
1 

Grain Boundaries,  
Misorientation Distributions, 
Rodrigues space, Symmetry 

27-750 
Texture, Microstructure & Anisotropy,  

A.D. Rollett 

Last revised: 7th Mar. ‘14 



2 

Objectives 
•  Identify the Grain Boundary as an important element of microstructure 

and focus on the lattice misorientation associated with interfaces. 
•  Define the Misorientation Distribution (MD) or Misorientation Distribution 

Function (MDF) and describe typical features of misorientation 
distributions and their representations. 

•  Describe the crystallography of grain boundaries, using the Rodrigues-
Frank vector [Frank, F. (1988), “Orientation mapping.” Metallurgical 
Transactions 19A 403-408]. 

•  Describe the effect of symmetry on the Rodrigues space; also the shape 
of the space (i.e. the fundamental zone) required to describe a unique set 
of grain boundary types in Rodrigues space, axis-angle space and Euler 
space. 

•  The discussion provided here is entirely in terms of cubic crystal 
symmetry.  Obviously the details change for different classes of crystal 
symmetry. 

•  Overall objective of the discussion of grain boundaries is to illustrate the 
power of gathering data on a statistical basis, which complements the 
more traditional approach of studying high symmetry boundaries in the 
transmission electron microscope. 



Reading 

•  Pages 3-25 of Sutton & Balluffi 
•  Pages 307-346 of Howe. 
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Grain Boundaries 
•  Where crystals or grains join together, the 

crystal lattice cannot be perfect and therefore a 
grain boundary exists.  At the atomistic scale, 
each boundary is obvious as a discontinuity in 
the atomic packing. 

4 

http://jolisfukyu.tokai-sc.jaea.go.jp/fukyu/tayu/ACT02E/06/0603.htm 

In most crystalline solids, a 
grain boundary is very thin 
(one/two atoms). 
 
Disorder (broken bonds) 
unavoidable for geometrical 
reasons; therefore large 
excess free energy (0.1 - 1 
J.m-2). 
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Axis Transformations  
at a Grain Boundary 

x	



z	



y	



gA
-1	



gB	

 In terms of orientations: 
transform back from frame A 
to the reference position. 
Then transform to frame B. 
Compound (“compose”) 
the two transformations to 
arrive at the net 
transformation between the 
two grains. reference���

position:���
(001)[100]	



Net transformation = gBgA
-1	



NB: these are passive rotations	
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Misorientation 
•  Definition of misorientation†: given two orientations 

(grains, crystals), the misorientation is the 
transformation required to transform tensor quantities 
(vectors, stress, strain) from one set of crystal axes to 
the other set [passive rotation]. 

•  Alternate [active rotation*]: given two orientations 
(grains, crystals), the misorientation is the rotation 
required to rotate one set of crystal axes into 
coincidence with the other crystal (based on a fixed 
reference frame). 

* For the active rotation description, the natural choice of reference frame is the set of sample 
axes.  Expressing the misorientation in terms of sample axes, however, will mean that the 
associated misorientation axis is unrelated to directions in either crystal. In order for the 
misorientation axis to relate to crystal directions, one must adopt one of the crystals as the 
reference frame.  Confused?!  Study the slides and examples that follow! 
† In some texts, the word disorientation (as opposed to misorientation) means the smallest 
physically possible rotation that will connect two orientations.  The idea that there is any 
choice of rotation angle arises because of crystal symmetry: by re-labeling axes (in either 
crystal), the net rotation changes. 
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Why are grain boundaries 
interesting, important? 

•  Grain boundaries vary a great deal in their 
characteristics (energy, mobility, chemistry). 

•  Many properties of a material - and also 
processes of microstructural evolution - 
depend on the nature of the grain boundaries. 

•  Materials can be made to have good or bad 
corrosion properties, mechanical properties 
(creep) depending on the type of grain 
boundaries present. 

•  Some grain boundaries exhibit good atomic fit 
and are therefore resistant to sliding, show 
low diffusion rates, low energy, etc. 
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Degrees of (Geometric) Freedom 
•  Grain boundaries have 5 degrees of freedom in terms of their 

macroscopic geometry: either 3 parameters to specify a rotation 
between the lattices plus 2 parameters to specify the boundary 
plane; or 2 parameters for each boundary plane on each side of 
the boundary (total of 4) plus a twist angle (1 parameter) between 
the lattices. 

•  In addition to the macroscopic degrees of freedom, grain 
boundaries have 3 degrees of microscopic freedom (not 
considered here).  The lattices can be translated in the plane of 
the boundary, and they can move towards/away from each other 
along the boundary normal. 

•  If the orientation of a boundary with respect to sample axes 
matters (e.g. because of an applied stress, or magnetic field), 
then an additional 2 parameters must be specified. 



9 1 / 2 / 3 / 5 -parameter GB Character 
Distributions 1-parameter  

Misorientation  
angle only. 
“Mackenzie plot” 

5-parameter  
Grain Boundary Character 
Distribution – “GBCD”. 
Each misorientation type 
expands to a stereogram that 
shows variation in frequency of 
GB normals. 
 

3-parameter  
Misorientation  
Distribution 
“MDF” 
Rodrigues-
Frank space 
↵ 

50 100 150 200 250 300 350 400 450 500 550

Multiples of Random

Filename root: gbcd_gmt_ X

Stereographic

1.0  1.0  0.0 26.5 1.0  1.0  0.0 38.9 1.0  1.0  0.0 31.6

1.0  1.0  1.0 38.2 1.0  1.0  1.0 60.0 1.0  1.0  1.0 27.8

2.0  1.0  0.0 35.4 2.0  2.0  1.0 61.9

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

Multiples of Random

Filename root: gbcd_gmt_ X

Stereographic

1.0  1.0  0.0 26.5 1.0  1.0  0.0 38.9 1.0  1.0  0.0 31.6

1.0  1.0  1.0 38.2 1.0  1.0  1.0 60.0 1.0  1.0  1.0 27.8

2.0  1.0  0.0 35.4 2.0  2.0  1.0 61.9

Σ3 

Σ9 

Example: Bi-doped Ni 

Origin 

2-parameter  
Grain Boundary Plane 
Distribution – “GBPD”. 
Shows variation in 
frequency of  
GB normals only, 
averaged over 
misorientation. 
 

