DEPARTMENT OF
MATERIALS SCIENCE AND ENGINEERING

27-750, Advanced Characterization
and Microstructural Analysis:
Texture and its Effect on
Anisotropic Properties

Tony (A.D.) Rollett, Carnegie Mellon Univ.

Last revised: 12t Jan. 2014



Microstructure-Properties
Relationships

Processing

Performance

Microstructure Properties



Course Objective

e Many courses deal with microstructure-properties
relationships, so what is special about this course?!

e Despite the crystalline nature of most useful and
interesting materials, crystal alignment and the associated
anisotropy is ignored. Yet, most properties are sensitive
to anisotropy. Therefore microstructure should include
crystallographic orientation (“texture”).

e The objective of this course is to provide you with the

tools to understand and quantify various kinds of texture
and to solve problems that involve texture and

anisotropy.



Questions

Examples of questions that you should be able to answer with the knowledge and skills provided by
this course:

What is a “fiber texture”?
Why is a <111>//ND texture ideal for deep drawing?
Why is obtaining a <111> fiber texture difficult in FCC metals, but straightforward in BCC?

Why are intensity values generally much higher in the Orientation Distribution than in the
corresponding pole figures?

How is it possible to recover the full 5-parameter distribution of grain boundary character from a
plane section and yet one can only measure 4 out of 5 parameters for an individual boundary in that
plane section?

What do the units “Multiples of a Random/Uniform Distribution” mean? Why are distributions
scaled differently in texture than in statistics?

Why was solving the problem of calculating an orientation distribution from pole figures a
fundamental advance in texture analysis? Hint: think about the parameterization of rotations.

Why do we need 3 (and only 3) parameters to describe a rotation?

How do Miller indices, orthogonal matrices, Rodrigues parameters and quaternions relate to each
other?

What is epitaxy? What is apotaxy (not apoplexy!)?

Why do textures develop during plastic deformation?



Encyclopedia Britannica,
texture

— Texture refers to the physical makeup of rock--
namely, the size, shape, and arrangement
(packing and orientation) of the discrete
grains or particles of a sedimentary rock. Two
main natural textural groupings exist for
sedimentary rocks: clastic (or fragmental) and
nonclastic (essentially crystalline).
Noncarbonate chemical sedimentary...



Websters’ Dictionary, fabric

Main Entry: fab-ric

Pronunciation: 'fa-brik

Function: noun

Etymology: Middle French fabrique, from Latin fabrica workshop, structure
Date: 15th century

1 a:STRUCTURE, BUILDING b : underlying structure : FRAMEWORK <the fabric of
society>

2 :an act of constructing : ERECTION; specifically : the construction and maintenance of
a church building

3 a: structural plan or style of construction b : TEXTURE, QUALITY -- used chiefly of
textiles c : the arrangement of physical components (as of soil) in relation to each

other
4 a:CLOTH 1a b : a material that resembles cloth

5 : the appearance or pattern produced by the shapes
and arrangement of the crystal grains in a rock



Websters’ Dictionary,
anisotropy

Main Entry: an-iso-trop-ic
Pronunciation: "a-"nl-s&-"trg-pik
Function: adjective

Date: 1879: exhibiting properties with different values
when measured in different directions <an anisotropic
crystal>

- an-iso-trop-i-cal-ly /-pi-k(&-)IE/ adverb
- an-isot-ro-py /-(")nl-'sé-tr&-pE/ also an-isot-ro-pism /-"pi-
z&m/ noun



People

e The development of the field
is greatly indebted to Hans J.
Bunge who passed away in
2006.

e His textbook (translated from
the German original), Texture
Analysis in Materials Science,
is a very useful reference and
many of his suggestions are
only just now being developed
into useful tools




Microstructure

e Conventional Approach: grain structure, phase structure
(qualitative, image based), emphasizes interfaces and
boundaries between phases.

e (Quantitative (conventional): grain size, aspect ratio(s),
particle size, phase connectivity.

e Modern Quantitative: (probability) distributions of
orientation of crystal axes (relative to a reference frame)
of crystals or boundaries between crystals. Properties
calculated from distributions and/or microstructures with

orientation included.
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Microstructure with Crystal
Directions

Fig. 6 (a) Artificially generated {100} cleavage planes and (b) “‘autoepitactically” grown {100} cubes
(Haiiyian cubelets) in Asse rock salt.

