, 319 (1959)
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Physical Meaning of Grain Boundary Parameters

Boundary Plane Normal, n (unit vector, 2 parameters)

Grain Boundaries have 5 Macroscopic Degrees of Freedom
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Measurement of GB Energy

We need to be able to measure grain boundary
energy.

In general, we do not need to know the absolute
value of the energy but only how it varies with
boundary type, i.e. with the crystallographic nature of
the boundary.

For measurement of the anisotropy of the energy,
then, we rely on local equilibrium at junctions
between boundaries. This can be thought of as a
force balance at the junctions.

For not too extreme anisotropies, the junctions
always occur as triple lines.
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G. Gottstein & L.
Shvindlerman, Grain
Boundary Migration

in Metals, CRC (1999)

Fig. 1.9. Methods of grain boundary surface tension measurement: (a) — equilibrium an-
gles at triple function; (b) — rotating ball method: sintering of small signal crystal balls to
single crystal substrate; (c) — thermal groove method, (d) — zero creep method; (e) —
method of a "floating” wedge; (f) — hypothetical method of an "equilibrium" grain bound-
ary thermal groove; (g) — balance of grain boundary surface tension and volume diving
force.

Method (a), with dihedral angles at triple lines, is most generally
useful; method (b), with surface grooving also used.



Herring Equations
* We can demonstrate the effect of
interfacial energies at the (triple)
junctions of boundaries.

* Equal g.b. energies on 3 GBs implies
equal dihedral angles:
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Definition of Dihedral Angle

» Dihedral angle, y:= angle between the
tangents to an adjacent pair of
boundaries (unsigned). In a triple
junction, the dihedral angle is assigned
to the opposing boundary.

1

120° 2, : dihedral

angle for g.b.1

Y1=Y2=Y3
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An material with uniform grain boundary energy should have dihedral
angles equal to 120°.

Likely in real materials? No! Low angle boundaries (crystalline
materials) always have a dislocation structure and therefore a
monotonic increase in energy with misorientation angle (Read-
Shockley model).

The inset figure is taken from Barmak et al. Progr. Matls. Sci. 58 987
(2013) and shows the distribution of dihedral angles measured in a 0.1
Mm thick film of Al, along with a calculated distribution based on an GB
energy function from a similar film (with two different assumptions
about the distribution of misorientations). Note that the measured
dihedral angles have a wider distribution than the calculated ones.
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Unequal energies

If the interfacial energies are not equal, then
the dihedral angles change. A low g.b. energy
on boundary 1 increases the corresponding

dihedral angle.
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Unequal Energies, contd.

* A high g.b. energy on boundary 1 decreases
the corresponding dihedral angle.

* Note that the dihedral angles depend on all

the energies.
|

Y12>Y2=Y3

3 See Fisher & Fullman JAP
22 1350 (1951) for

o application to analysis of
X1< 120 annealing twin formation.
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Wetting

* For a large enough ratio, wetting can
occur, i.e. replacement of one boundary

by the other two at the TJ.
Y1>Y2=Y3
Balance vertical
Tl forces =
Y,COSY1/2 Y3€08Y;/2 Y1 = 2Y,C08(Y,/2)
l l Wetting =
o) 3 Yiz2Y,

X< 120°
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Triple Junction Quantities

JAN
Ab3
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Triple Junction Quantities

Grain boundary tangent (ata TJ): b

Grain boundary normal (at a TJ): n

Grain boundary inclination, measured anti-
clockwise with respect to a(n arbitrarily
chosen) reference direction (ata TJ): ¢
Grain boundary dihedral angle:

Grain orientation:g
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Force Balance Equations/
Herring Equations

The Herring equations [(1951). Surface tension as a motivation
for sintering. The Physics of Powder Metallurgy. New York,
McGraw-Hill Book Co.: 143-179] are force balance equations at
a TJ. They rely on a local equilibrium in terms of free energy.

A virtual displacement, or, of the TJ (L in the figure) results in no
change in free energy.

See also: Kinderlehrer D and Liu C, Mathematical Models and
Methods in Applied Sciences, (2001) 11 713-729; Kinderlehrer,
D., Lee, J., Livshits, |., and Ta'asan, S. (2004) Mesoscale
simulation of grain growth, in Continuum Scale Simulation of
Engineering Materials, (Raabe, D. et al., eds),Wiley-VCH
Verlag, Weinheim, Chap. 16, 361-372
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Derivation of Herring Equs.

A virtual displacement, or, of the TJ results in
no change in free energy.