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Multiples of Random

Filename root: gbcd−PureNi−CD11_2d_gmt X

Stereographic

0.0  0
001 101

111

Ni 
surface  
energy 
[Foiles] 

http://mimp.materials.cmu.edu 
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Boundary Type 
•  There are several ways of describing grain boundaries. 
•  A traditional method (in materials science) uses the tilt-twist 

description.   
•  A twist boundary is one in which one crystal has been twisted about 

an axis perpendicular to the boundary plane, relative to the other 
crystal. 

•  A tilt boundary is one in which one crystal has been twisted about 
an axis that lies in the boundary plane, relative to the other crystal. 

•  More general boundaries have a combination of tilt and twist. 
•  The approach specifies all five degrees of freedom. 
•  Contrast with more recent (EBSD inspired) method that describes 

only the misorientation between the two crystals. 
•  The Grain Boundary Character Distribution, GBCD, method, 

developed at CMU, uses misorientation+normal to characterize 
grain boundaries. 
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Tilt versus Twist Boundary Types 
•  Tilt boundary is a rotation 

about an axis in the boundary 
plane. Thus the 
misorientation axis is 
perpendicular to the GB 
normal. 

•  Twist boundary is a rotation 
about an axis perpendicular 
to the plane.  Thus the 
misorientation axis is parallel 
to the GB normal. 

Twist 
Boundary	



€ 

Δg
∧

n̂
Grain 

A	


Grain 

B	



Grain 
A	



Grain 
B	



n̂

Grain 
Boundary	



Tilt 
Boundary	



θ

θ

NB: the tilt or twist angle is not necessarily the same as the 
minimum misorientation angle (although for low angle 
boundaries, it typically is so).	



€ 

Δg
∧
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How to construct a grain boundary 
•  There are many ways to put together a grain boundary.   
•  There is always a common crystallographic axis between the two 

grains: one can therefore think of turning one piece of crystal 
relative to the other about this common axis.  This is the 
misorientation concept.  A further decision is required in order to 
determine the boundary plane. 

•  Alternatively, one can think of cutting a particular facet on each of 
the two grains, and then rotating one of them to match up with the 
other.  This leads to the tilt/twist concept. 

•  The choice of the particular facet  
defines the GB normal, and the  
rotation defines the misorientation. 

•  Note: the misorientation axis is, 
in general, unrelated to the boundary 
plane. 

http://www.lce.hut.fi/research/eas/
nanosystems/proj_gb/ 
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Differences in Orientation 
•  Preparation for the math of misorientations: the difference in 

orientation between two grains is a transformation, just as an 
orientation is the transformation that describes a texture 
component. 

•  Convention: we use different methods (axis-angle , or Rodrigues 
vectors) to describe GB misorientation than we do for texture.  
This is because the rotation axis is often important in terms of its 
crystallographic alignment (by contrast to orientations, where it is 
generally of minor interest). 

•  Note that we could use Euler angles for everything, – see for 
example Zhao, J. and B. L. Adams (1988). "Definition of an 
asymmetric domain for intercrystalline misorientation in cubic 
materials in the space of Euler angles." Acta Crystallographica 
A44: 326-336. 
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Alternate Diagram 

gA	



gB	



gC	


gD	



TJABC	



TJACB	



gBgA
-1
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Switching Symmetry 

gA	



gB	



∆g=gBgA
-1≡ gAgB

-1	



ˆ ρ 

Switching symmetry:���
A to B is indistinguishable ���
from B to A because there is no difference in grain���
boundary structure	
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Representations of Misorientation 
•  What is different from Texture 

Components? 
•  Miller indices not useful (except for 

describing the misorientation axis). 
•  Euler angles can be used but untypical. 
•  Reference frame is usually the crystal 

lattice (in one grain), not the sample frame.   
•  Application of symmetry is different (no 

sample symmetry!) 
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Grain Boundaries vs. Texture 
•  Why use the crystal lattice as a frame?  Grain 

boundary structure is closely related to the 
rotation axis, i.e. the common crystallographic 
axis between the two grains. 

•  The crystal symmetry applies to both sides of 
the grain boundary; in order to put the 
misorientation into the fundamental zone (or 
asymmetric unit) two sets of 24 operators (for 
cubic symmetry) with the switching symmetry 
must be used.  However only one set of 24 
symmetry operators are needed to find the 
minimum rotation angle. 
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Disorientation 
•  Thanks to the cubic crystal symmetry, no two 

cubic lattices can be different by more than 
~62.8° (see papers by Mackenzie). 

•  Combining two orientations can lead to a 
rotation angle as high as 180°: applying 
crystal symmetry operators decreases the 
required rotation angle. 

•  Disorientation:= (is defined as) the minimum 
rotation angle between two lattices with the 
misorientation axis located in the Standard 
Stereographic Triangle. 
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Grain Boundary Representation 

•  Axis-angle representation: axis is the 
common crystal axis (but it is also 
possible to describe the axis in the 
sample frame); angle is the rotation 
angle, θ. 

•  3x3 Rotation matrix, ∆g=gBgA
T. 

•  Rodrigues vector: 3 component vector 
whose direction is the axis direction 
and whose length = tan(θ /2). 
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MD for Annealed Copper 

2 peaks: 
60°<111>
, and  
38°<110> 

Kocks, Ch.2 
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Misorientation Distributions 
•  The concept of a Misorientation Distribution (MD, MODF 

or MDF) is analogous to an Orientation Distribution (OD 
or ODF). 

•  Relative frequency in the space used to parameterize 
misorientation, e.g. 3 components of Rodrigues vector, 
f(R1,R2,R3), or 3 Euler angles f(φ1,Φ,φ2)  
or axis-angle f(θ, n).   

•  Probability density (but normalized to units of Multiples of 
a Uniform Density) of finding a given misorientation in a 
certain range of misorientation, d∆g (specified by all 3 
parameters), is given by f(d∆g). 

