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Objec%ve	
•  The	objecAve	of	this	lecture	is	to	explain	how	
single	crystals	deform	plasAcally.	

•  Subsidiary	objecAves	include:	
–  Schmid	Law	
–  CriAcal	Resolved	Shear	Stress	
–  LaNce	reorientaAon	during	plasAc	deformaAon	

•  Note	that	this	development	assumes	that	we	load	
each	crystal	under	stress	boundary	condiAons.		
That	is,	we	impose	a	stress	and	look	for	a	
resulAng	strain	(rate).	
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Why	is	the	Schmid	factor	useful?	
•  The	Schmid	factor	is	a	good	predictor	of	which	slip	or	twinning	system	

will	be	acAve,	especially	for	small	plasAc	strains	(<	5	%).	
•  It	has	been	used	to	analyze	the	plasAcity	of	ordered	intermetallics,	

especially	Ni3Al	and	NiAl.	
•  It	has	been	used	to	analyze	twinning	in	hexagonal	metals,	which	is	an	

essenAal	deformaAon	mechanism.	
•  Some	EBSD	soZware	packages	will	let	you	produce	maps	of	Schmid	

factor.	
•  Schmid	factor	has	proven	useful	to	visualize	localizaAon	of	plasAc	flow	

as	a	precursor	to	faAgue	crack	formaAon.	
•  Try	searching	on	the	web	with	“Schmid	factor”	(include	the	quotaAon	

marks).	
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Nota%on	
•  Strain	(tensor),	local:	Elocal;	global:	Eglobal 
•  Slip	direcAon	(unit	vector):	b	(or	m)	
•  Slip	plane	(unit	vector)	normal:	n	(or	s)	
•  Stress	(tensor):	σ	
•  Shear	stress	(scalar,	usually	on	a	slip	system):	τ	
•  Angle	between	tensile	axis	and	slip	direcAon:	λ	
•  Angle	between	tensile	axis	and	slip	plane	normal:	θ	
•  Schmid	factor	(scalar):	m 
•  Slip	system	geometry	matrix	(3x3):	m 
•  Taylor	factor	(scalar):	M 
•  Shear	strain	(scalar,	usually	on	a	slip	system):	γ	
•  Stress	deviator	(tensor):	S 
•  Rate	sensiAvity	exponent:	n 
•  Slip	system	index:	s	(or	α)	
•  Set	of	Reference	Axes:	Oxi	
•  ε		 	strain	(macroscopic)	
•  G		(or	µ)			shear	modulus	
•  b		 	Burgers	vector	(typically,	magnitude	only)	
•  ρ		 	dislocation	density	(	m	per	m3	,	or	number	per	m2)	
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Historical	Development	

Physics	of	single-crystal	plasAcity	
q 	Established	by	Ewing	and	Rosenhaim	(1900),	Polanyi	(1922),	
Taylor	and	others	(1923/25/34/38),	Schmid	(1924),	Bragg	(1933)		

MathemaAcal	representaAon	
q 	IniAally	proposed	by	Taylor	(1938),	followed	by	Bishop	&	Hill	
(1951)	

q 	Further	developments	by	Hill	(1966),	Kocks	(1970),	Hill	and	
Rice	(1972)	,	Asaro	and	Rice	(1977),		Hill	and	Havner	(1983)	
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Experimental	measurements	showed	that:	

q 	At	room	temperature	the	major	source	for	plasAc	
deformaAon	is	the	dislocaAon	moAon	through	the	crystal	laNce	
q 	DislocaAon	moAon	occurs	on	fixed	crystal	planes	(“slip	
planes”)	in	fixed	crystallographic	direcAons	(corresponding	to	
the	Burgers	vector	of	the	dislocaAon	that	carries	the	slip)	
q 	The	crystal	structure	of	metals	is	not	altered	by	the	plasAc	
flow		
q 	Volume	changes	during	plasAc	flow	are	negligible,	which	
means	that	the	pressure	(or,	mean	stress)	does	not	contribute	to	
plasAcity	

Physics	of	Slip	
Experimental	technique	 Uniaxial	Tension	or	Compression	

Please acknowledge Carnegie Mellon if you make public use of these slides	
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Shear	Stress	–	Shear	Strain	Curves	
A	typical	flow	curve	(stress-strain)	for	
a	single	crystal	shows	three	stages	of	
work	hardening:		
- 	Stage	I	=	“easy	glide”	with	low	
hardening	rates	~µ/10000;		
-	Stage	II	with	high,	constant	(linear)	
hardening	rate	~µ/200,	nearly	
independent	of	temperature	or	
strain	rate;		
-	Stage	III	with	decreasing	hardening	
rate	and	very	sensiAve	to	
temperature	and	strain	rate.		
Dynamic	recovery	operates;	
- 	Stage	IV	(not	shown)	with	low	
hardening	rates	~µ/10000.	
Hardening	behavior	will	be	discussed	
in	another	lecture.	