Note cleavage planes within each grain: a natural indicator of
crystallographic directions in a geological material.
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Why study texture?

e Many examples exist of materials
engineered to have a specific texture in
order to optimize performance (single
crystal turbine blades, transformer steel,
magnetic thin films...).

e Control of texture achievable through
control of processing but many challenges
remain.
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Texture examples

Example 1. Transformer Steel

Example 2. Anisotropic particles (whiskers) of hydroxy-
apatite (HA) in polyethylene (PE)

Example 3. Earing in Deep Drawing of Cups: see slides on
forming of Beer Cans

Example 4. Anisotropy of Fatigue Properties in Aerospace
Al

Example 5. Effect of Grain Boundary Character on Pb
Electrodes in Lead-Acid Batteries: see slides on grain
boundaries and grain boundary engineering (GBE)
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Example 1: Transformer Steel

1935 : Goss first published his work on high permeability silicon steels.

The most commonly used material as the soft magnetic material for
transformer laminations is a highly oriented albeit polycrystalline 3%Si steel,
in other words, the material is almost a single crystal.

"Goss orientation" has a <110> direction normal to the sheet and a <001>
parallel to the rolling direction.

Aligns the softest magnetic direction with the direction of magnetization.
Thus transformers made from the textured sheet exhibit lower electrical
losses.

Processing relies on a secondary recrystallization step in which all grainsin a
fine, primary recrystallized structure are pinned by second phase particles
while the Goss grains grow to consume the entire volume.

Not clearly understood what differences in grain boundary character at the
perimeter of the growing Goss grains provides them with the ability to grow
at the expense of the general population.
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Example 2: HA particles in PE

The figure shows (a)
Spherical
hydroxyapatite particles
(b) Whisker
hydroxyapatite particles
(c) Size and frequency
of the hydroxyapatite
particles.

Y. Zhang, K.E. Tanner,
N. Gurav, and L. D1
Silvio: In vitro
osteoblastic response to
30 vol% hydroxyapatite
polyethylene composite.
J Biomed Mater Res A.
2007 May;81(2):
409-17.
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Eg 2, contd.: HA particles in PE

Intensity (atbitrary units)
Intensity (arbitrary units)
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(@ (b)
The figure shows (a) An XRD orientation comparison of whisker

hydroxyapatite particles and random powder (b) An XRD orientation
comparison of spherical hydroxyapatite particles and random powder
[Zhang et al.]. Texture 1s inferred from the difference between the
measured powder pattern and the pattern expected for a randomly
oriented material (from the powder diffraction file). This is typical in
the literature as a purely qualitative measure of texture.
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Texture in HA in bone: refs

X-ray Pole Figure Analysis of Apatite Crystals and Collagen Molecules in Bone - all 3 versions, N Sasaki -
Calcified Tissue International, 1997 - Springer

... figure analysis of mineral nanoparticle orientation in individual trabecula of human vertebral bone -
all 6 versions, D Jaschouz, O Paris, P Roschger, HS Hwang, P ... - Journal of Applied Crystallography,
2003 - dx.doi.org

Crystal alignment of carbonated apatite in bone and calcified tendon: results from quantitative ... - all
4 versions, HR Wenk, F Heidelbach - Bone, 1999 - Elsevier

Pole figures of the orientation of apatite in bones - all 3 versions, JP Nightingale, D Lewis - Nature,
1971 - nature.com, Pole Figures of the Orientation of Apatite in Bones. ... THE orientation of the
apatite and collagen in bone was first considered in this work because of its ...

Orientation of apatite in single osteon samples as studied by pole figures, A Ascenzi, E Bonucci, P
Generali, A Ripamonti, N ... - Calcified Tissue International, 1979 - Springer

Bone Marrow Is a Reservoir of Repopulating Mesangial Cells during Glomerular Remodeling - all 4
versions, T Ito, A Suzuki, E Imai, M Okabe, M Hori - Journal of the American Society of Nephrology,
2001 - jasn.org

Quantitative texture analysis of small domains with synchrotron radiation X-rays, F Heidelbach, C
Riekel, HR Wenk - logo, 1999 - dx.doi.org
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Connections

Crystals are anisotropic.

A collection of crystals (a polycrystal) is therefore
anisotropic unless all possible orientations are
present.

Almost any processing of a material changes and
biases the crystal orientations, leading to texture
development.