•  As before, when the word “function” is included in a 
name, this implies that a continuous mathematical 
function is available, such as obtained from a series 
expansion (with generalized spherical harmonics). 
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Area Fractions 
•  Grain Boundaries are planar defects therefore we 

should look for a distribution of area (or area per unit 
volume, SV). 

•  Later we will define the Grain Boundary Character 
Distribution (GBCD) as the relative frequency of 
boundaries of a given crystallographic type. 

•  Fraction of area within a certain region of misorientation 
space, ∆Ω, is given by the MDF, f, where Ω0 is the 
complete space: 

ΔA
A

=
f Δg( )dΔg

ΔΩ∫
f Δg( )dΔg

Ω0∫
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Normalization of MDF 
•  If boundaries are randomly distributed then MDF has 

the same value everywhere, i.e. 1 (since a 
normalization is required). 

•  Normalize by integrating over the space of the 3 
parameters (exactly as for ODF, except that the 
range of the parameters is different, in general).  
Thus the MDF is not a true probability density 
function in the statistical sense. 

•  If Euler angles used, the same equation applies (but 
one must adjust the normalization constant for the 
size of the space that is actually used):!
1
8π2

f ϕ1,Φ,ϕ2( )∫∫∫ sinΦdϕ1dΦdϕ2 =1



Estimation of MDF from ODF 
•  The EBSD softwares often refer to a “texture-based MDF”. 
•  One can always estimate the misorientations present in a 

material based on the texture.  If grains are inserted at random, 
then the probability of finding a given boundary/misorientation 
type is the sum of all the possible combinations of orientations 
that give rise to that misorientation. 

•  Therefore one can estimate the MDF, based on an assumption 
of randomly placed orientations, drawn from the ODF, thus: 
 
 
 
 

•  This texture-derived estimate is exactly the texture-based MDF 
mentioned above.  It can be used to normalize the MDF 
obtained by characterizing grain boundaries in an EBSD map. 

24 

€ 

MD(Δg) =
1
dΔg∫

f g( ) f $ g ( )dgd $ g 

dg∫( )
2∫∫ , Δg = g $ g −1
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Differences in Orientation 
•  Preparation for the math of misorientations: 

the difference in orientation between two 
grains is a rotation just as is the rotation that 
describes a texture component. 

•  Careful!  The application of symmetry is 
different from orientations because crystal 
symmetry applies to both sides of the 
relationship (but not sample symmetry), 

•  Convention: we use different methods 
(Rodrigues vectors) to describe g.b. 
misorientation than for texture (but we could 
use Euler angles for everything, for example). 
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Example: Twin Boundary in fcc 

Porter & Easterling fig. 3.12/p123 

€ 

Δˆ g 

<111> rotation axis,  
common to both crystals θ=60° 

MATRIX REPRESENTATION:	


[     0.667     0.667    -0.667 ]	


[    -0.333     0.667     0.667 ]	


[     0.333    -0.333     0.667 ]	



CSL:  Σ3 

Axis/Angle:  60°<111> 

Rodrigues:  [1/3, 1/3, 1/3] 

Quaternion: [1/2, 1/2, 1/2, 1/2] 

There is also an exceptionally low energy “twin” in bcc metals, which is 60°<111> with a {112} normal 

The energy of the 
coherent twin GB is 
exceptionally low 
because of the the 
perfect atomic fit 
between the two 
surfaces. 



Coherent vs. Incoherent Twin 
27 

•  The word “coherent” refers to coherency or matching of atoms across an 
interface.  When two close-packed 111 planes (in fcc materials) are 
placed in contact, there are two positions (relative rotations, with in-plane 
adjustments) that provide exact atom matching.  One results in no 
boundary at all, and the other has a 60° misorientation about the 
interface normal.  This latter is the “coherent twin”. 

•  Any interface with the same misorientation but a different normal than 
111 is an incoherent twin boundary because the atoms do not fit together 
exactly. 

•  Fcc metals with medium to low stacking energy commonly exhibit high 
fractions of coherent twin boundaries or “annealing twins”. 

•  The word “twin” is also used for deformation twins.  In the most general 
sense it refers to pairs of orientations related by a mirror; centro-
symmetry allows a proper rotation to accomplish the same relationship.  
We return to this topic when we discuss Coincident Site Lattice (CSL) 
misorientations. 

•  This will be addressed in more detail elsewhere. 
•  See: Olmsted, D. L., S. M. Foiles, et al. (2009). "Survey of computed 

grain boundary properties in face-centered cubic metals: I. Grain 
boundary energy." Acta materialia 57: 3694-3703. 
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Grain Boundary Representation 
•  Axis-angle representation: axis is the 

common crystal axis (but could also describe 
the axis in the sample frame); angle is the 
rotation angle, θ. 

•  3x3 Rotation matrix, ∆g=gBgA
-1. 

•  Rodrigues vector: 3 component vector whose 
direction is the misorientation axis direction 
and whose length is equal to the tangent of 
1/2 of the rotation angle, θ : 
                            R = tan(θ/2)v,  
v is a unit vector representing the rotation axis. 
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Misorientation +Symmetry 

•  The crystal symmetry pre-multiplies the 
orientation matrix 

•  ∆g =���
(Oc gB)(Oc gA)-1���

= OcgBgA
-1Oc

-1 = OcgBgA
-1Oc. 

•  Note the presence of symmetry operators pre- 
& post-multiplying the misorientation; no inverse 
is needed for a symmetry operator (member of 
a finite group). 



30 Symmetry: how many equivalent 
representations of misorientation? 

•  Axis transformations: 
24 independent operators (for cubic) present 
on either side of the misorientation.  Two 
equivalents from switching symmetry, i.e. 
the fact that there is no (physical) difference 
between passing from grain A to grain B, 
versus passing from grain B to grain A. 

•  Number of equivalents = 24x24x2=1152. 
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Rodrigues vector, contd. 
•  Many of the boundary types that correspond to a high fraction of 

coincident lattice sites (i.e. low sigma values in the CSL model) occur on 
the edges of the Rodrigues space. 

•  CSL boundaries have simple values, i.e. components are reciprocals of 
integers:  
e.g. twin in fcc = (1/3,1/3,1/3) ≡ 60° <111> ≡ Σ3.   
The “sigma number” is the reciprocal of the fraction of common 
(coincident) sites between the lattices of the two grains. 

