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Lecture	Objectives
• Show how to convert from a description of a crystal 

orientation based on Miller indices to matrices to Euler 
angles.

• Give examples of standard named components and their 
associated Euler angles.

• The overall aim is to be able to describe a texture component 
by a single point (in orientation space, which is parameterized 
with some set of coordinates such as Euler angles) instead of 
needing to draw the crystal embedded in a reference frame.

• Homework exercises will be converting Miller indices to Euler 
angles.

Obj/notation		AxisTransformation Matrix		EulerAngles Components
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(hkl)[uvw],	Miller	Index	Definition	
of	a	Crystal	Orientation

• We use a set of three orthogonal (mutually perpendicular) directions as the reference 
frame.  Mathematicians set up a basis set of unit vectors called e1 e2 and e3.  All directions 
can then be described as (linear) combinations of the three basis vectors.  See the 
Supplemental Slides for explanations of vectors and unit vectors.

• In many cases we use the metallurgical names Rolling Direction (RD) // e1, Transverse 
Direction (TD) // e2, and Normal Direction (ND) // e3.

• We then identify a crystal (or plane normal) parallel to 3rd axis (ND) and a crystal direction 
parallel to the 1st axis (RD), written as (hkl)[uvw].  The second axis is then completely 
specified by the other two.  This situation is sometimes referred to as “biaxial texture”, to 
distinguish it from “uniaxial texture” in which only one crystal axis of each grain is aligned 
with the specimen.

• In thin films, we must still use a reference frame with 3 axes but very often, only the 
normal direction (ND) or film-plane-normal matters because only one crystal direction is 
aligned with the ND, which is the uniaxial texture referred to above.  Be aware, however, 
that an epitaxial thin film can be biaxially aligned to the substrate in which case all 3 axes 
are relevant.  This latter case is important to High Temperature Superconductor 
processing, for example.



Orientation	specification	via	
Miller	indices:	(hkl)[uvw]	
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[uvw]

(hkl)

≡Z≡e3

≡Y
≡e2

≡X≡e1

∕ ∕ Z

∕ ∕ X
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We specify a texture component by the Miller indices of a 
plane normal that is parallel to sample Z, and Miller 
indices of a direction parallel to sample X.



Active	versus	Passive	Rotations
• Before we discuss the details of how to calculate orientation matrices, it is a good idea to 

summarize the difference between “active” and “passive” rotations, as mathematicians 
know them.  

• In materials science, we are mostly concerned with describing anisotropic properties of 
crystals and the aggregate anisotropy of polycrystalline materials, for which it is convenient 
to use tensors to describe those properties.

• For tensor quantities, we commonly need their coefficients in either the sample frame or 
the crystal frame.  For this we use “transformations of axes”, which are “passive rotations”, 
in the sense that the two frames share a common origin and differ by only a (proper) 
rotation.  The tensor quantities do not rotate in real space, however.

• In solid mechanics, however, it is more typical to need to describes the motions of objects.  
Certain motions are just rotations and one can think of rotating a vector, for example, 
about the origin, in which case one is describing an “active rotation”.  Some object is 
rotated about the origin and moves through the frame.

• When we deal with Miller indices, remember to divide by the magnitude of the vector so 
as to obtain a unit vector.

• For all work in texture we will consistently use axis transformations, 
a.k.a. passive rotations. 
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Why	do	we	need	Axis	Transformations?
• The reason that we need axis transformations is because in order to compute 

the anisotropic properties of a polycrystal, we need to be able to transfer 
(single crystal) properties from the each crystal frame to the sample frame.  
Equally, we need to transfer stresses, strains and other fields from the 
sample frame to the crystal frame.

• In order for a quantity to “qualify” as a tensor it has to obey the axis 
transformation rule, as discussed in the previous slides.

• The tensor transformation rule defines relationships between transformed 
and untransformed tensors of various ranks.