See also: Kinderlehrer, D and Liu, C Mathematical Models and Methods in Applied Sciences {2001} 11
713-729; Kinderlehrer, D., Lee, J., Livshits, I., and Ta'asan, S. 2004 Mesoscale simulation of grain
growth, in Continuum Scale Simulation of Engineering Materials, (Raabe, D. et al., eds), Wiley-VCH
Verlag, Weinheim, Chapt. 16, 361-372



33

Force Balance

» Consider only interfacial energy: vector
sum of the forces must be zero to
satisfy equilibrium. Each “b” is a tangent
(unit) vector.

Viby +7,b, +75b; = 0

* These equations can be rearranged to
give the Young equations (sine law):

Siny, Siny, SInx,



Analysis of Thermal Grooves to obtain GB Energy

See, for example: Gjostein, N. A. and F. N. Rhines (1959). "Absolute interfacial energies
of [001] tilt and twist grain boundaries in copper." Acta metall. 7 319

< 2w —

..... ! s, ' Surface

Crystal 1 . Crystal 2
?

Yob _rcpe Xs
d tanpf Vs 2

It is often reasonable to assume a constant surface energy, ys, and examine the
variation in GB energy, v, as it affects the thermal groove angles



Grain Boundary Energy Distribution is
Affected by Alloying

» Ca doped Sample

= MgO
1 . . .
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Ca solute increases the range of the YGB/YS ratio. The variation of the relative energy in
doped MgO is higher (broader distribution) than in the case of undoped material.



Bi impurities in Ni have the opposite effect

100

80

60

40

Cummulative Probability

20

0.01

Bi-doped Ni, grain size:
21um

Range of y5g/vs (on log scale) is smaller for Bi-doped Ni than for pure Ni, indicating
smaller anisotropy of y5g/ys. This correlates with the plane distribution. .-
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Separation of Ag and n

Plotting the boundary plane requires a full hemisphere which
projects as a circle. Each projection describes the variation at
fixed misorientation. Any (numerically) convenient discretization
of misorientation and boundary plane space can be used.

_R1+R2+R3=1

N
=111 MY Pole
Distribution of normals
for boundaries with =3
=100 misorientation
commercial purity Al
(V2-1 /2: \ > ( purity Al

(v2-1,0)

(111} Plane

Misorientation axis, e.g. 111,
also the twist type location
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Tilt versus Twist Boundaries

|solated/occluded grain (one grain enclosed within another)
illustrates variation in boundary plane for constant misorientation.
The normal is // misorientation axis for a twist boundary whereas
for a tilt boundary, the normal is L to the misorientation axis. Many

variations are possible for any given boundary.

Misorientation axis

Twist boundaries

8B




39

Inclination Dependence

* Interfacial energy can depend on inclination,
l.e. which crystallographic plane is involved.

 Example? The coherent twin boundary is
obviously low energy as compared to the
incoherent twin boundary (e.g. Cu, Ag). The
misorientation (60° about <111>) is the same,
so inclination is the only difference.
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Twin:

* Porter &
Easterling
fig. 3.12/
p123

coherent vs. incoherent

(€)

nere

e

Incoherent
twin

<« Coherent twin

0 ¢ —
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The torque term

Change 1n inclination causes a change in its energy,
tending to twist it (either back or torwards)
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Inclination Dependence, contd.

* Forlocal equilibrium at a TJ, what matters is
the rate of change of energy with inclination,
l.e. the forque on the boundary.

* Recall that the virtual displacement twists
each boundary, i.e. changes its inclination.

* Re-express the force balance as (o=y):

surface 3 y torque terms
tension ), aﬁj/a(l)j) n.p)=0
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Herring’s Relations

A C. Herring in The Physics of Powder Metallurgy.
) ¢ (McGraw Hill, New York, 1951) pp. 143-79

Vb 23
NB: the torque terms can be just
Vi o > as large as the surface tensions




44

Torque effects

 The effect of inclination seems esoteric:
should one be concerned about it?

 Yes! Twin boundaries are only one example
where inclination has an obvious effect.
Other types of grain boundary (to be explored
later) also have low energies at unique
misorientations.

* Torque effects can result in inequalities™

iInstead of equalities for dihedral angles.

* B.L. Adams, et al. (1999). “Extracting Grain Boundary and Surface Energy
from Measurement of Triple Junction Geometry.” Interface Science 7: 321-337.
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Aluminum foil, cross section

surface

* Torque term
literally twists
the boundary
away from
being
perpendicular
to the surface 7

/7
//
// ™~
/
/
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Why Triple Junctions?