•  RF space is also useful for texture representation. 
•  CSL theory of grain boundaries will be explained in a later lecture: for 

now, think of a CSL type as a particular (mathematically singular) 
misorientation for which good atomic fit may be expected (and therefore 
special properties).  A list of values for CSL types up to Σ=29 is provided 
in the supplemental slides. 

•  How does one compute how near a GB is to a CSL boundary type?  The 
answer is to first make sure that both are in the same FZ, then compute 
the misorientation between them, in exactly the same way as for a pair of 
orientations. This is described in more detail in the lecture on CSLs. 
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Examples of symmetry operators in 
various parameterizations 

•  Diad on z 
or C2z, or 
L001

2:  

•  Triad about 
[111], or  
120°-<111>, 
or, L111

3: 

€ 

0 1 0
0 0 1
1 0 0

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

≡ tan 60°
1,1,1( )
3

= 1,1,1( )

€ 

−1 0 0
0 −1 0
0 0 1

# 

$ 

% 
% % 

& 

' 

( 
( ( 

≡ tan90° 0,0,1( ) = 0,0,∞( )

Note how infinity is a common value in the Rodrigues vectors that describe 180° 
rotations (2-fold diad axes).  This makes Rodrigues vectors awkward to use 
from a numerical perspective and is one reason why (unit) quaternions are 
used. 
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Cubic Crystal Symmetry Operators 

The numerical values of these symmetry operators can be found at: 
http://neon.materials.cmu.edu/texture_subroutines:  quat.cubic.symm etc. 
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Symmetry in Rodrigues space 
•  Demonstration of symmetry elements as 

planes 
•  Illustration of action of a symmetry element  

-90° about [100] which is the Rodrigues 
vector [-1,0,0]. 

•  Order of application of elements to active 
rotations. 

•  In this case, it is useful to demonstrate that 
any vector on the plane ρ1 = √2-1 is mapped  
onto the plane ρ1 = -1(√2-1).  
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Example: 90° <100> 
•  Consider the vector [√2-1, ρ2, ρ3] acted on by 

the operator [-1,0,0], i.e. -90° about [100]: 
 ρC = (ρA, ρB) = {ρA + ρB - ρA x ρB}/{1 - ρA•ρB} 

€ 

ρC =
2 −1,ρ2,ρ3[ ] + −1,0,0[ ] − [0,−ρ3,ρ2]

1− −1 2 −1( ){ }
=

2 − 2,ρ2 + ρ3,ρ3 − ρ2[ ]
1− 1− 2{ }

=
2 − 2,ρ2 + ρ3,ρ3 − ρ2[ ]

2

= − 2 −1( ), ρ3 + ρ2
2 − 2

, ρ2 − ρ3
2 − 2

$ 

% & 
' 

( ) 

Cross product  
term 

Scalar product  
term 

Any point outside the plane defined by R1 = (√2-1)  will be equivalent to a point inside the 
plane R1 = -(√2-1).  Thus this pair of planes define edges of the fundamental zone. 
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Action of 90° about [100] 
Inspection of the 
result shows that 
any point on the 
plane ρ1 = √2-1 is 
mapped onto a 
new, symmetry-
related point lying 
on the plane ρ1 = 
-1*(√2-1), 
regardless of the 
values of the 
other two 
parameters of the 
Rodrigues vector.  

The re-appearance of a point as it 
passes through a symmetry 
element at a different surface of 
the fundamental zone has been 
likened to the umklapp process for 
electrons. 
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Symmetry planes in RF space 
•  The effect of any symmetry operator in 

Rodrigues space is to insert a dividing plane 
in the space.  If R (= tan(θ/2)v) is the vector 
that represents the symmetry operator (v is a 
unit vector), then the dividing plane is y + 
tan(±θ/4)v, where y is an arbitrary vector 
perpendicular to v. 

•  This arises from the geometrical properties of 
the space (extra credit: prove this property of 
the Rodrigues-Frank vector). 
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Fundamental Zone, FZ 
•  By setting limits on all the components (and confining the 

axis associated with an RF vector to the SST) we have 
implicitly defined a Fundamental Zone. 

•  The Fundamental Zone is simply the set of 
(mis-)orientations for which there is one unique 
representation for any possible misorientation.  This 
unique representation is sometimes termed the 
disorientation. 

•  Note: the standard 90x90x90 region in Euler space for orientations contains 
3 copies of the FZ for cubic-orthorhombic symmetry.  The 90x90x90 region 
in Euler space for misorientations contains 48 copies of the FZ for cubic-
cubic symmetry.  Just as with orientations, so for misorientations, we can 
apply group theory to compute the size of the (mis-)orientation space 
needed for a FZ. 
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Size, Shape of the Fundamental Zone 

•  We can use some basic information about 
crystal symmetry to set limits on the size of 
the FZ. 

•  Clearly in cubic crystals we cannot rotate by 
more than 45° about a <100> axis before we 
encounter equivalent rotations by going in the 
opposite direction; this sets the limit of  
             R1=tan(22.5°)=√2-1.   

•  This defines a plane perpendicular to the R1 
axis. 
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Size, Shape of the Fundamental Zone 

•  Similarly, we cannot rotate by more than 60° about <111>, which 
sets a limit of (1/3,1/3,1/3) along the <111> axis, or  
√{R1

2+R2
2+R3

2}=tan(30°)=1/√3.  Note that this is the limit on the 
length of the Rodrigues vector // 111.  In general, the limit is 
expressed as the equation of a plane, R1+R2+R3=1. 

•  Symmetry operators can be defined in Rodrigues space, just as 
for matrices or Euler angles. However, we typically use unit 
quaternions for operations with rotations because some of the 
symmetry operators, when expressed as Rodrigues vectors, 
contain infinity as a coefficient, which is highly inconvenient 
numerically! 

•  The FZ for grain boundaries in cubic materials has the shape of 
a truncated pyramid. 
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Delimiting planes 
•  For the combination of O(222) for orthorhombic sample symmetry and O(432) 

for cubic crystal symmetry, the limits on the Rodrigues parameters are given by 
the planes that delimit the fundamental zone.   

