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Objective 
•  The objective of this lecture is to explain how 

single crystals deform plastically. 
•  Subsidiary objectives include: 

–  Schmid Law 
–  Critical Resolved Shear Stress 
–  Lattice reorientation during plastic deformation 

•  Note that this development assumes that we 
load each crystal under stress boundary 
conditions.  That is, we impose a stress and 
look for a resulting strain (rate). 
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Why is the Schmid factor useful? 
•  The Schmid factor is a good predictor of which slip or twinning 

system will be active, especially for small plastic strains (< 5 %). 
•  It has been used to analyze the plasticity of ordered 

intermetallics, especially Ni3Al and NiAl. 
•  It has been used to analyze twinning in hexagonal metals, which 

is an essential deformation mechanism. 
•  Some EBSD software packages will let you produce maps of 

Schmid factor. 
•  Schmid factor has proven useful to visualize localization of 

plastic flow as a precursor to fatigue crack formation. 
•  Try searching with “Schmid factor” (include the quotation 

marks). 
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Notation 
•  Strain (tensor), local: Elocal; global: Eglobal 
•  Slip direction (unit vector): b (or m) 
•  Slip plane (unit vector) normal: n (or s) 
•  Stress (tensor): σ	

•  Shear stress (scalar, usually on a slip system): τ	

•  Angle between tensile axis and slip direction: λ 
•  Angle between tensile axis and slip plane normal: θ 
•  Schmid factor (scalar): m 
•  Slip system geometry matrix (3x3): m 
•  Taylor factor (scalar): M 
•  Shear strain (scalar, usually on a slip system): γ	

•  Stress deviator (tensor): S 
•  Rate sensitivity exponent: n 
•  Slip system index: s (or α) 
•  Set of Reference Axes: Oxi	  
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Historical Development 

Physics of single-crystal plasticity 
q  Established by Ewing and Rosenhaim(1900), 
Polanyi(1922), Taylor and others(1923/25/34/38), 
Schimd(1924), Bragg(1933)  

Mathematical representation 
q  Initially proposed by Taylor in 1938, followed by Bishop 
& Hill (1951) 

q  Further developments by Hill(1966), Kocks (1970), Hill 
and Rice(1972) , Asaro and Rice(1977),  Hill and 
Havner(1983) 



Single Crystal Plasticity, A.D.Rollett, Carnegie Mellon Univ., 2014	


7	


Experimental measurements showed that: 

q  At room temperature the major source for plastic 
deformation is the dislocation motion through the crystal 
lattice 
q  Dislocation motion occurs on fixed crystal planes (“slip 
planes”) in fixed crystallographic directions (corresponding 
to the Burgers vector of the dislocation that carries the slip) 
q  The crystal structure of metals is not altered by the 
plastic flow  
q  Volume changes during plastic flow are negligible, which 
means that the pressure (or, mean stress) does not 
contribute to plasticity 

Physics of Slip 
Experimental technique Uniaxial Tension or Compression 
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Shear Stress – Shear Strain Curves 
A typical flow curve (stress-strain) 
for a single crystal shows three 
stages of work hardening:  
-  Stage I = “easy glide” with low 
hardening rates ~µ/10000;  
- Stage II with high, constant 
(linear) hardening rate ~µ/200, 
nearly independent of 
temperature or strain rate;  
- Stage III with decreasing 
hardening rate and very sensitive 
to temperature and strain rate.  
Dynamic recovery operates; 
-  Stage IV (not shown) with low 
hardening rates ~µ/10000. 
Hardening behavior will be 
discussed in another lecture. 
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Burgers vector: b  

Screw position:���
line direction//b	


Edge position:���
line direction⊥b	


A dislocation is a line defect in the crystal lattice.  The defect has a 
definite magnitude and direction determined by the closure failure 
in the lattice found by performing a circuit around the dislocation 
line; this vector is known as the Burgers vector of the dislocation.  
It is everywhere the same regardless of the line direction of the 
dislocation.  Dislocations act as carriers of strain in a crystal 
because they are able to change position by purely local 
exchange in atom positions (conservative motion) without any 
long range atom motion (i.e. no mass transport required). 

[Reid] 
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Slip steps 
Slip steps (where 
dislocations exit 
from the crystal) on the 
surface of compressed 
single crystal of Nb. 

[Reid]	
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Dislocation glide 
•  The effect of dislocation motion in a crystal: 

passage causes one half of the crystal to be 
displaced relative to the other.  This is a shear 
displacement, giving rise to a shear strain. 

[Dieter]	
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Single Crystal Deformation 
•  To make the connection between dislocation 

behavior and yield strength as measured in tension, 
consider the deformation of a single crystal. 