« For isotropic g.b. energy, 4-fold junctions split
into two 3-fold junctions with a reduction in
free energy:

e
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How to Measure Dihedral
Angles and Curvatures: 2D microstructures

| SO
Ty

Processing

(2) Fit conic sections to each grain boundary:

Q(x,y)=Ax’+ Bxy+ Cy?*+ Dx+
Ey+F=0

Assume a quadratic curve 1s adequate to describe the shape
of a grain boundary.

"Measuring relative grain boundary energies and mobilities in an aluminum foil from triple junction geometry", C.-C.
Yang, W. W. Mullins and A. D. Rollett, Scripta Materialia 44: 2735-2740 (2001).
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Measuring Dihedral Angles and Curvatures

(3) Calculate the tangent angle and curvature at a triple
junction from the fitted conic function, Q(x,y):

Q(x,y)=Ax%+ Bxy
dy —(2Ax+By+D) + Cy>+ Dx+

Y Bx+2Cy +E Ey+=0

~d’y  —(2A+2By'+2Cy")
Cd? 2Cy+Bx+ E

K = 4 =, 0. = tan™' y'

(1+y"7)?

y”
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Application to G.B. Properties

* In principle, one can measure many
different triple junctions to characterize
crystallography, dihedral angles and
curvature.

* From these measurements one can
extract the relative properties of the

grain boundaries.



50

Energy Extraction

(siny,) oy - (siny;) 0, =0

| (siny;) 0y - (siny;) 03=0

r. . o)
— siny, -siny, 0 0..4]9Y
0 siny; -siny, 0 ..0|| Oz
£ ok 0 0.d4lo|=0
Measurements at

many TJs; bin the S
dihedral angles by g.b. type; average the siny;

each TJ gives a pair of equations

* D. Kinderlehrer, et al. , Proc. of the Twelfth International Conference on Textures of Materials, Montréal,

Canada, (1999) 1643.
K. Barmak, et al., "Grain boundary energy and grain growth in Al films: Comparison of experiments and

simulations", Scripta Mater., 54 (2006) 1059-1063: following slides ...
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Determination of Grain Boundary Energy
via a Statistical Multiscale Analysis Method

e Assume:

(TJ)

inclination

bins

— Equilibrium at the triple junction

— Grain boundary energy to be
independent of grain boundary

« Sort boundaries according to
misorientation angle (6) — use 2°

* Symmetry constraint: 6 < 62.8°

% - dihedral angle

K. Barmak, et al.

Type

Misorientation Angle

1

1.1-4

4.1-6

6.1-8

8.1-10

10.1-15

15.1-18

18.1-26

26.1-34

O[N] | ]|TW|DN

34.1-42

N
o

42.1-46

—
—

46.1-50

6 - misorientation angle

N
N

50.1-54

13

54.1-60

Example: {001}¢ [001]® textured Al foil




Equilibrium at Triple Junctions

3 - - - 3 Herring’s Eq.
2 0 O'j A N 300{ A\ Foil
lob + A l=0
: J a ¢ J
]=1 ] > 200-.

- - - ’ g 150 4
O-l 0-2 0-3 Young'’s Eq. g "
. - . - 50-
S1n S1N S1n
X]‘ Xz X3 050 40 60 80 100 120 140 160 180
bj _ boundary tangent Dihedral Angle (degrees)
n; - boundary normal Example: {001}¢ [001]¢ textured Al foil

x - dihedral angle
o - grain boundary energy

Since the crystals have strong {111} fiber
texture, we assume ;
- all grain boundaries are pure {111} tilt
boundaries
- the tilt angle is the same as the
misorientation angle

For example use Linefollow
(Mahadevan et al.)

K. Barmak, et al.



53

Cross-Sections Uszng OIM
B A

[001]ampie iNverse pole figure map, raw data

I — SEM image

[001]sampie inverse pole figure map, cropped cleaned data
[010] sample - remove Cu (~0.1 mm)
- clean up using a grain dilation method (min. pixel 10)

[010]sample iNVerse pole figure map, cropped cleaned data "'

scanned cross-section

[001] sample

-> Nearly columnar grain structure

more examples

This film: {111}qyea// [010]sampe textured Al foil

K. Barmak, et al.
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Grain Boundary Energy Calculation : Method

Type 1 - Type 2 = Type 2 - Type 1
Type 2 - Type 3 = Type 3 - Type 2
Type 1 - Type 3 = Type 3 - Type 1

