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Objectives

•  The objectives of this lecture are: 
•  Develop an understanding of grain boundary 

engineering 
•  Explain the theory of Coincident Site Lattices 

(CSLs) and how it applies to grain boundaries 
•  Show how microstructures are analyzed for 

CSL content 
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References on Grain Boundaries
•  Interfaces in Crystalline Materials, Sutton & Balluffi, Oxford U.P., 1998.  Very complete 

compendium on interfaces. 
•  Interfaces in Materials, J. Howe, Wiley, 1999.  Useful general text at the upper 

undergraduate/graduate level. 
•  Crystal Defects and Crystalline Interfaces, W. Bollmann, (1970). New York, Springer Verlag. 
•  Grain Boundary Migration in Metals, G. Gottstein and L. Shvindlerman, CRC Press, 1999.  

The most complete review on grain boundary migration and mobility. 
•  Materials Interfaces: Atomic-Level Structure & Properties, D. Wolf & S. Yip, Chapman & 

Hall, 1992. 
•  Bollmann, W. (1982), Crystal lattices, interfaces, matrices. Published by the author, 

Geneva. 
•  Grimmer, H., Disorientations and coincidence rotations for cubic lattices. Acta Crystall. A30 

(1974) 685–688. 
•  Grimmer, H., Bollmann, W., Warrington, D. H., Coincidence- site lattices and complete 

pattern-shift lattices in cubic crystals. Acta Cryst. A30 (1974) 197 – 207. 
•  Bonnet, R., et al. (1981). Determination of near-Coincident Cells Hexagonal Crystals - 

Related DSC Lattices. Acta Crystall. A37 184-189. 
•  Ikuhara, Y. and P. Pirouz (1996). Orientation relationship in large mismatched bicrystals and 

coincidence of reciprocal lattice points (CRLP). In: Intergranular and Interphase Boundaries 
in Materials, Pt 1. 207 121-124. 



References on GBE
•  The main point of these references is that the annealing twins only increase in density during primary 

recrystallization and that they are created as the recrystallization fronts advance through the material.  
There is also the paper by Lin et al. that shows that the one exception to this statement is that new twin-
related grains are occasionally created at triple lines during grain growth.  All this in fcc metals (only). 

•  “Evolution of the Annealing Twin Density during δ-Supersolvus Grain Growth in the Nickel-Based 
Superalloy Inconel™ 718”, Yuan Jin, Marc Bernacki, Andrea Agnoli, Brian Lin, Gregory S. Rohrer, Anthony 
D. Rollett and Nathalie Bozzolo, Metals, 6, 5 (2016); doi:10.3390/met6010005. 

•  “Annealing Twins in Nickel Nucleate at Triple Lines During Grain Growth”, B. Lin, Y. Jin, C.M. Hefferan, S.F. 
Li, J. Lind, R.M. Suter, M. Bernacki, N. Bozzolo, A.D. Rollett, G.S. Rohrer, Acta Materialia, 99, 63-68 
(2015); doi:10.1016/j.actamat.2015.07.041. 

•  “Thermo-Mechanical Factors Influencing Annealing Twin Development In Nickel During Recrystallization”, 
Y. Jin, B. Lin, A.D. Rollett, G.S. Rohrer, M. Bernacki, N. Bozzolo, Journal of Materials Science 50 
5191-5203 (2015). 

•  "Annealing twin development during recrystallization and grain growth in pure Nickel", Y. Jin, B. Lin, M. 
Bernacki, G.S. Rohrer, A.D. Rollett, N. Bozzolo, Materials Science and Engineering: A, 597 295–303 
(2014).  

•  Miller, H. M., C.-S. Kim, J. Gruber, V. Randle and G. S. Rohrer (2007). "Orientation Distribution of sigma-3 
Grain Boundary Planes in Ni Before and After Grain Boundary Engineering." Materials Science Forum 
558-559: 641-647. 

•  Rohrer, G. S., V. Randle, C. S. Kim and Y. Hu (2006). "Changes in the five-parameter grain boundary 
character distribution in alpha-brass brought about by iterative thermomechanical processing." Acta 
materialia 54(17): 4489-4502.  
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Outline

•  Slides from Integran with examples of Grain 
Boundary Engineered materials 

•  CSL theory 
•  Brandon’s criterion for classification of grain 

boundaries by CSL type 
•  Technical information on comparative 

properties of GBE and non-GBE materials 



Reading

•  Pages 3-25 of Sutton & Balluffi 
•  Pages 307-346 of Howe. 
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Grain Boundary Engineering
•  Grain Boundary Engineering (GBE) is the practice of obtaining 

microstructures with a high fraction of boundaries with desirable 
properties. 

•  In general, desirable properties are associated with boundaries 
that have simple, low energy structures. 

•  Such low energy structures are, in turn, associated with CSL 
boundaries. 

•  GBE generally consists of repeated cycles of deformation and 
annealing, chosen so as to generate large fractions of “special 
boundaries” and avoid development of strong recrystallization 
textures. 