•  Given an orientation for single slip, i.e. the resolved 
shear stress reaches the critical value on one system 
ahead of all others, then one obtains a “pack-of-
cards” straining. 

[Dieter]	
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Resolved Shear Stress 
•  Geometry of slip: how big an  

applied stress is required for slip? 
•  To obtain the resolved shear 

stress based on an applied tensile 
stress, P, take the component of 
the stress along the slip direction 
which is given by Fcosλ, and divide  
by the area over which the (shear) 
force is applied, A/cosφ.  Note that  
the two angles are not complementary unless the slip 
direction, slip plane normal and tensile direction 
happen to be co-planar. 

 τ = (F/A) cosλcosφ = σ cosλcosφ = σ * m 

Schmid factor := m	

In tensor (index) form: 
τ = bi σij nj	


= b 

= n 
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Schmid’s Law 

•  Initial yield stress varies from sample to sample 
depending on, among several factors, the position of the 
crystal lattice relative to the loading axis. 

•  It is the shear stress resolved along the slip direction on 
the slip plane that initiates plastic deformation. 

•  Yield will begin on a slip system when the shear stress 
on this system first reaches a critical value (critical 
resolved shear stress, crss), independent of the tensile 
stress or any other normal stress on the lattice plane. 

Schmid postulated that: 

E. Schmid & W. Boas (1950), Plasticity of Crystals, Hughes & Co., London. 
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Schmid’s Law 
Resolved Shear Stress 

€ 

τ = s ⋅σ ⋅ n =σ cosφ cosλ =σ m

σ c =
τ c

cosφ cosλ
= τ c

m
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Critical Resolved Shear Stress 
•  The experimental evidence of Schmid’s Law is that there is a 

critical resolved shear stress.  This is verified by measuring the 
yield stress of single crystals as a function of orientation.  The 
example below is for Mg which is hexagonal and slips most 
readily on the basal plane (all other τcrss are much larger). 

“Soft orientation”,���
with slip plane at���
45°to tensile axis	


“Hard orientation”,���
with slip plane at���
~90°to tensile axis	


σ = τ/cosλcosφ	


Exercise: 
draw a series of 
diagrams that illustrate 
where the tensile axis 
points in relation to the 
basal plane normal for 
different points along 
this curve 
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Calculation of Resolved Shear Stress 

Using Schmid’s law 
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Rotation of the Crystal Lattice 
The slip direction rotates towards the tensile axis 

[Khan] 
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FCC 
Geometry of 
Slip Systems 

[Reid]	

In fcc crystals, the slip 
systems are combinations 
of <110> slip directions 
(the Burgers vectors) and 
{111} slip planes. 
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Slip Systems  
in fcc materials 

For FCC materials there are 
12 slip systems (with + and - 
shear directions: 

Four {111} planes, each with 
three <011> directions: the letter 
denotes the plane, and the subscript 
number denotes the direction (in that 
plane). 

[Khan] 

The combination of slip plane {a,b,c,d} and 
slip direction {1,2,3} that operates within 
each unit triangle is shown in the figure 

Note correction to system b2 

€ 

101[ ]
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Geometry of Single Slip 
•  For tensile stress applied in the 

[100]-[110]-[111] unit triangle, 
the most highly stressed slip 
system (highest Schmid factor) 
has a (11-1) slip plane and a 
[101] slip direction (the indices 
of both plane and direction are 
the negative of those shown on 
the previous page).  

•  Caution: this diagram places 
[100] in the center, not [001]. [Hosford] 
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Schmid factors 

•  The Schmid factors, m, vary markedly within the unit 
triangle (a).  One can also (b) locate the position of 
the maximum (=0.5) as being equidistant between 
the slip plane and slip direction. 

(a) (b) 

[Hosford] 
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Names of Slip Systems 
•  In addition to the primary slip 

system in a given triangle, 
there are systems with 
smaller resolved shear 
stresses.  Particular names 
are given to some of these.  
For example the system that 
shares the same Burgers 
vector allows for cross-slip of 
screws and so is known as 
the cross slip system.  The 
system in the triangle across 
the [100]-[111] boundary is 
the conjugate slip system. 

[Hosford] 
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Rotation of the Crystal Lattice in 
Tensile Test of an fcc Single Crystal 

The tensile axis rotates in tension towards the [100]-[111] line.  If 
the tensile axis is in the conjugate triangle, then it rotates to the 
same line so there is convergence on this symmetry line.  Once 
on the line, the tensile axis will rotate towards [211] which is a 
stable orientation.  Note: the behavior in multiple slip is similar but 
there are significant differences in terms of the way in which the 
lattice re-orients relative to the tensile axis. 