Please acknowledge Carnegie Mellon if you make public use of these slides	
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Burgers	vector:	b		

Screw position:�
line direction//b	

Edge position:�
line direction⊥b	

A	dislocaAon	is	a	line	defect	in	the	crystal	laNce.		The	defect	has	a	
definite	magnitude	and	direcAon	determined	by	the	closure	failure	in	
the	laNce	found	by	performing	a	circuit	around	the	dislocaAon	line;	this	
vector	is	known	as	the	Burgers	vector	of	the	dislocaAon.		It	is	
everywhere	the	same	regardless	of	the	line	direcAon	of	the	dislocaAon.		
DislocaAons	act	as	carriers	of	strain	in	a	crystal	because	they	are	able	to	
change	posiAon	by	purely	local	exchange	in	atom	posi%ons	
(conservaAve	moAon)	without	any	long	range	atom	moAon	(i.e.	no	
mass	transport	required).	

[Reid]	
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Slip	steps	

Slip	steps	(where	dislocaAons	
exit	from	the	crystal)	on	the	
surface	of	compressed	single	
crystal	of	Nb.	

[Reid]	
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Disloca%on	glide	
•  The	effect	of	dislocaAon	moAon	in	a	crystal:	passage	
causes	one	half	of	the	crystal	to	be	displaced	relaAve	
to	the	other.		This	is	a	shear	displacement,	giving	rise	
to	a	shear	strain.	

[Dieter]	
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Single	Crystal	Deforma%on	
•  To	make	the	connecAon	between	dislocaAon	behavior	

and	yield	strength	as	measured	in	tension,	consider	the	
deformaAon	of	a	single	crystal.	

•  Given	an	orientaAon	for	single	slip,	i.e.	the	resolved	shear	
stress	reaches	the	criAcal	value	on	one	system	ahead	of	all	
others,	then	one	obtains	a	“pack-of-cards”	straining.	

[Dieter]	
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Resolved	Shear	Stress	
•  Geometry	of	slip:	how	big	an		

applied	stress	is	required	for	slip?	
•  To	obtain	the	resolved	shear	

stress	based	on	an	applied	tensile	
stress,	P,	take	the	component	of	
the	stress	along	the	slip	direcAon	
which	is	given	by	Fcosλ,	and	divide		
by	the	area	over	which	the	(shear)	
force	is	applied,	A/cosφ.		Note	that		
the	two	angles	are	not	complementary	unless	the	slip	
direcAon,	slip	plane	normal	and	tensile	direcAon	happen	to	
be	co-planar.	

	τ = (F/A) cosλcosφ = σ cosλcosφ = σ * m	

Schmid factor := m	
In	tensor	(index)	form:	
τ = bi σij nj	

=	b	

=	n	

Please acknowledge Carnegie Mellon if you make public use of these slides	
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Schmid’s	Law	

• 	IniAal	yield	stress	varies	from	sample	to	sample	depending	
on,	among	several	factors,	the	posiAon	of	the	crystal	laNce	
relaAve	to	the	loading	axis.	

• 	It	is	the	shear	stress	resolved	along	the	slip	direcAon	on	the	
slip	plane	that	iniAates	plasAc	deformaAon.	

• 	Yield	will	begin	on	a	slip	system	when	the	shear	stress	on	this	
system	first	reaches	a	criAcal	value	(cri%cal	resolved	shear	
stress,	crss),	independent	of	the	tensile	stress	or	any	other	
normal	stress	on	the	laNce	plane.	