•  GBE is largely confined at present to fcc metallic systems such as 
stainless steel, nickel alloys, Pb, Cu. 

•  Note that detailed information on exactly which CSL boundaries 
have useful properties is lacking, as is information on how the 
typical processing routes actually produce high fractions of CSL 
boundaries. 
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Metallurgical Nano-Technology 

Nanocrystalline materials are those in 
which the average crystal size is reduced 1000-
fold from the micron-range in conventional 
materials to the nanometer size range 
(3-100nm).  This can be cost -effectively 
achieved by proprietary electrodeposition 
techniques (NanoPlate™).  

Grain boundary engineering (GBE™)  
is the methodology by which the local grain 
boundary structure is characterized and material 
processing variables adjusted to create an 
optimized grain boundary microstructure for 
improved material performance. 

Courtesy of: 
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GBE Technology

Patent-Protected Thermo-Mechanical Metallurgical 
Process  
Applied during component forming/fabrication processes.  
Can also be applied as a surface treatment (0.1 to 1mm) to 
finished or semi-finished structures. 

•  Increases Population of ‘Special’ Grain Boundaries 

•  Reduces Average Grain Size 

•  Enhances Microstructural Uniformity  

•  Fully Randomizes Crystallographic Texture 

GBE Surface 
Treatment 

Alloy 625 
Special GB’s (red; yellow) 

General GB’s (black) 

Grain boundary engineering (GBE™) is the 
methodology by which the local grain boundary 
structure is characterized and material 
processing variables adjusted to create an 
optimized grain boundary microstructure for 
improved material performance. 

Base Material 

 

Integran’s GBE technology has also been applied to mitigate stress corrosion cracking 
susceptibility of Ni-base alloys, extend the service-life of lead-acid battery grids, and improve 
the fatigue and creep performance of aerospace superalloys. 
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0.0
2” 

0.0
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Conventional 

Nuclear Steam Generator Tubing

 
●    Cross sections of sample gauge lengths following interrupted   

 environmental CERT tests. 
●   Test Conditions: 60h; 10% NaOH; 600F; +0.100 mV vs. OCP; Ni  

 Ref. Electrode; 5X10-7 in/sec. 

Alloy 690 nuclear steam generator tubing can be further 
optimized for SCC-resistance by GBE mill processing 
technology. Alloy 690 is replacing 600 in many nuclear power 
plants because of its enhanced resistance to SCC. 

See also: Alexandreanu, B., B. Capell, et al. (2001). "Combined effect of special grain boundaries and grain boundary 
carbides on IGSCC of Ni-16Cr-9Fe-xC alloys." Materials Science and Engineering A 300(1-2): 94. 
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Lead-Acid Batteries

Conventional lead-acid 
battery grid (Pb-1wt%Sb) 
following 4 years of service.  

The cycle - life of lead-acid batteries (e.g., 
automotive) is compromised by intergranular 
degradation processes (corrosion, cracking). 

Conventional 
(fsp<15%) after 

2 weeks of 
cycling. 

GBE       
(fsp=55%) after 

4 weeks of 
cycling. 

Integran’s innovative GBE® grid processing technology is designed to 
extend the service life of conventional SLI and industrial batteries (US 
Patent No. 6,342,110 B1). 
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Palumbo, G. et al. (1998). 
"Applications for grain 
boundary engineered 
materials." Journal of 
Minerals, Metallurgy and 
Materials (JOM) 50 40-43. 
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Corrosion of Aluminum 2124

•  Results from experiment involving intergranular corrosion of aluminum alloy 
2124.  Low angle boundaries are measurably more resistant than high angle 
boundaries.  Some evidence for resistance of Σ3 and Σ7 boundaries (possibly 
also Σ13).  Research (unpublished) by Lisa Chan, CMU. 

•  See also (e.g.): Tan, L., Allen, T.R. and Busby, J.T., 2013. Grain boundary 
engineering for structure materials of nuclear reactors. Journal of Nuclear 
Materials, 441(1), pp.661-666. 



13

Corrosion in Ni

Gertsman et al., Acta Mater., 49 (9):  1589-1598 (2001).
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Σ3 Boundaries

14	
  
Lin et al., Acta Metall. Mater., 41 (2):  553-562 (1993).
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Fatigue
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Creep

Alloy V57 Alloy 625 

Conventional 

GBE 

Thaveeprungsriporn, V. and G. S. Was (1997). "The role of coincidence-site-lattice boundaries in creep of Ni-16Cr-9Fe at 360 degrees 
C." Metallurgical And Materials Transactions A 28(10): 2101; Alexandreanu, B. et al. (2003). "The effect of grain boundary character 
distribution on the high temperature deformation behavior of Ni-16Cr-9Fe alloys." Acta materialia 51 3831. 
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Special Grain Boundaries
•  There are some boundaries that have special properties, e.g. low 

energy. 
•  In most known cases (but not all!), these boundaries are also special 

with respect to their crystallography. 
•  When a finite fraction of lattice sites coincide between the two lattices, 

then one can define a coincident site lattice (CSL). 
•  A boundary that contains a high density of lattice points in a CSL is 

expected to have low energy because of good atomic fit. 
•  Note that the boundary plane matters, in addition to the misorientation; 

this means, in effect, that only pure tilt or pure twist boundaries are 
likely to have a high density of CSL lattice points. 