•  These include (for cubic crystal symmetry with O(432)):  
- six octagonal facets orthogonal to the <100> directions, at a distance of tan(π/8) 
(=√2-1) from the origin, and  
- eight triangular facets orthogonal to the <111> directions at a distance of  
tan(π/6) (=√3-1) from the origin.   

•  The sample symmetry operators appear as planes that intersect the origin, with 
normals parallel to the associated rotation axis.  A slightly odd feature of RF-
space (not well explained in the books) is that each 2-fold operator (diad) 
excludes ½ the space.  If one were to literally divide the space by two 
perpendicular to each direction, then one would be left with only an octant, 
which would contain only 1/8 the volume of the original.  However, one has to 
recall that combining any pair of diads (from O(222)) leads the same result and 
adding a third diad makes no difference. Strictly speaking, one should keep the 
all-positive octant and the all-negative octant.  It is convenient for representation 
to keep two adjacent octants, as shown by Neumann (next slide). This “trick” has 
the effect of making the y-axis look different from x and z, but this is a visual 
convenience. 
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Symmetry planes in RF space 

4-fold axis on <100> 
3-fold axis on <111> 

Neumann, P. (1991). "Representation of orientations of symmetrical objects by Rodrigues 
vectors." Textures and Microstructures 14-18: 53-58 

Cubic crystal symmetry, 
no sample symmetry 

Cubic-cubic symmetry Cubic-orthorhombic 
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Truncated pyramid for cubic-
cubic misorientations 

l =100 

l =110 

l =111 

R1+R2+R3=1 

(√2-1,0) 
(√2-1,√2-1)) 

The fundamental zone for grain 
boundaries between cubic crystals is a  
truncated pyramid. 



44 Range of Values of RF vector components for 
grain boundaries in cubic materials 

•  Q. If we use Rodrigues vectors, 
what range of values do we 
need to represent grain 
boundaries? 

•  A.  Since we are working with a 
rotation axis that is based on a 
crystal direction then it is logical 
to confine the axis to the 
standard stereographic triangle 
(SST). 

Colored triangle copied 
from TSLTM software 
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Shape of RF Space for cubic-cubic 

origin 

x, ρ1, [100]!
x=y, ρ1=ρ2"
[110]!

x=y=z, ρ1=ρ2=ρ3, [111]!

y, ρ2!

z, ρ3!

Distance 
(radius) from 
origin 
represents the 
misorientation 
angle (tan(θ/2)) 

Each colored line represents a low-index rotation 
axis, as in the colored triangle. 
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Range of  RF vector components 
•   ρ1 corresponds to the component //[100]; 

 ρ2 corresponds to the component //[010]; 
 ρ3 corresponds to the component //[001]; 

•   ρ1 > ρ2 > ρ3 > 0 
•   0 ≤ ρ1 ≤ (√2-1) 
•   ρ2 ≤ ρ1        
•   ρ3 ≤ ρ2        
•   ρ1 + ρ2 + ρ3 ≤ 1 

45° rotation about <100> 

60° rotation about <111> 
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Alternate Notation: (R1 R2 R3) 
•   R1 corresponds to the component //[100]; 

 R2 corresponds to the component //[010]; 
 R3 corresponds to the component //[001]; 

•   R1 > R2 > R3 > 0 
•   0 ≤ R1 ≤ (√2-1) 
•   R2 ≤ R1        
•   R3 ≤ R2        
•   R1 + R2 + R3 ≤ 1 



48 

Sections through RF-space 
•  For graphical representation, the R-F space is 
typically sectioned parallel to the 100-110 plane. 
•  Each triangular section has R3=constant. 
•  Most of the special CSL relationships lie on the 100, 
110, 111 lines. 

0

R=0

0 (√2-1,0)

(√2-1,√2-1)

•

•
Σ5

Σ9

base of pyramid 
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RF-space 

<100>, ρ1!

<100>, ρ1!

<111> 

<111> 

<110> 

<110> 

ρ1 + ρ2 + ρ3 ≤ 1 

Exercise: show that 
the largest possible 
misorientation angle 
corresponds to the 
point marked by o.  
Based on the 
geometry of the 
fundamental zone, 
calculate the angle (as 
an inverse tangent).  
Hint: the answer is in 
Frank’s 1988 paper on 
Rodrigues vectors. 

[Randle] 
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Density of points in RF space 
•  The variation in the volume element with magnitude 

of the RF vector (i.e.with misorientation angle) is such 
that the density of points decreases slowly with 
distance from the origin. 

•  For a random distribution, low angle boundaries are 
rare, so in a one-parameter distribution based on 
misorientation angle, the frequency increases rapidly 
with angle up to the maximum at 45°.  Think of 
integrating the volume in successive spherical layers 
(layers of an onion).  The outer layers have larger 
volumes than the inner layers. 

•  Mackenzie, J. K. (1958). “Second paper on statistics 
associated with the random orientation of cubes.” 
Biometrica 45: 229-240. 
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Mackenzie Distribution for cubic-cubic 

The peak at 45° is associated with the 45° rotation limit on the <100> axis - again, think of integrating 
over a spherical shell associated with each value of the misorientation angle. 

Morawiec A, Szpunar JA, Hinz DC. Acta metall. mater. 1993;41:2825. 

•  Frequency distribution with 
respect to disorientation 
angle for randomly 
distributed grain 
boundaries. 

•  This result can be easily 
obtained by generating sets 
of random orientations, and 
applying crystal symmetry 
to find the minimum rotation 
angle for each set, then 
binning, normalizing (to unit 
area) and plotting. 

•  Note: this is a true 
probability density function 
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Experimental Example 
•  Note the bias to 

certain 
misorientation 
axes within the 
SST, i.e. a high 
density of points 
close to <101> 
and <111>. 

[Randle] 
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Experimental 
Distributions 

by Angle 

Random: 

<100> fiber texture, columnar casting 
Random, 
equi-axed 
casting 

[Randle] 

Fiber textures with a uniform distribution 
about the fiber axis give rise to uniform 
densities in the MD because they are one-
parameter distributions. The cut-off angle 
depends on symmetry: thus 45° for 100 and 
60° for 111. 
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Choices for MDF Plots 

•  Euler angles: use subset of 90x90x90 
region, starting at Φ=72°. 