Schmid	postulated	that:	

E.	Schmid	&	W.	Boas	(1950),	Plas%city	of	Crystals,	Hughes	&	Co.,	London.	

Please acknowledge Carnegie Mellon if you make public use of these slides	
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Schmid’s	Law	
Resolved Shear Stress 

€ 

τ = s ⋅σ ⋅ n =σ cosφ cosλ =σ m

σ c =
τ c

cosφ cosλ
= τ c

m
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Cri%cal	Resolved	Shear	Stress	
•  The	experimental	evidence	of	Schmid’s	Law	is	that	there	is	a	cri%cal	

resolved	shear	stress.		This	is	verified	by	measuring	the	yield	stress	of	
single	crystals	as	a	funcAon	of	orientaAon.		The	example	below	is	for	
Mg	which	is	hexagonal	and	slips	most	readily	on	the	basal	plane	(all	
other	τcrss	are	much	larger).	

“Soft orientation”,�
with slip plane at�
45°to tensile axis	

“Hard orientation”,�
with slip plane at�
~90°to tensile axis	

σ = τ/cosλcosφ	

Exercise:	
draw	a	series	of	diagrams	
that	illustrate	where	the	
tensile	axis	points	in	
relaAon	to	the	basal	
plane	normal	for	
different	points	along	
this	curve	

Please acknowledge Carnegie Mellon if you make public use of these slides	
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Calcula%on	of	Resolved	Shear	Stress	

Using Schmid’s law 

Please acknowledge Carnegie Mellon if you make public use of these slides	
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Rota%on	of	the	Crystal	LaWce	
The	slip	direcAon	rotates	towards	the	tensile	axis	

[Khan]	
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FCC	Geometry	
of	Slip	Systems	

[Reid]	
In	fcc	crystals,	the	slip	
systems	are	combinaAons	of	
<110>	slip	direcAons	(the	
Burgers	vectors)	and	{111}	
slip	planes.	

Please acknowledge Carnegie Mellon if you make public use of these slides	
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Slip	Systems		
in	fcc	materials	
For	FCC	materials	there	are	12	
slip	systems	(with	+	and	-	shear	
direcAons:	

Four	{111}	planes,	each	with	
three	<011>	direcAons:	the	leXer	denotes	
the	plane,	and	the	subscript	number	
denotes	the	direcAon	(in	that	plane).	

[Khan]	

The	combinaAon	of	slip	plane	{a,b,c,d}	and	slip	
direcAon	{1,2,3}	that	operates	within	each	unit	
triangle	is	shown	in	the	figure	

Note	correcAon	to	system	b2	

€ 

101[ ]
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Geometry	of	Single	Slip	
•  For	tensile	stress	applied	in	the	
[100]-[110]-[111]	unit	triangle,	
the	most	highly	stressed	slip	
system	(highest	Schmid	factor)	
has	a	(11-1)	slip	plane	and	a	[101]	
slip	direcAon	(the	indices	of	both	
plane	and	direcAon	are	the	
negaAve	of	those	shown	on	the	
previous	page).		

•  CauAon:	this	diagram	places	[100]	
in	the	center,	not	[001].	 [Hosford]	
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Schmid	factors	

•  The	Schmid	factors,	m,	vary	markedly	within	the	unit	
triangle	(a).		One	can	also	(b)	locate	the	posiAon	of	the	
maximum	(=0.5)	as	being	equidistant	between	the	slip	
plane	and	slip	direcAon.	

(a)	 (b)	

[Hosford]	
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Names	of	Slip	Systems	
•  In	addiAon	to	the	primary	slip	

system	in	a	given	triangle,	there	
are	systems	with	smaller	resolved	
shear	stresses.		ParAcular	names	
are	given	to	some	of	these.		For	
example	the	system	that	shares	
the	same	Burgers	vector	allows	
for	cross-slip	of	screws	and	so	is	
known	as	the	cross	slip	system.		
The	system	in	the	triangle	across	
the	[100]-[111]	boundary	is	the	
conjugate	slip	system.	Co-planar	
means	that	the	second	system	
shares	the	same	slip	plane.	

[Hosford]	
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Rota%on	of	the	Crystal	LaWce	in	Tensile	
Test	of	an	fcc	Single	Crystal	

The	tensile	axis	rotates	in	tension	towards	the	[100]-[111]	line.		If	the	
tensile	axis	is	in	the	conjugate	triangle,	then	it	rotates	to	the	same	line	
so	there	is	convergence	on	this	symmetry	line.		Once	on	the	line,	the	
tensile	axis	will	rotate	towards	[211]	which	is	a	stable	orientaAon.		
Note:	the	behavior	in	mul%ple	slip	is	similar	but	there	are	significant	
differences	in	terms	of	the	way	in	which	the	laNce	re-orients	relaAve	
to	the	tensile	axis.	