•  Relevant website: 
http://www.tf.uni-kiel.de/matwis/amat/def_en/kap_7/illustr/a7_1_1.html  
(a page from a general set of pages on defects in crystals: 
http://www.tf.uni-kiel.de/matwis/amat/def_en/index.html ). 
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Grain Boundary properties

Figure taken from Gottstein & Shvindlerman, based on Goux, C. (1974). “Structure des joints de grains: 
consideration cristallographiques et methodes de calcul des structures.” Canadian Metallurgical Quarterly 13: 9-31.] 

•  For example, 
fcc <110> tilt 
boundaries show 
pronounced 
minima in energy 

•  However, some 
caution needed 
because the 
<100> series do 
not show these 
minima. 

Σ3 ≡ 60°<111>

Σ11 ≡ 50°<110>
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Kronberg & Wilson
•  Kronberg & Wilson in 1949 considered coincidence 

patterns for atoms in the boundary planes (as 
opposed to the coincidence of lattice sites).  Their 
atomic coincidence patterns for 22° and 38° rotations 
on the 111 plane correspond to the Σ13b and Σ7 CSL 
boundary types.  Note the significance of coincidence 
in the plane of the boundary.   

•  Friedel also explored CSL-like structures in a study of 
twins. 

Kronberg, M. L. and F. H. Wilson (1949), “Secondary recrystallization in copper”, Trans. Met. Soc. AIME, 185, 501-514. 
Friedel, G. (1926). Lecons de Cristallographie (2nd ed.). Blanchard, Paris. 



20

Sigma=5, 
36.9° 
<100>

[Sutton & Balluffi] 
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CSL = geometrical concept
•  The CSL is a geometrical construction based on the 

geometry of the lattice. 
•  Lattices cannot actually overlap! 
•  If a (fixed) fraction of lattice sites are coincident, then 

the expectation is that the boundary structure will be 
more regular than a general boundary. 

•  Atomic positions are not accounted for in CSLs. 
•  It is possible to compute the density of coincident 

sites in the plane of the boundary - this goes beyond 
The basic CSL concept, which has to do only with the 
lattice misorientation. 
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CSL construction

•  The rotation of the second lattice is limited to 
those values that bring a (lattice) point into 
coincidence with a different point in the first 
lattice. 

•  The geometry is such that the rotated point 
(in the rotated lattice 2) and the 
superimposed point (in the fixed lattice 1) are 
related by a mirror plane in the unrotated 
state. 
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Rotation to Coincidence

•  Red and 
Green lattices 
coincide 

Points to be 
brought into 
coincidence 
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rotating to the Σ5 
relationship
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rotating to the Σ5 
relationship
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rotating to the Σ5 
relationship
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rotating to the Σ5 
relationship
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rotating to the Σ5 
relationship
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rotating to the Σ5 
relationship
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rotating to the Σ5 
relationship
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rotating to the Σ5 
relationship
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rotating to the Σ5 
relationship
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Σ5 relationship

Red and Green 
lattices 
coincide after 
rotation of  
2 tan-1  (1/3) = 
36.9°  
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Rotation to achieve coincidence
•  Rotate lattice 1 

until a lattice 
point in lattice 1 
coincides with a 
lattice point in 
lattice 2. 

•  Clear that a 
higher density of 
points observed 
for low index axis. 

[Bollmann, W. (1970). Crystal Defects and Crystalline 
Interfaces. New York, Springer Verlag.] 
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CSL rotation angle
•  The angle of rotation can be 

determined from the lattice 
geometry.  The discrete nature 
of the lattice means that the 
angle is always determined as 
follows. 
 
         θ = 2 tan-1  (y/x),   
 
where (x,y) are the coordinates 
of the superimposed point (in 1); 
x is measured parallel to the 
mirror plane. 

 

y 

x 
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CSL <-> Rodrigues

•  You can immediately relate the angle to a 
Rodrigues vector because the tangent of the 
semi-angle of rotation must be rational (a 
fraction, y/x); thus the magnitude of the 
corresponding Rodrigues vector must also be 
rational! 