[Hosford] 
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 Rotation of the Crystal Lattice in Compression 
Test of an fcc Single Crystal 

The slip plane normal rotates towards the compression axis	


[Khan] 
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Useful Equations 

•  To find a new plane normal, P, based on an initial 
plane normal, p, after slip, use the following: 

[Reid]	


•  Following the notation in Reid:  
n:= slip plane normal (unit vector); 
b:= slip direction (unit vector). 

•  To find a new direction, D, based on 
an initial direction, d, after slip, use 
(and remember that crystal 
directions do not change): 
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Taylor rate-sensitive model 
•  We will find out later that the classical Schmid Law 

picture of elastic-perfectly plastic behavior is not 
sufficient. 

•  In fact, there is a smooth transition from elastic to 
plastic behavior that can be described by a power-law 
behavior. 

•  The shear strain rate on each slip system is given by 
the following (for a specified stress state),  
where* mij = binj, or m=b⊗n: 

˙ γ (s) = ˙ ε 0
m(s) :σc

τ (s)

n(s )

sgn m(s) :σc( )
* “m” is a slip tensor, formed as the outer product of the slip direction and slip plane normal 
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Schmid Law Calculations 
•  To solve problems using the Schmid Law, use this pseudo-code: 

–  Check that single slip is the appropriate model to use (as opposed to, say, 
multiple slip and the Taylor model); 

–  Make a list of all 12 slip systems with slip plane normals (as unit vectors) 
and slip directions (as unit vectors that are perpendicular to their associated 
slip planes; check orthogonality by computing dot products); 

–  Convert whatever information you have on the orientation of the single 
crystal into an orientation matrix, g; 

–  Apply the inverse of the orientation to all planes and directions so that they 
are in specimen coordinates; 

–  If the tensile stress is applied along the z-axis, for example, compute the 
Schmid factor as the product of the third components of the transformed 
plane and direction; 

–  Inspect the list of absolute values of the Schmid factors: the slip system with 
the largest absolute value is the one that will begin to slip before the others; 

–  Alternatively (for a general multi-axial state of stress), compute the following 
quantity, which resolves/projects the stress, σ, onto the kth slip system: 

€ 

τ (k ) = gimbi
(k )σmng jnn j

(k )
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Hexagonal Metals 
•  For typical hexagonal metals, the primary systems 

are: 
Basal slip {0001}<1-210> 
Prismatic slip {10-10}<1-210> 
Pyramidal twins {10-11}<1-210> 

•  At room temperature and below for Zr, the systems 
are: 
Prismatic slip {10-10}<1-210> 
Tension twins {10-12}<10-11>, and {11-21}<-1-126> 
Compression twin {11-22}<-1-123> 
Also secondary pyramidal slip may play a limited role 
at RT:  {10-11}<-2113>, or {11-21}<-2113> 

29	
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Summary 
•  The Schmid Law is well established for 

the dependence of onset of plastic slip 
as well as the geometry of slip. 

•  Cubic metals have a limited set of slip 
systems: {111}<110> for fcc,  
and {110}<111> for bcc (neglecting 
pencil glide for now). 

•  Hexagonal metals have a larger range 
of slip systems (see previous slide).  
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Supplemental Slides 
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Crystal Planes in HCP 

Basal 
(0002) 

Pyramidal 
(1 0 -1 1) 

Prism 
(0 -1 1 0) 
(2 -1 -1 0) 

Pyramidal 
(1 0 -1 2) 

32	

Berquist & Burke: Zr alloys 

Also: Was: fig. 14.19 
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Crystal Directions in HCP 
[0002] 

Unique direction 
in HCP material 
is [0002].   

This direction is 
perpendicular to 
the basal plane 
(0002). 

Useful for basic 
texture 
quantification. 

33	

Berquist & Burke: Zr alloys 
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Dislocation Motion 

•  Dislocations control most aspects of strength and 
ductility in structural (crystalline) materials. 

•  The strength of a material is controlled by the 
density of defects (dislocations, second 
phase particles, boundaries). 

•  For a polycrystal: 
 σyield = <M> τcrss = <M> α G b √ρ 



Single Crystal Plasticity, A.D.Rollett, Carnegie Mellon Univ., 2014	


35	


Dislocations & Yield 
•  Straight lines are not a good approximation for the 

shape of dislocations, however: dislocations really 
move as expanding loops. 
 
 
 
 
 
 
 

•  The essential feature of yield strength is the density 
of obstacles that dislocations encounter as they move 
across the slip plane.  Higher obstacle density ⇒ 
higher strength. 