[}

Pair boundaries and put
into urns of pairs

AccV Spot Magn Det WD ——— 20um
500kv 50 1500x SE 132

Linear, homogeneous equations

Young’s Equation : :
g==9 O,sIn x, —0,sinx, =0

o o o : :
L - —2 -3 — O,8In X, —0,smy, =0

sin sin sin . :
X X2 X3 o,sin x, —o,siny, =0

K. Barmak, et al.
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Grain Boundary Energy Calculation : Method

Nx(N-1)/2 equations

N
N unknowns 2Al.jyj=b,. i=1,....,N(N-1)/2
=
(sing,) —(sing,) 0 0 0 0 0
(sing;) 0 ~(sing,) 0 0000 0
(sing,) 0 0 ~(sing,) 0 0
: : : : Do 0
0  (sing,) -(sing,) 0 0000 0
0  (sing,) 0  —(sing,) 0 0 0 0 0
0 0 0 0 0 0 0 0 (sing,,) —(singy)
N(N-1)/2 { =
N U
N N(N-1)/2

K. Barmak, et al.

S O O O o O
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K. Barmak, et al.

Grain Boundary Energy Calculation : Summary

Assuming columnar grain structure
and pure <111> tilt boundaries

# of total TJs : 8694
# of {111} TJs : 7367 (10° resolution)
22101 (=7367x3) boundaries

calculation of dihedral angles
- reconstructed boundary line segments from
TSL software

2° binning

(0°-1°,1° -3¢, 3° -5°, ...,59° -61°,61° -62°)
32x31/2=496 pairs

no data at low angle boundaries (<7°)

This film: {111} ;,,sa// [001]sampie
textured Al foil

i=1,.... .N(N-1)/2

N
E Al.jyj =b,
7=1

Kaczmarz iteration method

B.L. Adams, D. Kinderlehrer, W.W. Mullins,
A.D. Rollett, and Shlomo Ta’asan,

Scripta Mater. 38, 531 (1998) Reconstructed

boundaries

o001 101



<] 11> Tilt Boundaries: Results

—_—
N
T
1

(&)

o
0o

x7

313 i

o
o
T

Relative Boundary Energy

0 2 30 4 50
Misorientation Angle, °

« Cusps at tilt angles of 28 and 38 degrees, corresponding to CSL type
boundaries £13 and X7, respectively.

K. Barmak, et al.
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Energy of High Angle Boundaries

No universal theory exists to describe the energy of HAGBs.

Based on a disordered atomic structure for general high angle
boundaries, we expect that the g.b. energy should be at a
maximum and approximately constant.

Abundant experimental evidence for special boundaries at (a
small number) of certain orientations for which the atomic fit is
better than in general high angle g.b’s.

Each special point (in misorientation space) expected to have a
cusp in energy, similar to zero-boundary case but with non-zero
energy at the bottom of the cusp.

Atomistic simulations suggest that g.b. energy is (positively)
correlated with free volume at the interface. However, no simple
way exists to predict the free volume based on the
crystallographic type, so this does not help much.



Exptl. vs. Computed E,
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Atomistic Calculations

* Olmsted, Foiles and Holm computed
grain boundary energies for a set of 388
grain boundaries using molecular statics
and embedded-atom interatomic
potentials that represent nickel and
aluminum ["Survey of computed grain
boundary properties in face-centered
cubic metals: |. Grain boundary
energy, Acta Materialia 57 (2009)
3694-3703].
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Atomistic Calculations, contd.

* |tis important to
understand that each
result i.e. an energy
value for a particular
grain boundary type,
was the minimum value
from a large number of
trial configurations of
that boundary.

2.5 T T T T T 25
| (a) (b) i
2 2
5
1.5 — 1.5
S
> | i
on
R s
w
0.5 ~ 0.5
o L I I | 1 | g
0 20000 40000 O 1000 2000 3000

Different configurations, sorted by increasing energy

Fig. 1. The minimized energy of the set of initial structures discussed in
the text for (a) a £111 grain boundary and (b) a asymmetric 5 (1 0 0)/
(4 3 0) grain boundary. The energies are sorted by increasing energy in the
plot. Note that in (a) about half of the initial structures yield the same,
minimum, boundary energy, while in (b) a small number of boundaries
have energies somewhat below the most common energy.

Acta Materialia 57 (2009) 3694
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Atomistic Calculations, contd.

There are several key results.
One is that, for any given CSL
value, there is a wide range of
energies, especially for 41
different 23 GBs. Also note that
{111} twist boundaries are
particularly low in energy, as
expected from the argument
about low energy surfaces giving
low energy GBs. One oultlier is
the low energy 211 symmetric tilt
with {113} normals. The excess
free volume provides a weak
correlation with energy, as
previously noted.