•  Example: for the Σ5 relationship, x=3 and 
y=1; thus θ = 2 tan-1 (y/x) = 2 tan-1  (1/3) = 36.9° 
and the rotation axis is [1,0,0], so the 
complete Rodrigues vector = [1/3, 0, 0].  
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The Sigma value (Σ)

•  Define a quantity, Σ', as the ratio between the 
area enclosed by a unit cell of the 
coincidence sites, and the standard unit cell.  
For the cubic case that whenever an even 
number is obtained for Σ', there is a 
coincidence lattice site in the center of the cell 
which then means that the true area ratio, Σ, 
is half of the apparent quantity.  Therefore Σ 
is always odd in the cubic system. 
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Generating function
•  Start with a square lattice.  Assign 

the coordinates of the coincident 
points as (n,m)*: the new unit cell for 
the coincidence site lattice is 
square, each side is √(m2+n2) long.  
Thus the area of the cell is m2+n2.  
Correct for m2+n2 even: there is 
another lattice point in the center of 
the cell thereby dividing the area by 
two.   

•  * n and m are identical to x and y 
discussed in previous slides 
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Range of m,n
•  Restrict the range of m and n such that m<n. 
•  If n=m then all points coincide, and m>n does not 

produce any new lattices. 
•  Example of Σ5: m=1, n=3, area =(32+12) = 10; two 

lattice points per cell, therefore volume ratio = 1:5; 
rotation angle =2 tan-11/3 = 36.9°. 

m
n
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Generating function, contd.

•  Generating function:  we call the calculation 
of the area a generating function. 

Σ =
0.5 m2 + n2( ), m2 + n2( ) even
m2 + n2, m2 + n2( ) odd

" 

# 
$ 

% $ 

Sigma denotes the ratio of the volume of 
coincidence site lattice to the regular lattice 
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Generating function: Rodrigues

•  A rational Rodrigues vector can be generated 
by the following expression, where {m,n,h,k,l} 
are all integers, m<n. 

   
  ρ = m/n [h,k,l] 

 
•  The rotation angle is then: 

 
  tan θ/2 = m/n √(h2+k2+l2) 
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Sigma Values
•  A further useful relationship for CSLs is that for 

sigma.  Consider the rotation in the (100) plane: 
    tan{θ/2} = m/n 

•  area of CSL cell = m2+n2  
=  n2 (1 + (m/n)2)  =  n2 (1 + tan2{θ/2}) 

•  Extending this to the general case, we can write: 
Σ = n2 (1 + tan2{θ/2}) =  
n2 (1 + {m/n √(h2+k2+l2)}2) = n2 + m2(h2+k2+l2) 

•  Note that although using these formulas and inserting 
low order integers generates most of the low order 
CSLs, one must go to values of n~5 to obtain a 
complete list. 

[Ranganathan, S. (1966). “On the geometry of coincidence-site lattices.” Acta Crystallographica 21 197-199; 
see also the Morawiec book, pp 142-149 for discussion of cubic and lower symmetry cases] 



Quaternions
•  Recall that all CSL relationships can be thought of as twin 

relationships, which means that (in a centrosymmetric lattice) they can 
be constructed as 180° rotations about some axis.   

•  Rotations of 180° have a very simple representation as a quaternion 
(by contrast to Rodrigues vectors) because  
cos(θ/2)=cos(90°)=0 and sin(90°)=1.  Therefore for a rotation axis of 
[x,y,z] the unit quaternion (for 180°) = {x,y,z,0}. 

•  Take the Σ5 as an example.  The rotation axis is [310], therefore the 
quaternion representation is 1/√10{3,1,0,0}. 

•  Check that this is indeed the expected value by applying symmetry to 
the ∆g and indeed one finds that this is equivalent to {1/3,0,0} as a 
Rodrigues vector or 38.9°[100]. 

•  One can further check that a vector of type [310] is mapped onto its 
negative by using the quaternion to transform/rotate it.  If we choose 
[-1,3,0] as being orthogonal to the [310] axis, we can use the standard 
formula.  PTO… 

43



Quaternions, contd.
•  Note that q0 = 0 in these cases (of 180° rotations) and q2=1, so 

that simplifies the formula considerably: 
s = -v + 2(v•q) q 
   = -v + 2(v•[310]) [310] 

•  Pick [-1,3,0] as an example: 
 = -v + 2([-1,3,0]•[3,1,0]) [3,1,0] 
 = -v + 2([-3+3+0]) [3,1,0] 
 = [+1,-3,0] 

•  Note that any value of the z coefficient will also satisfy the 
relationship. 

•  Note that any combination of b=-3a in [a,b,c] (i.e. that has integer 
coordinates to be a point in the lattice, and is perpendicular to 
the axis) will also work.  This helps to make the point that there 
is an infinite set of points that coincide, each of which satisfies 
the required relationship.  That infinite set of coincident points is 
the Coincident Site Lattice. 