•  Axis-angle plots, using SST (or 
001-100-010 quadrant) and sections at 
constant misorientation angle. 

•  Rodrigues vectors, using either square 
sections, or triangular sections through 
the fundamental zone. 
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MDF for Annealed Copper 

2 peaks: 
60°<111>
, and  
38°<110> 

Kocks, Ch.2 
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Summary 
•  Grain boundaries require 3 parameters to 

describe the lattice relationship because it is 
a rotation (misorientation). 

•  In addition to the misorientation, boundaries 
require an additional two parameters to 
describe the plane. 

•  Rodrigues vectors are useful for representing 
grain boundary crystallography; axis-angle 
and unit quaternions also useful.  
Calculations are generally performed with unit 
quaternions. 



Questions 
•  What is a grain boundary? 
•  What is misorientation, and how does it 

related to grain boundaries? 
•  How can we quantify or parameterize 

misorientation? 
•  What is the misorientation distribution? 
•  How do we apply symmetry to 

misorientations, and how does that affect the 
fundamental zone for misorientations? 

•  What are typical 1D and 3D representations 
of MDs? 
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Questions: 2 
•  What is a Rodrigues vector and how does it relate to 

an axis-angle description of a grain boundary 
misorientation? 

•  What is the relationship between misorientation-with-
normal and the tilt-twist approach to describing grain 
boundaries? 

•  How do we mean by 5-parameter descriptions of 
grain boundaries?  

•  What are examples of symmetry operators described 
by Rodrigues vectors? 

•  How is symmetry revealed in Rodrifuges-Frank 
space? 

•  What are the limits on the FZ in RF space for cubic-
cubic misorientations? 

58 
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Conversions for Axis 

Matrix representation, a, to axis, [uvw]=v: 

€ 

v =
(a23 − a32),(a31 − a13),(a12 − a21)

(a23 − a32)
2 + (a31 − a13)

2 + (a12 − a21)
2

v = R1,R2,R3
R12 + R22 + R32

v = q1,q2,q3
q12 + q22 + q32

Rodrigues ���
vector:���
���
Quaternion:	



N.B. the axis is assumed to be from an axis transformation 
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Maximum rotation: cubics 

•  The vertices of the triangular facets 
have coordinates (√2-1, √2-1, 3-2√2) 
(and their permutations), which lie at a 
distance √(23-16√2) from the origin.  
This is equivalent to a rotation angle of 
62.7994…°, which represents the 
greatest possible rotation angle, either 
for a grain rotated from the reference 
configuration (i.e. orientation), or 
between two grains (i.e. disorientation). 



63 How to Choose the  
Misorientation Angle: quaternions 
•  This algorithm is valid only for cubic-cubic 

misorientations and for obtaining only the angle (not 
the axis). 

•  Arrange q4 ≥ q3 ≥ q2 ≥ q1 ≥ 0.  
Choose the maximum value of the fourth component, 
q4

’, from three variants as follows: 
[i]  (q1,q2,q3,q4) 
[ii] (q1-q2, q1+q2, q3-q4, q3+q4)/√2 
[iii] (q1-q2+q3-q4, q1+q2-q3-q4, -q1+q2+q3-q4, 
q1+q2+q3+q4)/2 

•  Reference: Sutton & Balluffi, section 1.3.3.4; see also 
H. Grimmer, Acta Cryst., A30, 685 (1974) for more 
detail. 
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Various Symmetry Combinations 
•  Fundamental zones in Rodrigues space:  

(a) no sample symmetry with cubic crystal symmetry; 
(b) orthorhombic sample symmetry (divide the space 
by 4 because of the 4 symmetry operators in 222), see 
next slide for details;  
(c) cubic-cubic symmetry for disorientations.  
[after Neumann, 1991] 



Effect of 2-fold Diads - schematic 
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x 

y 

z 

Z-diad 

Y-diad 

X-diad 

Y-diad + X-diad 
or 

Z-diad + X-diad 
or 

Y-diad + Z-diad 
ANY combination of 
two diads leads to 

the same result. 

Green indicates region not 
excluded by the symmetry 
operator; when combining two 
operators, only the union of 
the green regions is kept. 



Other Crystal Classes 
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[Sutton & Balluffi] 



Maximum rotation 
angles: trigonal 

•  3-fold axis on c (trigonal 
systems): 
The coordinates of the point of 
interest (projection onto R3=0 
shown as a red dot) are: 
{1,tan(30°),tan(30°)}={1,1/√3,1/
√3}.  Distance from the origin = 
√[1+1/3+1/3]. 
Corresponding maximum rotation 
angle = 2*arctangent(√1.6667) 
=2*52.239°=104.475° 
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Rolling Texture 
Components for 
fcc in RF Space 
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•  Note how many of the 
standard components are 
located, either in the R3=0 
plane, or at the top/bottom 
of the space. 

•  Note that the Cube 
appears only once, Goss 
appears twice, and 
Copper and Brass appear 
4 times. 

Goss 

Copper 

Brass 

Brass 

Copper 

Goss 

Copper 

Brass 

Brass 

Copper 

Cube 
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Disorientation 
•  Thanks to the crystal symmetry, no two cubic 

lattices can be different by more than 62.8°. 
•  Combining two orientations can lead to a 

rotation angle as high as 180°: applying 
crystal symmetry operators modifies the 
required rotation angle. 

•  Disorientation:= minimum rotation angle 
between two lattices, with the axis in the 
Standard Stereographic Triangle (SST). 
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Pseudo-code for Disorientation 
!  Work in crystal (local) frame!
Calculate misorientation as gBgA-1!
  For each ith crystal symmetry operator, calculate OigBgA-1!
    For each jth crystal symmetry operator, calculate OigBgA-1Oj!
     Test the axis for whether it lies in the FZ; repeat for inverse rotation!
       If if does, test angle for whether it is lower than the previous minimum!
         If new min. angle found, retain the result (with indices i & j)!
       endif!
     endif!
   enddo!
 enddo!
 