Anisotropy can be taken advantage of; therefore
it makes sense to engineer (control, design) the
texture of a material.
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Books, Links

Course Textbook: U.F. Kocks, C. Tomé, and H.-R. Wenk, Eds.
(1998). Texture and Anisotropy, Cambridge University Press,
Cambridge, UK, ISBN 0-521-79420-X. This is now available as
a paperback. Relevant chapters: 1, 2, 3, 4, 5, 6, 7, 8. Note that :
there is more detail in each chapter than we will have time to Amsotropy
cover.

V. Randle and O. Engler, Texture Analysis: Macrotexture, Eo it N Tore ant Ml ek
Microtexture & Orientation Mapping (2000), Gordon & Breach

B.D. Cullity,(1978) Elements of X-ray Diffraction. i
H.-J. Bunge, (1982) Texture Analysis in Materials Science. '
A. Morawiec, Orientations and Rotations (2003), Springer. D‘
Recent review of Texture & Anisotropy: Wenk, H. R. and P. '

Van Houtte (2004). “Texture and anisotropy” Reports On
Progress In Physics 67 1367-1428.

Old, but still useful overview: I.L. Dillamore and W.T. Roberts
(1965) “Preferred orientation in wrought and annealed
metals”, Metall. Rev., 10, 271-380.

http://aluminium.matter.org.uk/content/html/eng/
default.asp?catid=100&pageid=1039432491

http://code.google.com/p/mtex/

Texture and
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Secondary References

Nye, J. F. (1957). Physical Properties of Crystals.

Ohser, J. and F. Mucklich (2000), Statistical Analysis of Microstructures in
Materials Science

Reid, C. N. (1973). Deformation Geometry for Materials Scientists

Hosford, W. (1993). The Mechanics of Crystals and Textured Polycrystals,
Oxford Engineering Science Series.

Khan, A.S. & S. Huang (1995). Continuum Theory of Plasticity, Wiley.
Sutton, A. P. and R. W. Balluffi (1995). Interfaces in Crystalline Materials

Gottstein, G. and L. S. Shvindlerman (1999). Grain Boundary Migration in
Metals

Howe, J.M. (2000). Interfaces in Materials
Underwood, E. E., Quantitative Stereology, (1970)
http://www.msm.cam.ac.uk/phase-trans/texture.html
http://labotex.com/
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Topics, Activities in Course: 1

e First major topic will be a discussion of orientations and
how to represent them quantitatively with Miller indices,
matrices, Rodrigues vectors and quaternions.

e The next major topic will be x-ray pole figures and their
analysis

Every student will obtain his/her own data set

We will first perform a standard analysis using popLA to generate
an orientation distribution; then each student will measure their
own pole figures and analyze the results

The emphasis will be on development of practical skills followed
up by discussion of the underlying concepts

The objective will be to have students be competent and
comfortable with pole figure analysis

e Each student will report on their analyses as their project
presentation at the end of the course.



Topics, Activities: 2

e The next major topic will be the analysis of
orientation distributions

— This will involve understanding the relationships
between the different methods of describing
orientations, especially Euler angles and Miller indices

— We will explore the mathematical aspects of
orientation space and the impact of crystal symmetry
and sample symmetry

— The objective will be to develop students’ quantitative
skills with orientation information so that they
understand the physical meaning of orientation and
texture
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Topics, Activities: 3

e The next major topic will be to investigate

orientation imaging microscopy (OIM) based on
automated indexing of electron back scatter

diffraction (EBSD) patterns in the scanning electron
microscope (SEM)

— As with x-ray pole figures, students will first analyze a
standard data set and then will make their own scan (if

they are not already using EBSD) for further analysis

— The objective will be to understand the differences
between sampling discrete orientations in a limited area

(EBSD) and measurement of the average orientation
(distribution) over a large area
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Topics, Activities: 4

e The next major topic is grain boundaries, whose
crystallography can be easily characterized by

electron microscopy

— We will discuss the physical characteristics of grain
boundaries, e.g. energy, mobility, together with the
additional complications for symmetry and
descriptions (Rodrigues vectors, quaternions)

— The objective is for students to become familiar with
both the properties of grain boundaries and the
methods for quantitative characterization
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Topics, Activities: 5

e The next major topic is microstructure-property
relationships using texture information

— Students will explore percolation analysis using electrical
conductivity in superconductors as an example of a case
where the crystal properties are (strongly) anisotropic
and the grain boundaries are also anisotropic.