44
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Σ θ (°) uv

w 
φ 1,Φ ,φ 2 ρ  q 

3 60 111 45 70.53 45 1/3 1/3 1/3 0.288 0.288 0.288 0.866 
5 36.86 100 0 90 36.86 1/3 0.0 0.0 0.000 0.000 0.316 0.948 
7 38.21 111 26.56 73.4 63.44 0.2 0.2 0.2 0.188 0.188 0.188 0.944 
9 38.94 110 26.56 83.62 26.56 0.25 0.25 0.0 0.000 0.236 0.236 0.943 
11 50.47 110 33.68 79.53 33.68 1/3 1/3 0.0 0.000 0.302 0.302 0.904 
13a 22.62 100 0 90 22.62 0.2 0.0 0.0 0.000 0.000 0.196 0.981 
13b 27.79 111 18.43 76.66 71.57 0.143 0.143 0.143 0.139 0.139 0.139 0.971 
15 48.19 210 19.65 82.33 42.27 0.4 0.2 0.0 0.000 0.183 0.365 0.913 
17a 28.07 100 0 90 28.07 0.25 0.0 0.0 0.000 0.000 0.243 0.970 
17b 61.9 221 45 86.63 45 0.4 0.4 0.2 0.171 0.343 0.343 0.858 
19a 26.53 110 18.44 89.68 18.44 1/6 1/6 0.0 0.000 0.162 0.162 0.973 
19b 46.8 111 33.69 71.59 56.31 0.25 0.25 0.25 0.229 0.229 0.229 0.918 
21a 21.78 111 14.03 79.02 75.97 1/9 1/9 1/9 0.109 0.109 0.109 0.982 
21b 44.41 211 22.83 79.02 50.91 1/3 1/6 1/6 0.154 0.154 0.308 0.926 
23 40.45 311 15.25 82.51 52.13 1/3 1/9 1/9 0.104 0.104 0.313 0.938 
25a 16.26 100 0 90 16.26 0.143 0.0 0.0 0.000 0.000 0.142 0.99 
25b 51.68 331 36.87 90 53.13 1/3 1/3 1/9 0.100 0.300 0.300 0.9 
27a 31.59 110 21.8 85.75 21.8 0.2 0.2 0.0 0.000 0.193 0.193 0.962 
27b 35.43 210 15.07 85.75 31.33 0.285 0.143 0.0 0.000 0.136 0.272 0.953 
29a 43.6 100 0 90 43.6 0.4 0.0 0.0 0.000 0.000 0.393 0.928 
29b 46.4 221 33.69 84.06 56.31 0.286 0.286 0.143 0.131 0.263 0.263 0.919 
31a 17.9 111 11.31 80.72 78.69 1/11 1/11 1/11 0.09 0.09 0.09 0.988 
31b 52.2 211 27.41 78.84 43.66 0.4 0.2 0.2 0.180 0.18 0.359 0.898 
33a 20.1 110 12.34 83.04 58.73 0.125 0.125 0.000 0.000 0.123 0.123 0.985 
33b 33.6 311 37.51 76.84 37.51 0.273 0.091 0.091 0.087 0.087 0.261 0.957 
33c 59.0 110 38.66 75.97 38.66 0.4 0.4 0.000 0.000 0.348 0.348 0.870 
35a 34.0 211 16.86 80.13 60.46 0.25 0.125 0.125 0.119 0.119 0.239 0.956 
35b 43.2 331 30.96 88.36 59.04 0.272 0.272 0.091 0.083 0.253 0.253 0.93 
             
 

Table of 
CSL values 
in axis/
angle, Euler 
angles, 
Rodrigues 
vectors ���
and 
quaternions

Note: in order to compare a 
measured misorientation with 
one of these values, it is 
necessary to compute the 
values to high precision 
(because most are fractions 
based on integers). 

Note: integer fractions are quoted for most of the Rodrigues vectors.  The entries in decimals also 
correspond to integer values and will be updated at a later time. 
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CSL + boundary plane

•  Good atomic fit at an interface is expected for boundaries that 
intersect a high density of (coincident site) lattice points. 

•  How to determine these planes for a given CSL type? 
•  The coincident lattice is aligned such that one of its axes is parallel to 

the misorientation axis.  Therefore there are two obvious choices of 
boundary plane to maximize the density of CSL lattice points: 
(a) a pure twist boundary with a normal // misorientation axis is one 
example, e.g. (100) for any <100>-based CSL;  
(b) a symmetric tilt boundary that lies perpendicular to the axis and 
that bisects the rotation should also contain a high density of points.  
Example: for Σ5, 36.9° about <001>, x=3, y=1, and so the (310) 
plane corresponds to the Σ5 symmetric tilt boundary plane,  
i.e. (n,m,0). 
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CSL boundaries and RF space
•  The coordinates of nearly all the low-sigma 

CSLs are distributed along low index 
directions, i.e. <100>, <110> and <111>.  
Thus nearly all the CSL boundary types are 
located on the edges of the space and are 
therefore easily located.   

•  There are some CSLs on the 210, 331 and 
221 directions, which are shown in the interior 
of the space. 
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RF pyramid 
and CSL 
locations

l=100

l=110

l=111

R1+R2+R3=1

(√2-1,0)
(√2-1,√2-1)



Plan View:���
Projection 
on R3= 0
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<110>,���
<111>

<100>

<111> line���
lies over the <110> line

33c 
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Fractions of CSL Boundaries in a 
Randomly Oriented Microstructure

•  It is interesting is to ask what fraction of boundaries 
correspond to each sigma value in a randomly 
oriented polycrystal? 