[Hosford]	

Please acknowledge Carnegie Mellon if you make public use of these slides	
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25	 Rota%on	of	the	Crystal	LaWce	in	Compression	Test	
of	an	fcc	Single	Crystal	

The	slip	plane	normal	rotates	towards	the	compression	axis	

[Khan]	
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Useful	Equa%ons	

• 	To	find	a	new	plane	normal,	P,	based	on	an	iniAal	plane	
normal,	p,	aZer	slip,	use	the	following:	

[Reid]	

•  Following	the	notaAon	in	Reid:		
n:=	slip	plane	normal	(unit	vector);	b:=	
slip	direcAon	(unit	vector).	

•  To	find	a	new	direcAon,	D,	based	on	an	
iniAal	direcAon,	d,	aZer	slip,	use	(and	
remember	that	crystal	direcAons	do	not	
change):	

Please acknowledge Carnegie Mellon if you make public use of these slides	
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Taylor	rate-sensi%ve	model	
•  We	will	find	out	later	that	the	classical	Schmid	Law	picture	

of	elasAc-perfectly	plasAc	behavior	is	not	sufficient.	
•  In	fact,	there	is	a	smooth	transiAon	from	elasAc	to	plasAc	

behavior	that	can	be	described	by	a	power-law	behavior.	
•  The	shear	strain	rate	on	each	slip	system	is	given	by	the	

following	(for	a	specified	stress	state),		
where*	mij = binj, or m=b⊗n:	

˙ γ (s) = ˙ ε 0
m(s) :σc

τ (s)

n(s )

sgn m(s) :σc( )
*	“m”	is	a	slip	tensor,	formed	as	the	outer	product	(circle+cross	symbol)	of	the	slip	direcAon	and	slip	plane	normal	

Please acknowledge Carnegie Mellon if you make public use of these slides	
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Schmid	Law	Calcula%ons	
•  To	solve	problems	using	the	Schmid	Law,	use	this	pseudo-code:	

–  Check	that	single	slip	is	the	appropriate	model	to	use	(as	opposed	to,	say,	mulAple	slip	and	
the	Taylor	model);	

–  Make	a	list	of	all	12	slip	systems	with	slip	plane	normals	(as	unit	vectors)	and	slip	direcAons	
(as	unit	vectors	that	are	perpendicular	to	their	associated	slip	planes;	check	orthogonality	
by	compuAng	dot	products);	

–  Convert	whatever	informaAon	you	have	on	the	orientaAon	of	the	single	crystal	into	an	
orientaAon	matrix,	g; 

–  Apply	the	inverse	of	the	orientaAon	to	all	planes	and	direcAons	so	that	they	are	in	specimen	
coordinates;	

–  If	the	tensile	stress	is	applied	along	the	z-axis,	for	example,	compute	the	Schmid	factor	as	
the	product	of	the	third	components	of	the	transformed	plane	and	direcAon;	

–  Inspect	the	list	of	absolute	values	of	the	Schmid	factors:	the	slip	system	with	the	largest	
absolute	value	is	the	one	that	will	begin	to	slip	before	the	others;	

–  AlternaAvely	(for	a	general	mulA-axial	state	of	stress),	compute	the	following	quanAty,	
which	resolves/projects	the	stress,	σ,	onto	the	kth	slip	system:	

€ 

τ (k ) = gimbi
(k )σmng jnn j

(k )
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Hexagonal	Metals	
•  For	typical	hexagonal	metals,	the	primary	systems	are:	

Basal	slip	{0001}<1-210>	
PrismaAc	slip	{10-10}<1-210>	
Pyramidal	twins	{10-11}<1-210>	

•  At	room	temperature	and	below	for	Zr,	the	systems	are:	
PrismaAc	slip	{10-10}<1-210>	
Tension	twins	{10-12}<10-11>,	and	{11-21}<-1-126>	
Compression	twin	{11-22}<-1-123>	
Also	secondary	pyramidal	slip	may	play	a	limited	role	at	
RT:		{10-11}<-2113>,	or	{11-21}<-2113>	

•  For	Mg,	by	contrast,	the	basal	slip	system	has	the	lowest	
criAcal	resolved	shear	stress	(CRSS)	

29	
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Summary	
•  The	Schmid	Law	is	well	established	for	the	
dependence	of	onset	of	plasAc	slip	as	well	
as	the	geometry	of	slip.	