— This exercise will teach students how to develop a
computer model on a discrete grid. Programming will be
required, although any of the following languages may
be used: C, C++, Fortran, VisualBasic.



Topics, Activities: 6

e The next major topic is microstructural measurement and
stereology. Stereology is the science of obtaining 3D
information about microstructure from 2D sections.

— Even something as seemingly straightforward as grain size is
interesting because we lack quantitative models for the size
distribution. GSDs are approximately log-normal, but not exactly.

— Stereology is necessary because characterization is most readily
available on plane cross sections. Therefore for most
microstructures, we need tools to infer the true 3D image from the
2D slices through the material

— The objective is to equip students to understand and use
stereological tools, e.g. reconstruction of particle size distributions
from cross sections, or, use of Microstructure Builder
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Topics, Activities: 7

e The next major topic is elastic and plastic
anisotropy

— Plastic deformation in metals (and ceramics at high
temperatures, and some polymers) is governed by the
motion of line defects - dislocations. The
crystallographically restricted slip directions (Burgers
vector) and slip planes mean that any degree of texture
results in an anisotropic response, e.g. a multi-axial
strain from an imposed unixial stress

— The objective is to equip students to understand and
use polycrystal analysis + modeling, e.g. LApp
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Lecture List (abbreviated)

. Introduction

. X-ray diffraction

A W N -

data, popLA
. Orientation distributions

. Texture in bulk materials
. EBSD/OIM

. Misorientation at boundaries
10. Continuous functions for ODs
11. Stereology

O oY OO0 U

. Texture components, Euler angles

. Calculation of ODs from pole figure

. Microscopy, SEM, electron diffraction

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

Graphical representation of ODs
Symmetry (crystal, sample)
Euler angles, variants

Volume fractions, Fiber textures
Grain boundaries

Rodrigues vectors, quaternions
CSL boundaries

GB properties

5-parameter descriptions of GBs
Herring’s relations

Elastic, plastic anisotropy
Taylor/Bishop-Hill model

Yield Surfaces
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N o U kA wbhe=

Learning Approach

Overall Concept

Phenomenology

Cause-and-Effect

Required Math+Physics+Chemistry
Measurement Technique, data
Analysis

Interpretation



Anisotropy-Texture

1. Overall Concept:
materials behave
anisotropically and, regarding
texture as part of
microstructure, this is another
microstructure-property
relationship

2. Phenomenology:
anisotropy is correlated with
non-random grain alignment.

3. Cause-and-Effect:
the cause of anisotropic
behavior is the
crystallographic preferred
orientation (texture) of the
grains in a polycrystal.

Required Math:
Crystal orientation is described by
a (3D) rotation; therefore texture
requires distributions of rotations
to be described.

Measurement Technique, data:
see next page

Analysis:

3D distributions have to be
reconstructed from 2D
projections

Interpretation:

Although pole figures often
provide easily recognized
patterns, orientation distributions
provide quantitative information.
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Crystal Orientations — Euler angles

Euler Angles to represent a crystal orientation
with respect to samples axes

Sample Axes

'?\ ND
| 100 crystal Axes
010 | /
o\ ’\ _RD
L~ )
7N
7 \
Component RD ND ’
: 4 001
Cube <100> {001} o
Goss <100> {011} Rotation 1 (¢,): rotate sample axes about ND
Brass <112> {110} Rotation 2 (®): rotate sample axes about rotated RD
Copper <111> {112} Rotation 3 (¢,): rotate sample axes about rotated ND

C. N. Tomé and R. A. Lebensohn, Crystal Plasticity, presentation at Pohang University of Science and Technology, Korea, 2009
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Crystal Orientations — Orientation Space

(P cube {100}<001> (0, 0, 0)

{110}<001> | @ Brass
(0, 45, 0) & {110}<-112>
’ (35, 45, 0)

Component Euler Angles (°)

Cube (0,0,0)

Goss (0, 45, 0) |

Brass (35, 45, 0) \ \ :
Copper (90, 45, 45) Orientation Spac‘ﬁe\”‘\.\_\ /

[1] C. N. Tome and R. A. Lebensohn, crystal plasticity, presentation at Pohang University of Science and Technology, Korea, 2009
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Crystal Orientations — ODF

ODF

Orientation Distribution Function f(g)

ODF gives the density of grains having
a particular orientation.