Note that it is essential to test the axis in the outer loop and the angle in 
the inner loop, because it is often the case that the same (minimum ) 
angle will be found for multiple rotation axes. 

The “inverse rotation” can be easily obtained by negating the fourth 
(cosine) component of the quaternion.  
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Another view 

•  This gives another view 
of the Rodrigues space, 
with low-sigma value 
CSL locations noted. 

•  In this case, the <100> 
misorientations are 
located along the r2 
line. 

•  This also includes the 
locations of the most 
common Orientation 
Relationships found in 
phase transformations. 

[Morawiec] 
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 (°) uv
w 

1, 2  q 

3 60 111 45 70.53 45 0.333 0.333 0.333 0.288 0.288 0.288 0.866 
5 36.86 100 0 90 36.86 0.333 0.000 0.000 0.000 0.000 0.316 0.948 
7 38.21 111 26.56 73.4 63.44 0.199 0.199 0.199 0.188 0.188 0.188 0.944 
9 38.94 110 26.56 83.62 26.56 0.25 0.25 0.000 0.000 0.236 0.236 0.943 
11 50.47 110 33.68 79.53 33.68 0.333 0.333 0.000 0.000 0.302 0.302 0.904 
13a 22.62 100 0 90 22.62 0.2 0.000 0.000 0.000 0.000 0.196 0.981 
13b 27.79 111 18.43 76.66 71.57 0.143 0.143 0.143 0.139 0.139 0.139 0.971 
15 48.19 210 19.65 82.33 42.27 0.400 0.200 0.000 0.000 0.183 0.365 0.913 
17a 28.07 100 0 90 28.07 0.250 0.000 0.000 0.000 0.000 0.243 0.970 
17b 61.9 221 45 86.63 45 0.4 0.4 0.2 0.171 0.343 0.343 0.858 
19a 26.53 110 18.44 89.68 18.44 0.166 0.166 0.000 0.000 0.162 0.162 0.973 
19b 46.8 111 33.69 71.59 56.31 0.25 0.25 0.25 0.229 0.229 0.229 0.918 
21a 21.78 111 14.03 79.02 75.97 0.111 0.111 0.111 0.109 0.109 0.109 0.982 
21b 44.41 211 22.83 79.02 50.91 0.333 0.167 0.167 0.154 0.154 0.308 0.926 
23 40.45 311 15.25 82.51 52.13 0.334 0.111 0.111 0.104 0.104 0.313 0.938 
25a 16.26 100 0 90 16.26 0.143 0.000 0.000 0.000 0.000 0.142 0.99 
25b 51.68 331 36.87 90 53.13 0.333 0.333 0.111 0.100 0.300 0.300 0.9 
27a 31.59 110 21.8 85.75 21.8 0.200 0.200 0.000 0.000 0.193 0.193 0.962 
27b 35.43 210 15.07 85.75 31.33 0.285 0.143 0.000 0.000 0.136 0.272 0.953 
29a 43.6 100 0 90 43.6 0.400 0.000 0.000 0.000 0.000 0.393 0.928 
29b 46.4 221 33.69 84.06 56.31 0.286 0.286 0.143 0.131 0.263 0.263 0.919 
31a 17.9 111 11.31 80.72 78.69 0.091 0.091 0.091 0.09 0.09 0.09 0.988 
31b 52.2 211 27.41 78.84 43.66 0.4 0.2 0.2 0.180 0.18 0.359 0.898 
33a 20.1 110 12.34 83.04 58.73 0.125 0.125 0.000 0.000 0.123 0.123 0.985 
33b 33.6 311 37.51 76.84 37.51 0.273 0.091 0.091 0.087 0.087 0.261 0.957 
33c 59.0 110 38.66 75.97 38.66 0.4 0.4 0.000 0.000 0.348 0.348 0.870 
35a 34.0 211 16.86 80.13 60.46 0.25 0.125 0.125 0.119 0.119 0.239 0.956 
35b 43.2 331 30.96 88.36 59.04 0.272 0.272 0.091 0.083 0.253 0.253 0.93 
             
 

Table of 
CSL values 
in axis/
angle, Euler 
angles, 
Rodrigues 
vectors ���
and 
quaternions	



Sigma-9 values for Rodrigues 
vector and quaternion corrected 
10th May 2007 
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Rodrigues vector normalization 
•  The volume element, or 

Haar measure, in Rodrigues 
space is given by the 
following formula  
[ρ = tan(θ/2)]: 
 

•  Can also write in terms of 
an azimuth, χ, and 
declination , ζ, angles: 
 

•  And finally in terms  
of R1, R2, R3: 
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2} = tanθ/2;        χ = cos-1R3;  �

ζ = tan-1R2/R1;  dn = sinχdχdζ;     ρ2 = R1
2 + R2

2 + R3
2!

€ 

d(Δg) =
1
π2
$ 

% 
& 

' 

( 
) 

1
1+ ρ2
$ 

% 
& 

' 

( 
) 

2

dR1dR2dR3



74 

Density in the SST 

•  Density   or   % in area 

J.K. Mackenzie 1958 
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ID of symmetry operator(s) 
•  For calculations (numerical) on grain 

boundary character, it is critical to retain the 
identity of each symmetry operator use to 
place a given grain boundary in the FZ. 

•  That is, given Oc ∈O(432)=Oi{O1,O2,…,O24} 
one must retain the value of index “i” for 
subsequent use, e.g. in determining tilt/twist 
character.  
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Successive misorientations 
•  There are problems where one needs 

to calculate the effect of two 
successive misorientations, taking into 
account variants.  By “variants” we 
mean that the second misorientation 
(twin) can occur on any of the systems 
related by crystal symmetry.  For 
example, if twinning occurs on more 
than one system, then the second twin 
can be physically contained within the 
first twin but still make a boundary with 
the original matrix.  So, the problem is, 
how do we calculate the matrix-twin2 
misorientation, taking account of 
crystal symmetry and the possibility of 
(crystal) symmetry-related variants? 

twin2 

twin1 

twin1 

Matrix 

Matrix 

Matrix-twin1 

Matrix-twin2 

twin1-twin2 

g 
g’’ 

g 

g’ 

g’ 
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Successive Twins 
•  The key to this problem is to recognize that (a) the order of the two twins/

misorientations does not matter, and (b) that one must insert an additional 
(crystal) symmetry element between the two twins/misorientations.  In effect 
one treats each twin/misorientation (T) as a rotation (or orientation).  The same 
procedure can be used for phase transformations, although one must be careful 
about the difference between going from phase 1 to phase 2, versus 2 to 1.  We 
obtain a set of physically equivalent orientations, {g”}, starting from a matrix 
orientation, g, thus: 

•  {g”} =   (Oc T2) Oc(Oc T1)g       = OcT2 Oc T1
 g.  