@ Other

¢ X3

71 111 twist

| © 100 twist
<110 symm tilt

| ® Coherent twin

-
(=]

=N
>

-
N

4

Energy (J/m*2)
o
=]
\/

o O
O
*\"{‘
® <.
&
&
&
&
&
&
<&
&
&

o
N
I

o

0 10 20 30 40 50 60
Disorientation angle (degrees)

Fig. 2. The computed grain boundary energies for Ni plotted against the
disorientation angle between the two grains. The red points correspond to
>3 misorientations, the cyan points correspond to (1 11) twist grain
boundaries, the grey symbols correspond to (1 0 0) twist grain boundaries,
the yellow symbols correspond to (1 1 0) symmetric tilt grain boundaries
and dark blue symbols correspond to all other boundaries. Triangles

indicate data for boundaries outside the group of 388 boundaries defined
by Linax = 15a0/2 as discussed in the text.

Acta Materialia 57 (2009) 3694



63

Atomistic
Calculations,
contd.

When the GB energies
calculated in this manner for Al
and Ni are compared, there is a
very strong correlation. It
appears that the proportionality
factor is is very similar to the
Voigt average shear modulus,

which is the last entry in Table 1.

This suggests (without proof!)
that the properties of
dislocations may be relevant to
GB energy. This last point
remains to be substantiated.

Acta Materialia 57 (2009) 3694

1.6 4
7
7
1.4
1.2
5
g 17
3
> 0.8
2 /%& & Other
G 0.6 Pr< < Sigma3
= //’0 O <& 111 twist
0.4 * 780 © 100 twist
e < 110 symm tilt
0.2+ e < ¢ Coherent twin
0 IR 2 — — Linear thru zero
0 0.1 0.2 0.3 0.4 0.5 0.6

Al energy (J/m”2)

Fig. 7. Scatter plot of the computed grain boundary energies for Ni and
Al. Each point represents the same macroscopic degrees of freedom
though the microscopic structures may differ in some cases. The line
indicates a by-hand linear fit constrained to pass through the origin to the
data. The symbols are the same as in Fig. 2.

Table 1

The ratio of selected materials properties calculated for Ni and Al using
the present interatomic potentials. The various properties are scaled by a
power of the lattice constant, if needed, to obtain quantities with
dimensions of energy/area. The properties listed are the melting temper-
ature, sublimation energy, vacancy formation energy, stacking fault
energy, free surface energies for (100), (110) and (111) faces, bulk
modulus, the two extreme shear moduli and the Voigt average shear

modulus.

Property Ratio
kpTm/a} 2.2
Equb /a3 1.7
EC/a(z) 33
Vst 1.2
Y100y 22
Y110 23
Yain 22
Ba() 1.9
C a 1.6
Cyq ag 2.8

Hvoightao 2.4
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Surface Energies vs.
Grain Boundary Energy

A recently revived, but still surprising to materials scientists, is
that the grain boundary energy is largely determined by the
energy of the two surfaces that make up the boundary (and that
the twist angle is not significant).

This is has been demonstrated to be highly accurate in the case
of MgO, which is an ionic ceramic with a rock-salt structure. In
this case, {100} has the lowest surface energy, so boundaries
with a {100} plane are expected to be low energy.

The next slide, taken from the PhD thesis work of David Saylor,
shows a comparison of the GB energy computed as the average
of the two surface energies, compared to the frequency of
boundaries of the corresponding type. As predicted, the
frequency is lowest for the highest energy boundaries, and vice
versa.
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2-Parameter Distributions: Boundary Normal only

e Index »’ in the crystal
reference frame:
n=gn'andn=g, n'

(2 parameter description)

These are Grain Boundary Plane Distributions (GBPD)



Distribution of GB planes and energies in the
crystal reference frame for Nickel

(b) 111

001 101
06 09 12 15 18 21 24 27 3.0 087 090 093 096 099 1.02
Population, MRD Energy, a.u.

(111) planes have the highest population and the lowest relative
energy (computed from dihedral angles)

L1 et al., Acta Mater. 57 (2009) 4304



Distribution of GB planes and energies in the
bicrystal reference frame

High purity Ni
23 — Grain Boundary, Population and Energy

Sidebar
Simulations of
grain growth
with anisotropic
grain boundaries
shows that the
GBCD develops
as a
consequence of

1 2 3 4 EIS 6 7 é 9 0.36 0.48 0.250 | 0.'72 | 0.]84 ener.g.y bUt nOt
In(A(n|60°/[111]), MRD) v(n|60°/[111]), a.u. got;mty; l
tal
Boundary populations are inversely correlated with (2181056; ;C]z.p -
energy, although there are local variations mater 53 351