@Goss
{110}<001>
(0, 45, 0)

(P cube {100}<001> (0, 0, 0)

5 Brass

\‘ {110}<-112>

(35, 45, 0)

Contours at 0.500 1.000 2.000 4.000 8.000 16.000



{111} Pole Figure for Rolled Cu

A {111} pole figure of rolled copper, showing
the typical distribution of intensity for
moderate to large strains. The rolling plane
normal (ND) is perpendicular to the plane of
the figure and the rolling (RD) and transverse
(TD) directions are vertical and horizontal,
respectively, in the plane of the figure. The
contours indicate the diffracted intensity in
units of Multiples of a Random Density
(MRD). High frequencies of <111> directions
are found close to the RD, for example, and
also inclined 20° away from the ND towards
the RD [Hirsch, J. and K. Licke. Mechanism of
Deformation and Development of Rolling
Textures in Polycrystalline FCC Metals 1.
Description of Rolling Texture Development in
Homogeneous CuZn Alloys. Acta Metallurgica,
36 (11): 2863-2882, 1988].

RD

HPCU S5% o™ (111)

LEVELS . MAX: 8.6
1-2-4-6~-7-8MRD



34

Effect of Alloying: Cu-Zn (brass);

Copper  the texture transition
X

Brass

Check contour levels: 1, 2, 3 ...?

Zn content: (a) 0%, (b) 2.5%, (c) 5%, (d) 10%, (e) 20% and (f) 30% [Stephens 1968]
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Texture: Quantitative Description

Three (3) parameters needed to describe the orientation [of a crystal
relative to the embedding body or its environment] because it is a 3D
rotation.

Most common description: 3 [rotation] Euler angles

Other descriptions include: (orthogonal) rotation matrix (or axis
transformation matrix), Rodrigues-Frank vector, unit quaternion.

A common misunderstanding: although 2 parameters are sufficient to
describe the position of a vector, a 3D object such as a crystal requires
3 parameters to describe its (angular) position

Most experimental methods [X-ray pole figures included] do not
measure all 3 angles, so orientation distribution must be calculated.
An orientation distribution is just a probability distribution: it tells you
how likely you are to find a crystal that has the orientation specified
by the coordinates (Euler angles) of the point
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Euler Angles, Animated

001 €57 €37 2sampre ™D 3 position (final)
oo [010] 2nd position
A n l=e3 rrr 3 o B o
=Cr§;rj ¢1¢ Yerystal=€2 15t position

144
e,

e’2

e,=Y TD

sample=

~ Xcrystal=e1 e [100]

e’ =e”,
e1=X =RD

sample

Sample Axes
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This example of the texture of rolled copper, taken from Bunge’s book, uses the
Bunge definition of the Euler angles so that each possible orientation is defined by

(61, @ ¢,)
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Transformations of Axes

A 3D object such as a crystal requires 3 parameters to describe its
(angular) position.

The 3 parameters can be one of a great variety of types, including Euler
angles (best known in Materials Science), unit quaternions (popular in
robotics), Rodrigues vectors (useful for grain boundaries), or rotation
matrices.

Most often in materials science, we prefer to describe properties and field
qguantities (stress, strain, current, heat flux ...) in terms of a convenient
local frame.

Since some quantities are most easily described in, say, a frame associated
with a specimen (e.g. rolling-transverse-normal) and others (such as single
crystal properties) are associated with the local crystal frame, we need a
method to transform quantities from one frame to another.

There is a standard procedure known as “transformation of axes” that we
will use. Later on we will see that it is implicit in the Tensor
Transformation Rule. Mathematicians know this as a “passive rotation”.
It is complementary to the “active rotation” commonly used in solid
mechanics.

Vector and Tensor Analysis, Borisenko & Tarapov, translated by R. Silverman,Dover 1979.
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Scalars, Vectors, Tensors: Notation

General case: three dimensions
Vector: needs 3 numbers or coefficients to quantify its x, y and z components.

Two notations for vectors: “vector-tensor notation” where bold-face implies
higher-than-scalar nature; “component notation” where a suffix(-es) show
how many coefficients are needed.

Vector: eitherb or b,,i&{1,2,3}, or, i&{x,y,z}.

2nd rank tensor: either T or le, ij&1,2,3}
Advantage of vector-tensor notation is that the equations work (or, are valid)
in any reference frame. By contrast, when component notation is used, the

actual values of the coefficients depend on which reference frame is used.