•  Cubic	metals	have	a	limited	set	of	slip	
systems:	{111}<110>	for	fcc,		
and	{110}<111>	for	bcc	(neglecAng	pencil	
glide	for	now).	

•  Hexagonal	metals	have	a	larger	range	of	
slip	systems	(see	previous	slide).		

Please acknowledge Carnegie Mellon if you make public use of these slides	
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Supplemental	Slides	

Please acknowledge Carnegie Mellon if you make public use of these slides	



Crystal	Planes	in	HCP	

Basal 
(0002) 

Pyramidal 
(1 0 -1 1) 

Prism 
(0 -1 1 0) 
(2 -1 -1 0) 

Pyramidal 
(1 0 -1 2) 

32	
Berquist	&	Burke:	Zr	alloys	

Also:	Was:	fig.	14.19	
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Crystal	Direc%ons	in	HCP	
[0002]	

Unique	direcAon	
in	HCP	material	is	
[0002].			

This	direcAon	is	
perpendicular	to	
the	basal	plane	
(0002).	

Useful	for	basic	
texture	
quanAficaAon.	

33	
Berquist	&	Burke:	Zr	alloys	
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Disloca%on	Mo%on	

•  DislocaAons	control	most	aspects	of	strength	and	
ducAlity	in	structural	(crystalline)	materials.	

•  The	strength	of	a	material	is	controlled	by	the	
density	of	defects	(dislocaHons,	second	phase	
parHcles,	boundaries).	

•  For	a	polycrystal:	
	σyield	=	<M>	τcrss	=	<M>	α	G	b	√ρ	

Please acknowledge Carnegie Mellon if you make public use of these slides	



35	

Disloca%ons	&	Yield	
•  Straight	lines	are	not	a	good	approximaAon	for	the	shape	

of	dislocaAons,	however:	dislocaAons	really	move	as	
expanding	loops.	
	
	
	
	
	
	
	

•  The	essenAal	feature	of	yield	strength	is	the	density	of	
obstacles	that	dislocaAons	encounter	as	they	move	across	
the	slip	plane.		Higher	obstacle	density	⇒	higher	strength.	

[Dieter]	

Please acknowledge Carnegie Mellon if you make public use of these slides	
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Why	is	there	a	yield	stress?	
•  One	might	think	that	dislocaAon	flow	is	something	like	

elasAcity:	larger	stresses	imply	longer	distances	for	
dislocaAon	moAon.		This	is	not	the	case:	dislocaAons	only	
move	large	distances	once	the	stress	rises	above	a	
threshold	or	cri%cal	value	(hence	the	term	cri%cal	resolved	
shear	stress).	

[Dieter]	
• 	Consider	the	expansion	of	a	
dislocaAon	loop	under	a	
shear	stress	between	two	
pinning	points	(Frank-Read	
source).	

Please acknowledge Carnegie Mellon if you make public use of these slides	
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Orowan	bowing	stress	

1

2

3

2r

λ

•  If	you	consider	the	three	consecuAve	
	posiAons	of	the	dislocaAon	loop,	it	is		
not	hard	to	see	that	the	shear	stress		
required	to	support	the	line	tension	of	
	the	dislocaAon	is	roughly	equal	for	posiAons	1	and	3,	but	higher	for	
posiAon	2.		Moreover,	the	largest	shear	stress	required	is	at	
posiAon	2,	because	this	has	the	smallest	radius	of	curvature.		A	
simple	force	balance	(ignoring	edge-screw	differences)	between	the	
force	on	the	dislocaAon	versus	the	line	tension	force	on	each	
obstacle	then	gives  

	 	 	τmaxbλ =	(µb2/2),		
where	λ	is	the	separaAon	between	the	obstacles	(strictly	speaking	
one	subtracts	their	diameter),	b	is	the	Burgers	vector	and	G	is	the	
shear	modulus	(Gb2/2	is	the	approximate	dislocaAon	line	tension).	
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Orowan	Bowing	Stress,	contd.	
•  To	see	how	the	force	balance	applies,	

consider	the	relaAonship	between	the	shape	
of	the	dislocaAon	loop	and	the	force	on	the	
dislocaAon.	