[Dieter]	
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Why is there a yield stress? 
•  One might think that dislocation flow is something like 

elasticity: larger stresses imply longer distances for 
dislocation motion.  This is not the case: dislocations 
only move large distances once the stress rises 
above a threshold or critical value (hence the term 
critical resolved shear stress). 

[Dieter]	


•  Consider the expansion 
of a dislocation loop under 
a shear stress between 
two pinning points (Frank-
Read source). 
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 Orowan bowing 
stress 

1

2

3

2r

λ

•  If you consider the three consecutive 
 positions of the dislocation loop, it is  
not hard to see that the shear stress  
required to support the line tension of 
 the dislocation is roughly equal for positions 1 and 3, but 
higher for position 2.  Moreover, the largest shear stress 
required is at position 2, because this has the smallest radius 
of curvature.  A simple force balance (ignoring edge-screw 
differences) between the force on the dislocation versus the 
line tension force on each obstacle then gives  

	
 	
 	
τmaxbλ = (µb2/2),  
where λ is the separation between the obstacles (strictly 
speaking one subtracts their diameter), b is the Burgers vector 
and G is the shear modulus (Gb2/2 is the approximate 
dislocation line tension). 
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Orowan Bowing Stress, contd. 
•  To see how the force balance applies, 

consider the relationship between the shape 
of the dislocation loop and the force on the 
dislocation. 

•  Line tension = Gb2/2 
Force resolved in the vertical direction = 
2cosφ Gb2/2 
Force exerted on the dislocation per unit 
length (Peach-Koehler Eq.) = τb 
Force on dislocation per obstacle (only the 
length perpendicular to the shear stress 
matters) = λτb 

•  At each position of the dislocation, the 
forces balance, so  
τ = cosφ Gb2/λb 

•  The maximum force occurs when the angle 
φ = 0°, which is when the dislocation is 
bowed out into a complete semicircle 
between the obstacle pair. 

τ	


λ	


Gb2/2	
 Gb2/2	


φ	


τ	


λ	


Gb2/2	
 Gb2/2	


φ=0°	


MOVIES: http://www.gpm2.inpg.fr/axes/plast/MicroPlast/ddd/	
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Critical stress 
•  It should now be apparent that dislocations will only 

move short distances if the stress on the crystal is less 
than the Orowan bowing stress.  Once the stress rises 
above this value then any dislocation can move past 
all obstacles and will travel across the crystal or grain. 

•  This analysis is correct for all types of obstacles from 
precipitates to dislocations (that intersect the slip 
plane).  For weak obstacles, the shape of the critical 
configuration is not the semi-circle shown above (to be 
discussed later) - the dislocation does not bow out so 
far before it breaks through. 
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Stereology: Nearest Neighbor Distance 

•  The nearest neighbor distance 
(in a plane), ∆2, can be 
obtained from the point density 
in a plane, PA. 

•  The probability density, P(r), is 
given by considering 
successive shells of radius, r: 
the density is the shell area, 
multiplied by the point density , 
PA, multiplied by the remaining 
fraction of the cumulative 
probability. 

•  For strictly 1D objects such as 
dislocations, ∆2 may be used 
as the mean free distance 
between intersection points on 
a plane. 

P(r)dr = 1 − P(r)dr
0

r

∫[ ]PA2πrdr
P(r)dr = 2πrPAe−πr

2PA

Δ 2 = rP(r)dr
0

∞

∫
Δ 2 =

1
2 PA

r	


dr	


Ref: Underwood, pp 84,85,185.	
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Dislocations as obstacles 
•  Dislocations can be considered either as a set of 

randomly oriented lines within a crystal, or as a 
set of parallel, straight lines.  The latter is easier 
to work with whereas the former is more realistic. 

•  Dislocation density, ρ, is defined as either line 
length per unit volume, LV.  It can also be defined 
by the areal density of intersections of 
dislocations with a plane, PA. 

•  Randomly oriented dislocations: use  
ρ = LV = 2PA; ∆2 = (2PA)-1/2; thus  
λ = (2√{LV/2})-1 ≡ (2√{ρ/2})-1.  
λ is the obstacle spacing in any plane. 

•  Straight, parallel dislocations: use ρ = LV = PA 
where PA applies to the plane orthogonal to the 
dislocation lines only; ∆2=(PA)-1/2; thus λ = 1/√LV  
≡ 1/√ρ where λ is the obstacle spacing in the 
plane orthogonal to the dislocation lines only. 

•  Thus, we can write τcrss = αµb√ρ	


θ”	