If you see subscripts attached to a quantity, it is (almost always) a tensor and
the Einstein summation convention is assumed. The Einstein summation
convention says that a repeated index (on the RHS) implies summation over
that index (typically 1,2, and 3 in 3D). If the same, non-repeated index is
found on both sides of an equation, then no summation is performed.
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Changing the Coordinate System

e Many different choices are possible for the orthonormal base
vectors and origin of the Cartesian coordinate system. A
vector is an example of an entity which is independent of the
choice of coordinate system. Its direction and magnitude must
not change (and are, in fact, invariants), although its
components will change with this choice.

e Why would we want to do something like this? For example,
although the properties are conveniently expressed in a crystal
reference frame, experiments often place the crystals in a non-
symmetric position with respect to an experimental frame.
Therefore we need some way of converting the coefficients of
the property into the experimental frame.

e Changing the coordinate system is also known as axis
transformation.



41

Motivation for Axis Transformation

e One motivation for axis transformations is the need to
solve problems where the specimen shape (and the
stimulus direction) does not align with the crystal axes.
Consider what happens when you apply a force parallel to
the sides of this specimen ...

[100]

G

The direction parallel to the
long edge does not line up
with any simple, low index
crystal direction. Therefore
we have to find a way to
transform the properties that
we know for the material
into the frame of the
problem (or vice versa).

Applied stress

[110]

Image of Pt surface from www.cup.uni-muenchen.de/pc/wintterlin/IMGs/pt10p3.jpg
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New Axes

Consider a new orthonormal system consisting of right-handed
base vectors: él’, é'z and ég

These all have the same origin, o, o R

associated with the original axes: €,, €, and €,

The vector v is clearly expressed equally well in either coordinate
system:

S — v oo — ! D!

Note - same physical vector but different values of the
components.

We need to find a relationship between the two sets of
components for the vector.
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Direction cosines

Each direction cosine is
the length of the unit
vector, a, projected onto
each axis in turn. The
second direction cosine,
a, is shown.

o, = u = cosb,
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Rotation of axes in the x-y plane

cosf sinf
V =qav = , vV
\ —sinf coso

General rule

for determining X’ = .;C,
the coefficients of 1
a transformation matrix,
using dot-products:

/\ , /\
a; = X;* X, =%

X, y = old axes,; x’,y’ = new axes
Passive Rotation/ Transformation of Axes



45

Example: rotation angle = 30°
=(\/§/2 1/2 )V

, ( cos30° sin30°
vV =av=

\"%
—sin30° cos30° —1/2 /32
> Ay A

X, y = old axes, x’,y’ = new axes
Passive Rotation/ Transformation of Axes
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Tensor: definition, contd.

e |n order for a quantity to “qualify” as a tensor it has to
obey the axis transformation rule, as discussed in the

previous slides.

e The transformation rule defines relationships between
transformed and untransformed tensors of various ranks.

Vector: Vii=a,V,
nd T
2"% rank I = aga;ly
rd . =
3" rank 1" = Ay iy,
th ’ —
4™ rank Iy = Qi@ gp

e This rule is a critical piece of information,
which you must know how to use.
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3D Axis Transformation

e = old (sample) axes;
e’ = new (crystal) axes

Sample to Crystal (primed)

Obj/notation AxisTransformation Matrix EulerAngles Components
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Rodrigues-Frank vector definition

e We write the axis-angle representation as: (IA’,O!)
where the rotation axis = 0Q//0Q/

e The Rodrigues vector is defined as:

P = ftan((x /2) = tan(%)[rx,ry,rz]

The vector is parallel to the
rotation axis, and the
rotation angle is a, and the
magnitude of the vector is
scaled by the tangent of
the semi-angle.
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Quaternion: definition

q = q(q1,92.93.94)
For a unit quaternion, representing a rotation,
we have:

q(r sin6/2, cos6/2)
q(u sin6/2, v sin6/2, wsin6/2, cos6/2)

Here, the rotation axis is r=[u,v,w], as a unit
vector, and the rotation angle is 6.