Li et al., Acta Mater. 57 (2009) 4304 67



Theoretical versus Experimental GB Energies

Recent experimental [Acta mater. 57 (2010) 4304] and computational studies [Acta
Mater. 57 (2009) 3694] have produced two large grain boundary energy data sets for
Ni. Using these results, we perform the first large-scale comparison between
measured and computed grain boundary energies. While the overall correlation
between experimental and computed energies is minimal, there is excellent
agreement for the data in which we have the most confidence, particularly the
experimentally prevalent £3 and X9 boundary types. Other CSL boundaries are
infrequently observed in the experimental system and show little correlation with
computed boundary energies. Because they do not depend on observation frequency,
computed grain boundary energies are more reliable than the experimental energies
for low population boundary types. Conversely, experiments can characterize high
population boundaries that are not included in the computational study.

1 1 4| — weighted fit
e P<25
1 m 4<P< * °
Unweighted = °°7 + Weighted 2 ooy § 25575 pat o
f|t 0.8.1 1 fit 0.84

071 0.7+

“Validating
computed grain
boundary energies
in fcc metals using
the grain boundary
character
distribution”, Holm
et al. Acta mater.
(2011) 59 5250

061 0.6+

0.54 05+

0.4.1 0.4+

experimental energy (arbitrary units)

experimental energy (arbitrary units)

0.3 0.3

0 025 05 075 1 125 1.5
calculated boundary energy (J/mz) 68

0 025 05 075 1 125 1.5
calculated boundary energy (J/mz)



Theoretical versus Experimental GB Energies

[1] Li, et al. (2010) Acta mater. 57 4304; [2] Rohrer, ef al. (2010) Acta mater. 58 5063

g Regression

= 097 for 29

s o3 boundaries =
©

5 | Regression

5 %7 for =3

£ boundaries;

g Y outliers

s 03 { , { : { .

° 0 0.25 0.5 0.75 1 1.25 1.5 CIrCIed

calculated boundary energy (J/mz) 6

GB populations obtained from serial sectioning of fine
grain (~5 ym) grain size pure Ni. GB energies
calculated from dihedral angles at triple junctions. [1]

For high population £3 and mid population £9
boundaries, the inverse correlation between GBCD
and GBED (solid lines) is stronger than the direct
correlation between experimental and calculated
GBEDs. However, the low population boundaries
remain poorly correlated, due to high experimental
uncertainty. [2]

experimental energy (arbitrary units)

experimental population, In(P) (MRD)
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Grain Boundary Distribution in

MAg, n)

A(mnl5°/[100])

—b f}

> f}

A(nl15°/[100])

\,ﬁ
fi

A(nl25°/[100])

A(mnl35°/[100])

Every peak in A(Ag,n) is related to a boundary with a {100} plane

of Freedom. Journal of The American Ceramic Society (2002) 85 3081.

MgO:

4

_,:_“‘:
[ S

Ja¥esy,
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. i N e i 9 o i _
| ‘. e S | ( J“.A,“
PN 1
sl d o\ J

Saylor DM, Morawiec A, Rohrer GS. Distribution and Energies of Grain Boundaries as a Function of Five Degrees
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Examples of 2-Parameter Distributions

Grain Boundary Measured Surface
Population (Ag averaged) Energies

Sano et al., J. Amer. Ceram. Soc., 86 (2003) 1933.
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Grain boundary energy and population

For all grain boundaries in MgO

3.0 -

2.5-‘i+ 1

2.0

1 L ]
< 1.5- + +

)

=

p—(

10 - + T
E: | +**¥iji:€

ng (a.u)
Population and Energy are inversely correlated

Saylor DM, Morawiec A, Rohrer GS. Distribution and Energies of Grain Boundaries as a Function of Five Degrees
of Freedom. Journal of The American Ceramic Society (2002) 85 3081.
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Grain boundary energy and population

Grain boundary
energy

v(nlw/[100])

Grain boundary
distribution

Anlw/[100])

Population and Energy are inversely correlated
Saylor, Morawiec, Rohrer, Acta Mater. 51 (2003) 3675
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Boundary energy and population in Al

3= 911 3 3 119

0.8 Ft—1t—7T1t—1+17——30
Symmetric [110] |
tilt boundaries / 5
0.6
= 0
<
-
80
5 0.4 l 5
= l
= |
® 10
0.2
Energies: 5
G.C. Hasson and C. Goux
Scripta Met. 5 (1971) 889. .

0 ........ 0
0 30 60 90 120 150 180

Al boundary populations: Misorientation angle, deg.