•  Line	tension	=	Gb2/2	
Force	resolved	in	the	verAcal	direcAon	=	
2cosφ Gb2/2	
Force	exerted	on	the	dislocaAon	per	unit	
length	(Peach-Koehler	Eq.)	=	τb	
Force	on	dislocaAon	per	obstacle	(only	the	
length	perpendicular	to	the	shear	stress	
ma<ers)	=	λτb


•  At	each	posiAon	of	the	dislocaAon,	the	forces	
balance,	so		
τ = cosφ Gb2/λb


•  The	maximum	force	occurs	when	the	angle	
φ	=	0°,	which	is	when	the	dislocaAon	is	bowed	
out	into	a	complete	semicircle	between	the	
obstacle	pair.	

τ	

λ	

Gb2/2	 Gb2/2	

φ	

τ	

λ	

Gb2/2	 Gb2/2	

φ=0°	

MOVIES: http://www.gpm2.inpg.fr/axes/plast/MicroPlast/ddd/	
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Cri%cal	stress	
•  It	should	now	be	apparent	that	dislocaAons	will	only	move	

short	distances	if	the	stress	on	the	crystal	is	less	than	the	
Orowan	bowing	stress.		Once	the	stress	rises	above	this	
value	then	any	dislocaAon	can	move	past	all	obstacles	and	
will	travel	across	the	crystal	or	grain.	

•  This	analysis	is	correct	for	all	types	of	obstacles	from	
precipitates	to	dislocaAons	(that	intersect	the	slip	plane).		
For	weak	obstacles,	the	shape	of	the	criAcal	configuraAon	is	
not	the	semi-circle	shown	above	(to	be	discussed	later)	-	
the	dislocaAon	does	not	bow	out	so	far	before	it	breaks	
through.	
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Stereology:	Nearest	Neighbor	Distance	

•  The	nearest	neighbor	distance	(in	
a	plane),	∆2,	can	be	obtained	from	
the	point	density	in	a	plane,	PA.	

•  The	probability	density,	P(r),	is	
given	by	considering	successive	
shells	of	radius,	r:	the	density	is	
the	shell	area,	mulAplied	by	the	
point	density	,	PA,	mulAplied	by	
the	remaining	fracAon	of	the	
cumulaAve	probability.	

•  For	strictly	1D	objects	such	as	
dislocaAons,	∆2	may	be	used	as	
the	mean	free	distance	between	
intersecAon	points	on	a	plane.	

P(r)dr = 1 − P(r)dr
0

r

∫[ ]PA2πrdr
P(r)dr = 2πrPAe−πr

2PA

Δ 2 = rP(r)dr
0

∞

∫
Δ 2 =

1
2 PA

r	

dr	

Ref: Underwood, pp 84,85,185.	
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Disloca%ons	as	obstacles	
•  DislocaAons	can	be	considered	either	as	a	set	of	

randomly	oriented	lines	within	a	crystal,	or	as	a	set	
of	parallel,	straight	lines.		The	la<er	is	easier	to	work	
with	whereas	the	former	is	more	realisAc.	

•  DislocaAon	density,	ρ,	is	defined	as	either	line	length	
per	unit	volume,	LV.		It	can	also	be	defined	by	the	
areal	density	of	intersecAons	of	dislocaAons	with	a	
plane,	PA.	

•  Randomly	oriented	dislocaAons:	use		
ρ = LV = 2PA;	∆2 = (2PA)-1/2;	thus		
λ = (2√{LV/2})-1 ≡ (2√{ρ/2})-1.		
λ	is	the	obstacle	spacing	in	any	plane.	

•  Straight,	parallel	dislocaAons:	use	ρ	=	LV	=	PA	where	
PA	applies	to	the	plane	orthogonal	to	the	disloca%on	
lines	only;	∆2=(PA)-1/2;	thus	λ =	1/√LV		≡	1/√ρ	where	λ	
is	the	obstacle	spacing	in	the	plane	orthogonal	to	the	
disloca%on	lines	only.	

•  Thus,	we	can	write	τcrss	=	αµb√ρ	

θ”	
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