Alternative notation puts cosine term in 1st
position, q(49¢,91,92,45) :

q = (cosf/2, usinf/2,vsinl/2, wsinf/2).
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Summary

e Microstructure contains far more than qualitative
descriptions (images) of cross-sections of
materials.

e Most properties are anisotropic which means that
it is critically important for quantitative
characterization to include orientation
information (texture).

e Many properties can be modeled with simple
relationships, although numerical
implementations are (almost) always necessary.
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Supplemental Slides



Websters’ Dictionary, texture

e Pronunciation: 'teks-ch&r
e function: noun

e FEtymology: Latin textura, from textus, past participle of texere to weave --
more at TECHNICAL

e Date: 1578

e 1a:something composed of closely interwoven elements; specifically : a
woven cloth b : the structure formed by the threads of a fabric

e 2a:essential part : SUBSTANCE b : identifying quality : CHARACTER

e 3a:thedisposition or manner of union of the particles of a body or substance
b : the visual or tactile surface characteristics and appearance of something
<the texture of

e an oil painting>
e 4a:acomposite of the elements of prose or poetry <all these words... meet

violently to form a texture impressive and exciting -- John Berryman> b : a
pattern of

e musical sound created by tones or lines played or sung together
e 5a: basic scheme or structure b : overall structure
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What do we need to learn?

1. How to measure texture:
— Method 1: x-ray pole figures
— Method 2: electron back scatter diffraction (EBSD)
— Method 3: transmission electron microscopy (TEM)
— Stereology: sections through 3D materials

2. What causes texture to develop in materials, and
how does it depend on material type and the
processing history?

— Deformation of bulk metals: rolling vs. torsion etc.
— Annealing: grain growth, recrystallization
— Thin films
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What do we need to learn? (contd.)

3. How to describe texture quantitatively, how to plot
textures, and how to understand texture:

Method 1: pole figures

Method 2: orientation distributions (OD)
Symmetry: crystal symmetry, sample symmetry
Components

Fibers

How to obtain ODs from pole figures
4. How does anisotropy depend on texture?
Elastic anisotropy

Plastic anisotropy; vield surfaces
Corrosion (grain boundaries)
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What do we need to learn? (contd.)

5. Grain Boundaries

Grain boundary atomic structure: low angle vs. high angle
boundaries

Special grain boundaries: Coincident Site Lattice boundaries (CSL)

How to describe grain boundary crystallography: axis-angle,
Rodrigues vectors

How to measure grain boundaries

6. Underlying Concepts

Different descriptions of rotations: Miller indices, Euler angles,
matrices, axis-angle pairs, Rodrigues vectors, quaternions

How to work with distributions
Spherical harmonics (series expansions)
Discretization of distributions

Volume fractions
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Learning Approach: 1

What is the result that we

want? For a solved problem,

we quote the equation or

concept.
i

How do we find solutions for

the differential equations,
and what are they?

What are the variables?

g

g

How do we set up the
differential equations?

How do we visualize the
solution - what graphs are
appropriate?

g

|

How do we determine the
boundary conditions?

What do worked solutions
corresponding to physical
situations look like?
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How to Measure Texture

X-ray diffraction; pole figures; measures average texture
at a surface (ums penetration); projection (2 angles).

Neutron diffraction; type of data depends on neutron

source; measures average texture in bulk (cms penetration in
most materials) ; projection (2 angles).

Electron [back scatter] diffraction; easiest [to automate] in
scanning electron microscopy (SEM); local texture;
complete orientation (3 angles).

Optical microscopy: optical activity (plane of polarization);
limited information (one angle)
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X-ray Pole Figures

X-ray pole figures are the most common source of
texture information; cheapest, easiest to
perform.

Pole figure:= variation in diffracted intensity with
respect to direction in the specimen.

Representation:= map in projection of diffracted
Intensity.

Each PF is equivalent to a geographic map of a
hemisphere (North pole in the center).

Map of crystal directions w.r.t. sample reference
frame.
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Anisotropy Example 2:
Drawn Aluminum Cup with Ears

Figure shows
example of a cup
that has been deep
drawn. The plastic
anisotropy of the
aluminum sheet
resulted in non-
uniform
deformation and
“ears.” Randle, Engler, p.340



60

Challenges in Microstructure

Annealing textures: where does the cube texture
come from in annealed fcc metals? Goss texture
in bcc metals?

Processing: how can we produce large crystals of
ceramics by abnormal grain growth?

Plastic deformation: how can we explain the
“break-up” of grains during deformation?

Simulation, numerical representation: how can we
generate faithful 3D representations of
microstructure?