Vector: V’i = aijVj
2nd rank T’ij = aikajlTkl
3rd rank T’ijk = ailajmaknTlmn
4th rank T’ijkl = aimajnakoalpTmnop
and so on and so forth (without limit in the rank)
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7 Rotation	of	axes	in	the	(2D)	plane:
x,	y	=	old	axes;	x’,y’	=	new	axes

! v =
cosθ sinθ
− sinθ cosθ
$ 

% 
& 

' 

( 
) v

N.B.	Passive	Rotation/	Transformation	of	Axes

Obj/notation	 AxisTransformation Matrix		EulerAngles Components

q
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x ≡ ˆ e 1€ 

" x ≡ ˆ " e 1
€ 

y ≡ ˆ e 2

€ 

" y ≡ ˆ " e 2

We transform the coefficients of, e.g., a vector, v, from one set of axes to another; 
note that the vector does not change position in real space



Reference	Frames
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Initial position, crystal frame (green, KB
in Bunge) aligned with reference 

(sample, KA in Bunge) frame (orange)

New position, crystal frame (green) 
rotated with respect to the reference 

(sample) frame (orange)



Vector	Represented	in	Two	
Different	Frames
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New position, crystal frame (green, KB
in Bunge) rotated with respect to the 

reference (sample, KA in Bunge) frame 
(orange)

Now we add a vector (the blue stick) 
that we wish to represent in two 

different frames (sample vs. crystal)



10 Definition	of	an	Axis	Transformation:
ê =	old	axes;	ê′=	new	axes

aij = ˆ ! e i • ˆ e j

From	Sample	to	
Crystal	(primed)

=

a11 a12 a13
a21 a22 a23
a31 a32 a33
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ê1 ê’1

ê2

ê’2

ê3ê’3
v

We transform the coefficients of, e.g., a vector, v, from one set of axes to another; 
note that the vector does not change position in real space
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Geometry	of	{hkl}<uvw>

e1	//	[uvw]
^

e’1
^

e2	//	t
^

e’2
^

e3	//	(hkl)
^e’3

^

^

[001]
[010]

[100]

Miller index
notation of
texture component
specifies direction
cosines of crystal
directions // to
sample axes.  Form 
the second axis from 
the cross-product of 
the 3rd and 1st axes.

Sample	to	Crystal	(primed)

t =	hkl x uvw
Obj/notation	 AxisTransformation Matrix		EulerAngles Components
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Form	matrix	from	Miller	Indices

ˆ b = (u, v, w)
u2 + v2 + w2ˆ n = (h, k, l)

h2 + k2 + l2

ˆ t =
ˆ n × ˆ b 
ˆ n × ˆ b aij =Crystal

Sample

b1 t1 n1
b2 t2 n2
b3 t3 n3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

Obj/notation	 AxisTransformation Matrix EulerAngles Components

Basic idea: we can construct the complete rotation matrix from two 
known, easy to determine columns of the matrix.  Knowing that we 
have columns rather than rows is a consequence of the sense of 
rotation, which is equivalent to the direction in which the axis 
transformation is carried out.



13

(Bunge)	Euler	Angle	Definition

Obj/notation	 AxisTransformation Matrix		EulerAngles Components

• The three reference axes are 
labeled as X, Y & Z; also 
commonly known as ND, RD, 
and TD.

• The three crystal axes are 
labeled as X’, Y’ & Z’ ; also 
commonly known as [100], [010] 
& [001] in cubic crystals.

• The reference (sample) frame is 
labeled as “KA” in the figure, and 
the crystal frame as “KB”.

• Each diagram shows successive 
rotations, more properly 
thought of as transformations of 
axes.

[Bunge]
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Euler	Angles,	Animated

[010]

[100]

[001]

Crystal

e1=Xsample=RD

e2=Ysample=TD

e3=Zsample=ND

Sample	Axes

RD

TD

e”2
e”3

=e”1

2nd position

ycrystal=e2’’’

f2

xcrystal=e1’’’

zcrystal=e3’’’
=

3rd position	(final)

e’1

e’2

f1

e’3=

1st position

F

Obj/notation	 AxisTransformation Matrix		EulerAngles Components



Named	Texture	Components
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• In metals, especially rolled fcc metals it is common to give proper names 
to particular texture components that commonly occur.  Thus, you will 
encounter “cube”, “brass”, “copper”, “S” and the like.  Each component 
has particular Euler angles, as we will now explain.  Along with these 
names go names of so-called fibers such as alpha and beta.