•  The method to calculate such (area) fractions is 
exactly the same as for volume fractions in an 
Orientation Distribution. 

•  The Brandon Criterion establishes the “capture 
radius” for each sigma value (which decreases with 
increasing sigma value). 

•  All points (in a discretized MD) are assigned to a 
given CSL type if they fall within the capture radius. 
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Garbacz et al., Scr. Mater., 23 (8): 1369-1374 (1989). 
Gertsman et al., Acta Metall. Mater., 42 (6): 1785-1804 (1994). 
Morawiec et. al., Acta Metall. Mater., 41 (10): 2825-2832 (1993). 
Pan et al., Scr. Metall. Mater., 30 (8): 1055-1060 (1994).

Generate MD from a random 
texture; analyze for fraction near 
each CSL type (method to be 
discussed later). 



Grain Boundaries from High Energy Diffraction Microscopy 

Measurements made at the Advanced Photon Source:  
see Hefferan et al. (2009). CMC 14 209-219. 

Pure Nickel: 42 layers, 4 micron spacing, 0.16 mm3 

Pure Ni sample, 42 layers 
3,496 grains; ~ 23,598 GBs 



Statistics extraction from large data sets 

Neighbor 
misorientation 

angle 
distribution 

Hefferan et al. (2009). CMC 14 209-219. 



Σ27a

Statistics extraction from large data sets 

Neighbor 
misorientation 

angle distribution 
Σ27bΣ7Σ3

Conclusion:  
The misorientations 
of grain boundaries 
in these nickel 
samples are 
concentrated on a 
small number of 
CSL types, i.e. sigma 
= 3,7,9,11,27 

Hefferan et al. (2009). CMC 14 209-219. 
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Brandon Criterion

•  David Brandon [ 1966: "The structure of high-angle grain boundaries”, Acta 
metallurgica 14: 1479-1484] originated a criterion for proximity to a CSL 
structure. 

   vm = v0Σ-1/2 
where the proportionality constant, v0, is generally taken to be 15°, based 
on the low-to-high angle transition. 

•  Larger sigma values imply larger unit cells in the boundary, fewer 
coincident points, larger dislocation densities for the same deviation from 
the exact CSL misorientation.  Thus one has to closer to the exact CSL 
position in order for a given boundary to be counted as belonging to that 
CSL type. 

•  Closeness to a misorientation type is defined by the angle associated with 
the rotation between the misorientation in question, ∆g, and the CSL 
misorientation, ∆gCSL. 
                             cos(θm) = {trace(∆g ∆gT

CSL)-1}/2 
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Impact of 
the Brandon 

Criterion
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Brandon Criterion, contd.
•  Thus, if: 

   
θm < v0Σm

-1/2 < 15°m-1/2 ���
 
then we accept the  
boundary as belonging  
to the CSL of type Σ=m. 

•  The justification is  
based on the existence  
of a dislocation structure for vicinal interfaces to 
CSL structures, just as for low angle boundaries 
[see fig. 2.33 from Sutton & Balluffi]. Typical 
cutoff at Σ=29. 
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How near to a CSL?

•  A reasonable way to measure distance from a 
special boundary type and an arbitrarily 
specified boundary is to calculate a minimum 
rotation angle (“orientation distance”) in 
exactly the same way as for the 
disorientation.  In terms of Rodrigues vectors, 
we write the following for the composition of 
two rotations, ρ1ρ2, which represents ρ1 
followed by ρ2: 



59

Composition of Rodrigues vectors

•  To use this, we simply assign the components of a CSL 
boundary type to one of the Rodrigues vectors (strictly speaking, 
the inverse rotation, although the negative rotation is always 
equivalent to the positive one. 

ρ1 • ρ2 =
ρ1 + ρ2 − ρ1 × ρ2

1− ρ1 ⋅ ρ2

€ 

ρg.b. • −ρCSL( ) =
ρg.b. − ρCSL + ρg.b. × ρCSL( )

1+ ρg.b. ⋅ ρCSL( )
•  As always, one must use the crystal symmetry operators in order to find 

the smallest available angle.  Unless both the CSL value and the 
misorientation have been placed in the fundamental zone, then one will 
obtain the wrong result. 
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Angle from CSL

One can then extract the angle, θ, from the length of 
the resultant vector (Chapter 3), where ρ is the 
Rodrigues vector description of the boundary in 
question and |ρ| is the rotation angle associated 
with the vector: 

 θ0 = |ρ • ρ000/0°| = |ρ • ρΣ1|, ρΣ1=(0,0,0) 
θ1 = |ρ • ρ111/60°| = |ρ • ρΣ3|, ρΣ3=(1/3,1/3,1/3) 

θ3 = |ρ • ρ111/38.21°| , ρΣ7=(0.2,0.2,0.2) 
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Deviation from a CSL
•  The deviation of a given misorientation from an exact 

misorientation type, such as a CSL type, is found by forming the 
product of the misorientation to be tested, and the inverse of the 
reference type. 

