Texture, Anisotropy & Beer Cans

27-750, Fall 2009

Advanced Characterization and Microstructural Analysis A.D. Rollett, P. Kalu

An unfortunate perception of undergraduate life ...

CARNEGIE MELLON UNIVERSITY

DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING

Beverage Can Making

refs: Altenpohl, D. G. (1998). *Aluminum: technology, applications and environment*. TMS, the Aluminum Association; *Steels*. Llewellyn & Hudd, Butterworth & Heinemann.

First operation (draw)

Second operation (redraw)

Fig. 9.33: Schematic illustration of deep drawing. For deep drawing, precision sheet (mostly circular blanks) is formed in a lubricated fixture. A blank holder prevents wrinkles from forming. For extra deep draws, the operation can be carried out in successive steps (possibly with an intermediate anneal). d_a = punch diameter. Shown in solid black are (left) the blank and (right) the semifinished deep-drawn part.

Fig. 9.34: Schematic showing wall ironing of an aluminum beverage can. Often a series of draw rings are used.

Strain Ratio in Tensile Test

Large $r_{\rm m}$ and small Δr required for deep drawing

Correlation of Earing with ΔR

Figure 14-12 Correlation of extent of earing with ΔR . From D. V. Wilson, and R. D. Butler, *ibid*.

Relation of Earing to Deformation, Annealing texture

Figure 14-10 Earing behavior of cups made from three different copper sheets. Arrow indicates rolling direction of the sheets. From D. V. Wilson and R. D. Butler, J. Inst. Met., 90 (1961-2), pp. 473-83.

Figure 14-11 Relation of earing to angular variations of R. Here, h is the wall height.

Earing-Texture Correlation

Fig. 1.18 shows the relationship between r-value and the ratio of intensities of the 001 and 111 components in a sheet.

Fig. 1.19 shows the relationship between limiting blank diameter and r-value for low carbon steels.

Fig. 1.20 shows the relationship between the mean fractional increase in thickness at the top rim of a Swift cup for low-carbon steels.

Figure 1.18 Relation between the ratio of the intensity of the (111) component to the intensity of the (001) component and the r_m value of low-carbon steel sheets (After Held³⁹)

Example: bev Figure 1.20 Relationship between mean fractional increase in thickness at the top rim of a Swift cup and \overline{r} value, for a range of low-carbon steels, Blank diameter 63.5 mm – Punch diameter 32 mm (After Hudd and Lyons⁴¹)

Swift Cup Test

Nb Sheet Example

- Two different areas of a Nb sheet, "upper" and "lower" were scanned with EBSD to evaluate variability in formability.
- The pole figures and inverse pole figures showed strong differences.

Nb Sheet Example: IPFs

- Note the differences in intensity in the 001 and 111 locations in the ND/ 001 inverse pole figure for the two samples.
- Upper 111: 7.5 Upper 001: 0.0

Lower 111: 0.8 Lower 001: 10.0

 These numbers suggest significant differences in r-value and formability.

Nb sheet example, contd.

- The two samples are, in fact, at opposite ends of the chart of rvalue versus 111:001 intensity ratio!
- The yield surfaces (calculated with the Lapp code) for the two samples also show marked differences, consistent with the other information.