•  Note the presence of symmetry operators pre-multiplying, as well the additional 
symmetry operator in between the two misorientations.  This additional 
symmetry operator is applied in a manner that is equivalent to sample 
symmetry. 

•  Curiously, the order in which the twins/misorientations are applied does not 
make any difference, for the three types of twins considered here (for Ti).  The 
overall misorientation for matrix→twin1→twin2 is the same as 
matrix→twin2→twin1.  The reason for this not very obvious result is the fact that 
the rotation axes coincide with mirror planes in the crystal symmetry.  
Accordingly, this is not a general result. 

•  Thanks to Nathalie Bozzolo (Univ. Metz) for pointing out this problem. 
•  For a (much) more detailed analysis of twin chains, see papers by Cayron. 
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Successive twins: simple example 
•  First let’s illustrate how this works with the first misorientation as 60° 

about 100, and the second as 15°, also about 100.  We use hexagonal 
crystal symmetry so that we can view the 0001 pole figure and easily 
interpret the results. What we expect to see is that the second 
misorientation (twin, if you like) “decorates” the first twin, by producing 
additional, small changes in position relative to the first one.  In this 
example, the two symmetry operators that are normally used to apply 
crystal symmetry to calculate disorientation have been omitted.  If only 
the first misorientation of 60° had been applied, there would be only 
one pole in the 0001 pole figure ( at the center of the ring of six poles 
that you see). 

{∆g} = T2 Oc T1 
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Successive twins: simple example 
•  Now let’s add all the symmetry operators so that we see all the 

possible variants.  Now there are six rings of six poles in the 
0001 pole figure.  Remember: pole figures of pairs of successive 
twins vary with the order in which the twins are applied, even 
though the misorientations remain the same. 

{∆g} = 
(Oc T2) Oc(Oc T1) 

= OcT2 Oc T1Oc 
= OcT2 Oc T1

 Oc. 
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Successive twins: Zr, CT-TT2 
•  This illustrates the result for a hexagonal system (Zr) with the 

two twins, 
a) tensile	
  twins	
  (twin2)	
  
	
  	
  	
  	
  	
  	
  	
  	
  (TT2	
  type	
  ;	
  close	
  to	
  sigma11a	
  ;	
  35.1°<10-­‐10>	
  )	
  
b)	
  inside	
  compressive	
  twins	
  	
  (twin1)	
  
	
  	
  	
  	
  	
  	
  	
  	
  (CT	
  type;	
  close	
  to	
  sigma7b	
  ;	
  64.6°<10-­‐10>	
  )	
  

•  The	
  results	
  are	
  illustrated	
  first	
  as	
  pole	
  figures,	
  in	
  order	
  to	
  make	
  sure	
  
that	
  the	
  calculaLons	
  are	
  performed	
  correctly.	
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Successive twins: Zr, CT-TT2 
•  Now we add all the symmetry operators so 

that we see the full effect.  Note that the two 
twins share the same axis and that the two 
angles add up to almost exactly 100°, so 
there are many near coincidences in the pole 
positions. 
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Successive 
twins: Zr, CT-

TT2 
•  Now we plot the 

misorientations that 
result from this pair. 

•  These are the 
misorientations 
between the matrix 
and the second twin.  
The combination 
produces new 
misorientations, 
relative to the two 
twins.   

Add chains of CT, TT1 …; add the second cut for R1=0 
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Successive twins: Zr, TT2-CT 
•  The twin chain TT2 then CT produces a 

slightly different result in terms of pole 
figures.  The misorientations, however, 
are the same. 
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Order of twins, PFs, ∆g 
•  We can understand the reason for the pole figures depending on the 

order of the twins, but not the misorientation as follows.  Pole figures 
show us what is going on with respect to the sample frame.  Given that 
two rotations do not commute, it is not surprising that the net result is 
different: see below for 60° about 100, followed by 15° about each of the 
equivalent 100 axes in the intermediate frame.  The other figure shows 
15° followed by 60°, again for all equivalent 100 axes in the intermediate 
frame. 

1st rotation = 60° [100] 1st rotation = 15° [100] 



Order of twins, PFs, ∆g, contd. 
•  In order to understand why, in this particular case, the order of 

the twins does not matter, consider the fact that the twin/rotation 
axis is coincident with one of the 2-fold symmetry operators in 
the hexagonal point group.   

•  The consequence of this is that, although the forward twin is 
obviously different from the negative twin, the set of twin 
variants produced by the twin is the same, regardless of 
whether rotates in the positive or negative sense. 

•  In mathematical terms, this means the following (note the “=“, 
meaning that the sets are the same): 

•    {Oc T2} = {Oc T2
-1} 

•  Recall also the physical equivalence between the forward 
(positive) and the backward (negative) misorientation across a 
boundary:  

•       ∆g  ≡ ∆g-1 
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Order of twins, PFs, ∆g, contd. 
•  ∆g = OcT2 Oc T1

 Oc ≡  OcT1
-1

 Oc T2
-1Oc   

•  What we want is the set of transformations that 
represent the boundary: 
{∆g}={∆g12}U{∆g21}  

•  Using the equality noted above: 
•  {∆g} = {OcT2 Oc T1

 Oc} U {OcT1
-1

 Oc T2
-1Oc} 

         = {OcT2 Oc T1
 Oc} U {OcT1 Oc T2 Oc} 

•  This demonstrates (Q.E.D.) that the order of the twins 
does not matter, provided that the twins both 
coincide with a crystal symmetry element such 
that the forward and backward rotations (with all their 
variants) yield the same set of results. 
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