• In rolled bcc metals, it is typical to refer to fibers only, such as the alpha 
fiber in which the orientations all have <110>//RD, and the gamma fiber 
for which <111>//ND.  One exception to this is the “Goss” component, 
named after the person who identified the textures critical to transformer 
steels.

• In hexagonal metals, the texture is mostly evident in the basal pole figure 
and so the names generally refer to the deviation of the <0001> with 
respect to a particular sample direction such as ND.  This is described in 
more detail later on.

• In thin films of all kinds, unless an epitaxial texture is present, the texture 
is described in terms of which crystal direction is most commonly found 
parallel to the normal of the film plane.
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Cube	Texture	(001)[100]:	
cube-on-face

• Observed in recrystallization of fcc metals
• The three crystal axes, <001>, are parallel to 

the three sample axes, i.e. ND≡Z, RD≡X, and 
TD≡Y directions.

{010}

{100}

{001}

RD

ND

TD

Obj/notation	 AxisTransformation Matrix		EulerAngles Components

[100]

[0-10]

[001]
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Sharp	Texture	(Recrystallization)

{010}

{100}

{001}

RD

ND

TD

RD

TD

Obj/notation	 AxisTransformation Matrix		EulerAngles Components

• Figure on the left shows the {001} pole figures (PFs) for this texture 
component: maxima correspond to {100} poles in the standard 
stereographic projection aligned with the sample axes.  Note that this 
pole figure could not be measured experimentally unless transmission 
and reflection methods were to be combined because the reflections on 
the edge of the PF cannot be detected (see lecture on PF measurement).
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Euler	angles	of	Cube	component
• The Euler angles for this 

component are simple, and yet 
not so simple!

• The crystal axes align exactly with 
the specimen axes, therefore all 
three Euler angles are exactly 
zero: 
(f1, F, f2) =	(0°,	0°,	0°).

• Orientation Matrix: 

• Rodrigues vector: [0,0,0]
• Unit quaternion: [0,0,0,1]

Obj/notation	 AxisTransformation Matrix		EulerAngles Components

• As an introduction to the effects of 
crystal symmetry: consider aligning 
[100]//TD, [010]//-RD, [001]//ND.  
This is evidently still the cube 
orientation, but the Euler angles 
are 
(f1,F,f2) =	(90°,0°,0°)!

• This is a first illustration of the 
confusing (but real) situation 
where the same physical 
orientation has multiple 
mathematical/numerical 
descriptions.  This leads eventually 
to the discussion of fundamental 
zones.€ 

1 0 0
0 1 0
0 0 1
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{110}<001>:	the	Goss	Component
• This type of texture is known as Goss Texture and 

occurs as a Recrystallization texture for FCC materials 
such as Brass, …

• In this case the (011) plane is oriented towards the 
ND and the [001] inside the (011) plane is along the 
RD.

RD

ND

TD

(110)

[100]

Obj/notation	 AxisTransformation Matrix		EulerAngles Components

[001]
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{110}<001>:	cube-on-edge
• In the 011 pole figure, one of the poles is oriented 

parallel to the ND (center of the pole figure) but the 
other ones will be at 60° or 90° angles but tilted 45°
from the RD! (Homework: draw the (111) pole figure by 
hand.)

{110}

RD

ND

TD

(110)

[100][001]

RD

TD
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Euler	angles	of	Goss	component
• The Euler angles for this 

component are simple, and yet 
other variants exist, just as for 
the cube component.

• Only one rotation of 45° is 
needed to rotate the crystal 
from the reference position (i.e. 
the cube component) to 
(011)[100]; this happens to be 
accomplished with the 2nd 
Euler angle.

• (f1,F,f2) = (0°,45°,0°).
• Other variants will be shown 

when symmetry is discussed.

Obj/notation	 AxisTransformation Matrix		EulerAngles Components

• Matrix:

• Rodrigues vector:
[ tan(22.5°), 0 , 0 ]

• Unit quaternion (q1,	q2,	q3,	q4):
[ sin(22.5°) , 0, 0, cos(22.5°)]

• Note that, since there is only 
one non-zero Euler angle, the 
rotation axis is obvious by 
inspection, i.e. the x-axis.  For 
more general cases, the rotation 
axis has to be calculated.