•  Given a ∆g = (OBgB)(OAgA)-1, and a reference type, ∆gCSL, then 
form the product  
             ∆g’ = ∆g (∆gCSL)-1. 

•  As stated before, it is necessary to apply all the relevant 
(crystal) symmetry operators (including the switching symmetry) 
to the ∆g in order to ensure that the variant that is closest to the 
reference type is included in the comparison.  This means that 
the result must be chosen that produces the minimum angle and 
that places the misorientation axis in the fundamental zone. 

•  Given the product “mis-misorientation”, one usually only 
considers the magnitude (rotation angle) extracted from it. 

•  All these operations can be performed with matrices, Rodrigues 
vectors, or (unit) quaternions.  Most serious software uses 
quaternions. 
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Algorithm for Disorientation: 1
•  To find the disorientation*, as just an angle, associated with a grain boundary 

but not identifying which symmetry operator was required for each crystal: 
1.  Make a list of all crystal symmetry operators; 
2.  Loop over switching symmetry (2 passes), which computes both ∆gAB and 

∆gBA ; 
3.  Loop over OA (24 different operators, for cubic crystal symmetry); 
4.  Calculate ∆g = gB (OAgA)-1 or (OAgA) gB

-1 and extract the angle (e.g. as arc-
cosine of [trace(∆g)-1]/2), depending on the first loop; 

5.  If (misorientation) angle is lower than the previous result then retain the 
result (as the current candidate for the disorientation); 

6.  End of loops: the misorientation that satisfied the tests is the disorientation 
because it possesses the minimum rotation angle.  The misorientation axis 
can be placed in a single standard stereographic triangle by making all the 
indices positive that are associated with the minimum angle, and re-ordering 
so as to make h≤k≤l, for example. 

*Disorientation:= combination of minimum angle and axis located in the 
fundamental zone 
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Algorithm for Disorientation: 2
•  To find the disorientation* associated with a grain boundary and identify which 

symmetry operator on each crystal provided the disorientation (useful for analyzing 5-
parameter grain boundary character: 
1.  List all relevant symmetry operators; 
2.  Compute both ∆gAB and ∆gBA (for switching symmetry); first loop over switching 

symmetry (2 passes); 
3.  Second loop over OA ; 
4.  Third loop over OB to calculate ∆g = (OBgB)(gAOA)-1 or (OAgA)(gBOB)-1 , depending 

on the first loop; 
5.  If (misorientation) rotation axis associated with ∆g lies within the fundamental 

zone (e.g. 100-110-111 SST for cubic), then proceed to the next test (treat the 
first such finding as a special case, i.e. retain the result and do not apply the next 
test); 

6.  If (misorientation) angle is lower than the previous result then retain the result (as 
the current candidate for the disorientation);  

7.  End of loops: the misorientation that satisfied the tests is the disorientation 
because it lies within the fundamental zone and possesses the minimum rotation 
angle. 

8.  For any subsequent calculations, e.g. of boundary normal, ensure that you use 
the same symmetry operator in each grain as was found to yield the 
disorientation. 

*Disorientation:= combination of minimum angle and axis located in the 
fundamental zone 
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Example: Effect of GBCD on Pb 
Electrodes in Lead-Acid Batteries

Palumbo et al. [Palumbo, G., E. M. Lehockey, and P. 
Lin (1998). “Applications for grain boundary 
engineered materials.” JOM 50(2): 40-43.] have 
shown that the crystallographic nature of grain 
boundaries in Pb have a strong effect on the 
resistance of Pb electrodes (in the form of lattice-
work grids) to failure via intergranular corrosion and 
creep-cracking.  More specifically, Pb that has been 
processed to have a high fraction of special 
boundaries, i.e. coincidence site lattice boundaries 
with low sigma numbers, exhibit significantly longer 
lifetimes.   



65

Pb electrodes, contd.
The figure (next slide) illustrates the difference 

in performance for Pb-Ca-Sn-Ag lead-acid 
positive battery grids following 40 charge-
discharge cycles.  The image on the left is 
the as-cast material with 7% special 
boundaries (3 ≤ Σ ≤ 29); the image on the 
right is the grain boundary engineered 
material with 67.6% special boundaries.  The 
small amount of Ca added to Pb is a 
hardening agent (from the eutectic at 0.07% 
Ca). 
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Example: creep resistance in 
Inconel 600: Ni-16Cr-9Fe

•  Creep resistance of Ni-
alloys is strongly 
enhanced by maximizing 
the fraction of special 
boundaries. 

•  Solution annealed (SA) 
vs. CSL-enhanced 
(CSLE): note higher 
frequencies of low-Σ 
boundaries. 