Saylor et al. Acta mater., 52, 3649-3655 (2004).

MAg, n), MRD
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25 (37°/[100]) tilt boundaries in MgO

(001) (034)

013 (Ofl) oL
presn (sz) T 0.55

T 0.50 >>

T 0.45

=z
T 0.40 @

S—~

T 0.35

0.30
180

The energy-population correlation is not one-to-one
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Computer Simulation of
Grain Growth

From the PhD thesis project of Jason Gruber.
MgO-like grain boundary properties were
incorporated into a finite element model of grain
growth, i.e. minima in energy for any boundary
with a {100} plane on either side.

Simulated grain growth leads to the
development of a g.b. population that mimics the
experimental observations very closely.

The result demonstrates that it is reasonable to
expect that an anisotropic GB energy will lead to
a stable population of GB types (GBCD).
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Moving Finite Element Method

A.P. Kuprat: SIAM J. Sci. Comput. 22 (2000) 535. Gradient Weighted
Moving Finite Elements (LANL); PhD by Jason Gruber

Elements move with a
velocity that is proportional
to the mean curvature

Initial mesh: 2,578 grains,
random grain orientations
(16 x 2,578 = 41,248)

1.07
1106
1.06

&t o SN

‘ S £
Energy anisotropy modeled after that or >\4
‘=

1.01

observed for magnesia: minima on {100}. K
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GWMFE Results

* Input energy modeled after MgO
» Steady state population develops that

correlates (inversely) with energy.

wiv 4 ob

1.6
22 aa o
14 R ,0" -
e
~ 4=
S 121 —o— )\(111) T
<2 =& ),(100)
L U =@ * A(100)/A(111),
—{ Grains
0.8 1 1 1 1 | N 1 N 1 | 1 1 N 1 | 1 1 ng 1 N
0 5 10 15 25

time step

“Effect of anisotropic grain boundary propertien grain boundary plane

distributions during grain growth”, J. Gruber et al., Scripta Mater. 53 351 (2005).
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Population versus Energy

Simulated data:
Experimental data: MgO Moving finite elements

-3

07 075 08 08 09 095 1 105 1 1.05 1.1 1.15 1.2 1.25
ng (a.u.) ng (a.u.)

Energy and population are strongly correlated in
both experimental results and simulated results.
Is there a universal relationship?
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Capillarity Vector, &

* The capillarity vector is a convenient
guantity to use in force balances at

junctions of surfaces.

* |t is derived from the variation in
(excess free) energy of a surface.

* In effect, the capillarity vector combines
both the surface tension (so-called) and
the torque terms into a single quantity

Hoffman, D. W. & Cahn, J. W., “A vector thermodynamics for anisotropic surfaces. |.
Fundamentals and application to plane surface junctions.” Surface Science 31 368-388
(1972).

Cahn, J. W. and D. W. Hoffman, "A vector thermodynamics for anisotropic surfaces. Il.
curved and faceted surfaces." Acta metall. 22 1205-1214 (1974).
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Equilibrium at TJ

The utility of the capillarity (or “xi”) vector, &, can be illustrated by
re-writing Herring's equations as follows, where /,,5 is the triple
line (tangent) vector.

(61 + &+ &3) x113=0
Note that the cross product with the TJ tangent implies resolution
of forces perpendicular to the TJ.

Used by the MIMP group to calculate the GB energy function for
MgO. The numerical procedure is very similar to that outlined for
dihedral angles, except now the vector sum of the capillarity
vectors is minimized (Eq. above) at each point along the triple
lines.

Morawiec A. “Method to calculate the grain boundary energy distribution
over the space of macroscopic boundary parameters from the geometry of
triple junctions”, Acta mater. 2000;48:3525.

Also, Saylor DM, Morawiec A, Rohrer GS. “Distribution and Energies of
Grain Boundaries as a Function of Five Degrees of Freedom” J. American
Ceramic Society 2002;85:3081.
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Capillarity vector definition

* Following Hoffman & Cahn, define a unit
surface normal vector to the surface, n , and
a scalar field, ry(n), where r is a radius from
the origin. Typically, the normal is defined

with respect to crystal axes.



Capillarity vector: derivations

- Definition: ¢ = grad(rvy)
+ From which, Eq (1) d(rvy) = grad(rvy) - dr
- Giving, d(ry) =& - (rdn 4 ndr)

« Compare with the d(rv) = rdvy + ~vdr

rule for products:
gives: £ - = (2), and, £ - dn = d (3)
« Combining total derivative of (2), with (3):
dy —dy=&dn+dén — € - dn

Eq (4): 0=n-d¢

Another useful result is the force, £ on an f _ f > ZA
edge defined by a unit vector, I.
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Capillarity vector: components

* The physical consequence of Eq (2) is that
the component of § that is normal to the
associated surface, &, is equal to the surface

energy, v. fn _ Vfl

« Can also define a tangential component of
the vector, &, that is parallel to the surface:

gt — f — /Yﬁ — (aV/ﬁe)maa:EO

where the tangent vector is associated with
the maximum rate of change of energy.