€ 

1 0 0
0 1/ 2 1/ 2
0 −1/ 2 1/ 2
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Brass	component

• This type of texture is known as Brass Texture 
and occurs as a rolling texture component for 
materials such as Brass, Silver, and Stainless 
steel.

RD

ND

TD

(110)

[112]

(110)[1 12]

Obj/notation	 AxisTransformation Matrix		EulerAngles Components
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Brass	component,	contd.

RD

ND

TD

(110)

[112]

(100) (111) (110)
(110)[1 12]

Obj/notation	 AxisTransformation Matrix		EulerAngles Components

• The associated (110) pole figure is very similar to the 
Goss texture pole figure except that it is rotated 
about the ND.  In this example, the crystal has been 
rotated in only one sense (anticlockwise).
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{110}<112>	Brass	component

Think of rotating 
the Goss 
component 
around the ND.  In 
this example, the 
xtal has been 
rotated in both 
clockwise and 
anti-clockwise 
(two variants). (110)

(112)
(111)_
_

Brass
{110}<112>

RD

TD

RD

TD
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Brass	component:	Euler	angles

• The brass component is convenient 
because we can think about performing 
two successive rotations:

• 1st about the ND, 2nd about the new 
position of the [100] axis.

• 1st rotation is 35° about the ND; 2nd 
rotation is 45° about the [100].

• (f1,F,f2) = (35°,45°,0°).

Obj/notation	 AxisTransformation Matrix		EulerAngles Components
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Euler	Angle	Conventions
• An inconvenient fact is that the definition of Euler angles that we have 

given so far is not unique.
• Many other variants not only exist but have names and are in regular 

use! Euler angles are used in physics, aeronautics, robotics, to name 
but a few other fields.

• The differences between the conventions lie in the choice of the 
rotation axes (generally only the second axis) and the sense of rotation.

• Some of the commonly used conventions are Bunge, Kocks, Roe and 
Canova* (in approximate order of decreasing popularity).

• For the purposes of this course we will only use the Bunge 
convention. At this point in time, almost all codes assume this. 
Nevertheless, it is wise to check what is being used. The VPSC code, 
e.g., requires that the input list of orientations has a letter in column 
1 on line 4 to define the convention; use “B” in this position to select 
the Bunge convention.

*You will find Canova angles inside the computer code LApp
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Meaning	of	Bunge Euler	angles

• In the Bunge convention, the first two angles, f1
and F, tell you the position of the [001] crystal 
direction relative to the specimen axes.

• Think of rotating the crystal about the ND (1st 
angle, f1); then rotate the crystal out of the plane 
(about the [100] axis, F); 

• Finally, the 3rd angle (f2) tells you how much to 
rotate the crystal about [001].

Obj/notation	 AxisTransformation Matrix		EulerAngles Components
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Meaning	of	Roe Euler	angles

• In the Roe convention, the first two angles, Y and 
Q, tell you the position of the [001] crystal 
direction relative to the specimen axes.

• Then think of rotating the crystal about the ND or 
001 or z-axis (1st angle, Y); then rotate the 
crystal out of the plane (about [010], or the y-
axis, Q); 

• Finally, the 3rd angle (F) tells you how much to 
rotate the crystal about [001].

Obj/notation	 AxisTransformation Matrix		EulerAngles Components
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Meaning	of	Kocks	Euler	angles
• In the Kocks convention, which is almost the same as the 

Roe convention with the exception of the third angle, the 
first two angles, Y and Q, tell you the position of the [001] 
crystal direction relative to the specimen axes.

• Then think of rotating the crystal about the ND or 001 or z-
axis (1st angle, Y); then rotate the crystal out of the plane 
(about [010], or the y-axis, Q); 

• Finally, the 3rd angle (f) tells you how much to rotate the 
crystal anti-clockwise about [001].  Here’s the difference 
between Roe and Kocks - the last angle is a negative or 
clockwise rotation about 001, instead of a positive or 
counter-clockwise rotation.