Was, G. S., V. Thaveepringsriporn, et al. (1998). “Grain boundary 
misorientation effects on creep and cracking in Ni-based alloys.” JOM 50(2): 
44-49.
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Creep Resistance

•  Constant load creep curves show dramatic 
improvement in creep resistance from samples with 
normal boundaries, and [grain boundary engineered] 
GBE samples with a high fraction of CSL boundaries. 

Grain 
Boundary 
Engineered Standard Material 
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Creep Rates
•  Creep resistance thought 

to be enhanced by 
resistance of CSL 
boundaries to recovery of 
extrinsic dislocations.  
Lack of recovery in CSLs 
means higher back 
stresses opposing creep 
stress, therefore lower 
strain rate. 
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Thaveepringsriporn, V. and Was, G. S. (1997). “The role of CSL boundaries in creep of 
Ni-16Cr-9Fe at 360°C.” Metall. Trans. 28A: 2101.

Mechanism

Dislocations (extrinsic 
grain boundary 
dislocations) accumulate 
in CSL boundaries 
giving rise to back 
stresses that oppose 
creep.
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Creep of Ni: model

•  The creep rate as a 
function of grain 
size and boundary 
type was modeled 
(after Sangal & 
Tangri) assuming 
that dislocation 
annihilation is much 
slower in CSL 
boundaries  than in 
general boundaries. 
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V. Thaveepringsriporn and Was, G. S. (1997). “The role of CSL 
boundaries in creep of Ni-16Cr-9Fe at 360°C.” Metall. Trans. 28A: 2101.

Grain Boundary���
Cracking
Cracking at grain 
boundaries in corrosion 
testing post-creep shows 
strong sensitivity to 
boundary type: CSL 
boundaries are less 
prone to corrosion 
attack.
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Grain Boundary Properties
•  Based on these remarks on grain boundary structure, one might 

expect that CSL boundaries (especially in the pure twist or tilt 
boundary alignment) would have low energy because of good atomic 
fit. 

•  Some observations support this, e.g. deposition of small particles on a 
single crystal shows that low-sigma CSL boundaries are favored. 

•  “Grain boundary engineering” relies on simply maximizing the (area) 
fraction of CSL boundaries.  This is typically made quantitative by 
adopting Brandon’s criterion and counting the fraction of boundaries 
that are associated with Σ≤29. 

•  Observations of grain boundary character MgO [Saylor & Rohrer] 
suggest otherwise: the low surface energy plane tends to dominate 
the grain boundary distribution, and is associated with low boundary 
energy in all crystalline materials. 

•  It turns out that fcc metals are the exception because of their 
exceptionally low coherent twin boundary energy, which, in Ni & Cu 
(for example) is about 5% of the high angle GB energy.  This 
promotes the formation of annealing twins, which in turn result in 
related CSL types being present such as Σ9, Σ27. 
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Summary
•  The Coincident Site Lattice is a useful concept for identifying 

boundaries with low misfit (thus, low energy) in fcc metals. 
•  Brandon’s criterion: Standard analysis of orientation distance leads to a 

criterion for how close a given grain boundary is to a particular CSL 
type.  Brandon’s criterion provides a numerical measure that is based 
on the concept of interfacial dislocations that accommodate small 
departures from an exact CSL relationship. 

•  Grain Boundary Engineering relies upon CSL analysis. 
•  Macroscopic Degrees of Freedom: In general, five parameters needed 

to describe crystallographic grain boundary character.  This is apparent 
in the combination of CSL misorientation relationship and twist or tilt 
boundary plane (to maximize CSL point density in the boundary plane). 

•  Caution: the CSL theory applies to lattice sites, not atom positions.  
Evidence suggests strongly that in all except fcc metals, the properties 
are related to the two surfaces that make up the boundary, not the CSL 
structure.  The existence of low energy boundaries for e.g., Σ3 and Σ11 
boundaries is “coincidence”. 



Supplemental Slides

•  Information on CSL relationships in hcp 
metals, courtesy of Nathalie Bozzolo, 
CEMEF, France. 
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CSL list for HCP
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R. Bonnet, E. Cousineau, D.H. Warrington "Determination of near-coincident cells for
hexagonal crystals. Related DSC lattices" Acta Crystallographica, A37 (1981) 184-189

Bozzolo et al. (2010). "Misorientations induced by deformation twinning in titanium." J. Appl. Crystallography 43 596-602 



CSLs for HCP in RF space
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different 
conventions for 
alignment of the 
orthonormal 
coordinate system 
(used for 
calculations) with 
the crystallographic 
axes.  Typically 
Channel (HKL) 
systems use the Y-
convention whereas 
EDAX (TSL/OIM) 
systems use the X-
convention. 

2.  Certain CSL 
relationships 
correspond to 
deformation twins  
observed in Ti and 
Zr. 

Bozzolo et al. (2010). "Misorientations induced by deformation twinning in titanium." J. Appl. Crystallography 43 596-602 