« With suitable manipulations, the Herring

expression can be recovered.



G.B. Energy: Metals: Summary

* For low angle boundaries, use the Read-Shockley
model with a logarithmic dependence: well
established both experimentally and theoretically.

« For high angle boundaries, use a constant value
unless (for fcc metals only) near a CSL structure
related to the annealing twin (i.e. 23, 29, 327, 381
etc.) with high fraction of coincident sites and plane
suitable for good atomic fit.

* Inionic solids, the grain boundary energy may be
simply the average of the two surface energies
(modified for low angle boundaries). This approach
appears to be valid for metals also, although there
are a few CSL types with special properties, e.g.
highly mobile 27 boundaries in fcc metals.
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Summary

« Although the CSL theory is a useful
iIntroduction to what makes certain
boundaries have special properties, grain
boundary energy appears to be more closely
related to the two surfaces comprising the
boundary. This holds over a wide range of
substances and means the g.b. energy is
more closely related to surface energy than
was previously understood. In fcc metals,
however, certain CSL types are found in
substantial fractions.
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Questions: 1

* From the review of general properties:

1. What are the general features of the
variation of GB mobility with GB type?

2. How does GB sliding vary with
misorientation?

3. For <110> tilt boundaries in an fcc
metal, how do you expect the GB
diffusivity to vary with misorientation
angle?
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Questions: 2

* From the section on the Read-Shockley
model

1. What is the functional form associated with
Read-Shockley?

2. What is the physical basis for the R-S
model?

3. If the misorientation axis is not, say <110>,
Is the single family of straight and parallel
dislocations a reasonable picture of GB
structure?

4. How do we typically partition between LAGB
and HAGB?
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1.

N

©® N kW

Questions: 3

From the section on energy measurement:

What does local equilibrium at a triple junction (line) mean?
How does help us measure variations in GB energy with
crystallographic type?

What are Young’s equations?

What are standard ways to measure GB energy?

Where does the “torque term” come from?

What are Herring's equations?

What is a way to parameterize a curve (in 2D)?

How do we use the information about dihedral angles to
calculate GB energy?

What variation in GB energy was observed for <111> tilt GBs
in Al?
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Questions: 4

From the section on High Angle GBs:
What is a general rule for predicting HAGB energy?
How do GB energies relate to surface energies?

What is the evidence about <100> tilt GBs in MgO
that tells us that surface energy dominates over, say,
expecting a minimum GB energy for a symmetric tilt
boundary?

What does the evidence for <110> tilt boundaries in
Al suggest?

What correlation is generally observed for GB
population and energy?

Which GBs generally exhibit low energy in fcc
metals?
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Questions: 5

Which GBs might be expected to exhibit
low energy in bcc metals?

What was the main result found by
Gruber in his computer simulations?

How Is the capillarity vector constructed
from a knowledge of the GB energy and
the torque term?

What is the practical value of the
capillarity vector?
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Supplemental Slides
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Young Equns, with Torques

« Contrast the capillarity vector expression with

the expanded Young eqgns.: 1 Iy .
£ =——>
)/1 _ yl‘ é)¢z
(1-¢,-¢&)sinx, +(& —¢,)cos x,
J/2 —
(1-& —&,)sin x, + (& —&)cos x,
Y3

(1-¢ —&,)siny, +(&, — & )cos x;
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Expanded Young Equations

* Project the force balance along each
grain boundary normal in turn, so as to
eliminate one tangent term at a time:

3
2 (7]1/?\]+(07—O’) ﬁ] 'I’ll=0, €i=L(0')—O')
07¢ . O; é’¢ ;

J=1 J

O1€] + 07 SIn X3 + 02€7 COS X3 — O3 SIN )Y + O3E3COS X»

O01€105 81N 3/ 07 81N X3 + O SIN X3 + O»€y COS X3 = O3 81N Yo + 03E3COS X9
(1 + 0161/ 07 sin X3 )02 SIn X3 + 0»&y COS X3 = O3 (sin Xo + €3COS Xz)

{(1 +01€1/ 0y sin X3 )sin X3 + €7 COS X3}02 =03 (sin Xo + €30S Xz)