Obj/notation	 AxisTransformation Matrix		EulerAngles Components
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Kocks	Euler	Angles:
Ship	Analogy

Obj/notation	 AxisTransformation Matrix		EulerAngles Components

[Kocks,	
Tomé,	
Wenk]Analogy: position and the 

heading of a boat with respect 
to the globe.  Latitude (Q) and 
longitude (y) describe the 
position of the boat; third angle 
describes the heading (f) of the 
boat relative to the line of 
longitude that connects the 
boat to the North Pole.
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Euler	Angle	Definitions

Bunge and	Canova	are	inverse	to	one	another
Kocks and	Roe	differ	by	sign	of	third	angle
Bunge	rotates	about	x’,	Roe/Kocks about	y’ (2nd	angle)

Obj/notation	 AxisTransformation Matrix		EulerAngles Components

[Kocks,	
Tomé,	
Wenk]



32

Euler	Angle	Conversions

Convention 1st 2nd 3rd 2nd angle
about axis:

Kocks
(symmetric)

Ψ Θ φ y

Bunge φ1-π/2 Φ π/2−φ2
x

Matthies α β π−γ y
Roe Ψ Θ π−Φ y

Obj/notation	 AxisTransformation Matrix		EulerAngles Components

[Kocks,	Tomé,	Wenk]
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Complete	orientations	in	the	Pole	
Figure

f1

f1

F

F
f2

f2

Note the loss of
information
in a diffraction
experiment if 
each set of poles 
from a single 
component 
cannot be related 
to one another. 

(f1,F,f2)	~
(30°,70°,40°).

Obj/notation	 AxisTransformation Matrix		EulerAngles Components

[Bunge]



34

Complete	
orientations	in	
the	Inverse	
Pole	Figure

Think of yourself as an 
observer standing on the 
crystal axes, and 
measuring where the 
sample axes lie in relation 
to the crystal axes.

Obj/notation	 AxisTransformation Matrix		EulerAngles Components

[Bunge]
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Summary
• Conversion between different forms of 

description of texture components described.
• Physical picture of the meaning of Euler 

angles as rotations of a crystal given.
• Miller indices are descriptive (and typical in 

physical metallurgy), but matrices are useful 
for computation, and Euler angles are useful 
for mapping out textures (to be discussed). 
Later on we will describe Rodrigues vectors 
and (unit) quaternions: the latter are the 
most useful representation for computations.



In-Class	Exercises:	1
1. Draw three orthogonal axes to represent the reference frame. Draw a unit 

cube to represent a crystal such the that <100> directions are aligned with the 
{x,y,z} axes.  Explain that there are several alternative labels for such sets of 
axes or frames-of-reference, such as {RD,TD,ND}.  Distinguish between the 
use of {} to denote a family of plane normals and {} to denote a set of objects 
(which may, or may not, constitute a group).  Explain that this alignment is 
called the “cube component”.

2. Starting with the reference frame, also called the sample frame, sketch the 3 
successive rotations that correspond to the (Bunge) Euler angles, {f1, F, f2}.  
Label the axes of rotation for each one.  Explain that it is permissible to 
describe this process in terms of rotations about the crystal z axis, then the x
axis, then the z axis again.

3. Draw the sample frame, with labels, and then draw a unit cube with one edge 
parallel to the sample x axis and rotated by 45° about this axis.  State that this 
is a graphical representation of the texture component known as “Goss”.  
Identify the Miller indices of the three crystal directions parallel to {RD, TD, 
ND} as {100,011,0-11}.
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In-Class	Exercises:	2
1. For the Goss component shown previously, explain that the Euler angles 

that parameterize this texture component are {0,45,0} (in degrees).  Refer 
to the previous explanation of the definition of the Bunge Euler angles to 
do this.

2. For the same Goss component, draw the {110} pole figure.  Hint: a simple 
way to do this is to find a diagram of the stereographic projection for cubic 
materials with 110 in the center of the figure; rotate it until a <100> 
direction is aligned pointing to the right.  In all our work we will align the x
axis of a Cartesian reference frame pointing to the right, just as in standard 
mathematical plots, and the y axis pointing up.