Constitutive relations: what are the properties of
defects such as grain boundaries?
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Notation: vectors, matrices

Vector-Matrix: v is a vector, A is a matrix (always a square matrix in
this course).

Index notation: explicit indexes (Einstein convention):
v;is a vector, A, is a matrix (maybe tensor, though not necessarily).

Scalar (dot) product: c = aeb = a,b; zero dot product means vectors are

perpendicular. For two unit vectors, the dot product is equal to the
cosine of the angle between them.

Vector (cross) product: c=¢;=axb=a 2 b = ¢ ab,; generates a
vector that is perpendicular to the first two. Two vectors that are
perpendicular have a zero length cross product. The cross product
defines a rotation axis that carries one vector into another. The
magnitude of the cross product is the product of the magnitudes
(lengths) of the vectors multiplied by the sine of the angle between
them.

Permutation or alternating tensor,
Eijr 1S +1 for k=123, 231, 312, and -1 for k=132, 213 and 321.

Obj/notation AxisTransformation Matrix EulerAngles Components
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An axis system

e Consider a right-
handed set of
axes defined by a
set of three unit
basis vectors, e.

e Right-handed n

means that the €2
scalar triple O

product,

e xe,*e; = +1
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Direction cosines

o, =u = cosb,

A 3 o, =V =co0s0,
o, =a-x, O3 = W = c0s0;
d
05
0, -
2
0,
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New Axes

e Consider a new orthonormal system consisting

of right-handed base vectors éla éé and 2é

with the same origin, o, associated with the basis vectors.
The vector V is clearly expressed equally well in either
coordinate system:

I N/

v=Vve =Vv.e

Note - same vector, different values of the components. We
need to find a relationship between the two sets of
components for the vector.
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Direction Cosines: definition

e The two systems are related by the nine direction
cosines, a;, which fix the cosine of the angle
between the i primed and the j”* unprimed base

vectors:
/\, A\
Cl-j =€ € i
Equwalently, a; represent the components
of e in ej"uccordmg to the expression

/\

€l- = al.jej
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Rotation of axes in the x-y plane

, cosf sinb
V =qav = , vV
\ —sin@ coséb

X,y = old axes; x’,y’ = new axes
Passive Rotation/ Transformation of Axes
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Example: rotation angle = 30°

, cos30° sin30° \/5/2 1/2
V =qV = . = \
_sin30° cos30° ~1/2 372
Yy,
= X, 2’
= X, Cn
Y ) X =X

X,y = old axes; x’,y’ = new axes
Passive Rotation/ Transformation of Axes
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Rotation Matrices
/an a, a13\
dij =9 Gy Ay

ij
\d3; Az U3

Since an orthogonal matrix merely rotates a vector but does not
change its length, the determinant is one, det(a)=1.

Moreover, each row and each column is a unit vector, so these six
relations apply, resulting in only 3 independent parameters:

2 2 2
\/a11 +a,+a; =1

\/Ea§=1 ,\/Ea;:l etc.
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Scalars, Vectors, Tensors

e Scalar:= quantity that requires only one number,
e.g. density, mass, specific heat.

e Vector:= quantity that has direction as well as
magnitude, e.g. velocity, current, magnetization;
requires 3 numbers or coefficients (in 3D).

e Tensor:= quantity that requires higher order

descriptions but is the same, no matter what
coordinate system is used to describe it, e.g.
stress, strain, elastic modulus; requires 9 (or
more, depending on rank) numbers or
coefficients.
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Scalars, Vectors, Tensors: NOTATION

General case: three dimensions

Vector: needs 3 numbers or coefficients to quantify its x, y and z
components.

Two notations for vectors: “vector-tensor notation” where bold-face
implies higher-than-scalar nature; “component notation” where a
suffix(-es) show how many coefficients are needed.

Vector: eitherbor b,,i €{1,2,3}, or, i E{x,y,2}.

2nd rank tensor: either T or Tl-j, ij E{1,2,3}
Advantage of vector-tensor notation is that the equations work in any
reference frame. By contrast, when component notation is used, the
actual values of the coefficients depend on which reference frame is

used.

If you see subscripts attached to a quantity, it is (almost always) a
tensor and the Einstein summation convention is assumed. The
Einstein summation convention says that a repeated index (on the
RHS) implies summation over that index (typically 1,2, and 3 in 3D).