3. For the same Goss component, introduce the rotation matrix.  Setting aside 
its properties as an orthogonal matrix for the time being, explain how one 
can construct it as a 2x2 45° rotation matrix, which can then be embedded 
in a 3x3 matrix to represent the 45° rotation about the x axis.
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In-Class	Exercises:	3
1. Introduce the Brass component by using the same 110 stereographic 

projection as before but rotating it so that, instead of having, say, 001//RD, 
now we have -112//RD.  Show that the angle required to rotate from Goss 
to Brass is approximately 35°.  Show that this rotation is about the center of 
the projection, i.e. 110.  

2. Picking up from the previous exercise, show that the combination of the 45°
rotation about x to arrive at the Goss component, combined with the 35°
rotation about 110 means that we can describe the Brass component with 
Euler angles {35,45,0}.

3. Show, again with the aid of the projection, that the 3 crystal directions 
parallel to the sample frame are {-112, 1-11, 110}.  Check that these form a 
right-handed set!

4. Draw the definition of the Roe Euler angles.  Explain the differences 
between this definition and the Bunge definition.

5. Draw the definition of the Kocks convention for Euler angles.  Explain the 
differences between this definition and the Bunge definition.

6. List the conversions between the different definitions of Euler angles.
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In-Class	Exercises:	4
1. Setting aside the precise definition of a pole figure for the time being, 

sketch a pole figure with the sample X pointing to the right, the Y up and 
the Z in the center.  (Later on we will discuss the confusing practice of 
drawing pole figures with RD up and TD to the right.)  Sketch the successive 
rotations that correspond to the 3 (Bunge) Euler angles.

2. Sketch an inverse pole figure with the crystal x (i.e. 100) pointing to the 
right, the y (010) up and the z (001) in the center. Sketch the successive 
rotations that correspond to the 3 (Bunge) Euler angles.  You will find it 
easier to start with the last angle, f2, and work backwards.

3. Anticipating the next lecture, discuss how to use the information about 
hkl//Z and uvw//X to construct a set of 3 mutually orthogonal unit vectors 
as a preliminary to obtaining an orientation matrix.
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Supplementary	Slides

• The following slides provide supplementary 
information on Miller indices, the dot 
(scalar) product and direction cosines.
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Miller	Indices
• Cubic system: directions, [uvw], are equivalent to, and 

parallel to plane normals with the same indices, (hkl).
• Miller indices for a plane specify reciprocals of intercepts 

on each axis.
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Miller	<->	vectors

• Miller indices [integer representation of direction 
cosines] can be converted to a unit vector, n, by 
dividing by the square root of the sum of the 
squares: {similar for [uvw]}.  This is known as 
normalization.

€ 

ˆ n = (h,k,l)
h2 + k 2 + l2
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Miller	Index	Definition	of	a	
Texture	Component

• The commonest method for specifying a texture 
component is the plane-direction.

• Specify the crystallographic plane normal that is 
parallel to the specimen normal (e.g. the ND≡Z) 
and a crystallographic direction that is parallel to 
the long direction (e.g. the RD≡X).  

(hkl)	//	ND,	[uvw]	//	RD,	or	(hkl)[uvw]
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Dot	Product
• Given two vectors, a and b, the dot product, a•b is a scalar 

quantity that is equal to the product of the magnitudes 
(lengths) of the vectors, multiplied by the cosine of the 
angle between them:

a•b =	a	b cosq
• If both vectors are unit vectors then the dot product is 

equal to the cosine of the angle.
• In index form, a•b =	ai bi .
• Given a set of unit vectors defining an axis system, ex,	ey,	
ez,a vector can be defined on that system by taking the dot 
product with each axis vector in turn, e.g.:

ax =	a• ex
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Direction	Cosines
• Definition of direction cosines: In analytic geometry, the 

direction cosines of a vector are the cosines of the angles 
between the vector and the three coordinate axes. 
Equivalently, they are the contributions of each component 
of the basis to a unit vector in that direction 
[en.wikipedia.org/wiki/Direction_cosine].

• The components of a unit vector are equal to the cosines of 
the angle between the vector and each (orthogonal, 
Cartesian) reference axis.

• We can use axis transformations to describe vectors in 
different reference frames (room, specimen, crystal, slip 
system….)


