
27-750	Advanced	Characterization	and	Microstructural	Analysis	
Solution	Set	as	of	12	Feb	‘16	
	
A.D.	Rollett:	last	revised	on	Feb.	12th,	2016.	
	
Homework	5;	multiple	topics.	
	
Due:	11:59	p.m.,	Weds,	Feb.	17th.	
	
Question	1.		Write	an	abstract	that	describes	your	project	for	this	class.		It	must	address	
some	aspect	of	texture	(which	can	be	orientation	texture	or	interface	texture),	or	
anisotropy	of	material	properties	(elastic,	plastic,	electrical,	magnetic,	photochemical	
…),	or	materials	characterization	(3D	techniques	are	particularly	encouraged).		The	
minimum	number	of	words	is	300	and	the	maximum	is	500.		One	figure	is	the	maximum	
(but	not	required).	
	
Question	2.		Explain	in	your	own	words	(so	do	not,	e.g.,	copy	from	a	wiki	page)	what	
simulated	annealing	is.		Your	description	should	include	the	concepts	of	the	energy	
landscape,	an	equation	to	explain	what	is	done	in	each	step,	and	some	idea	of	the	
challenges	associated	with	finding	a	global	minimum.	The	reason	for	the	question	is	that	
this	technique	is	commonly	used	in	many	areas	despite	its	simplicity	and	apparent	lack	
of	sophistication.		In	particular,	it	is	an	essential	component	of	the	HEDM	method,	in	
computational	thermodynamics	(Calphad)	and	in	so-called	Monte	Carlo	grain	growth	
simulation.	
	
Answer.		Simulated	annealing	means	the	numerical	procedure	used,	for	example,	to	find	
a	minimum	in	a	numerically	defined	function,	for	which	analytic	derivatives	are	not	
available.		One	chooses	an	initial	value	of	the	independent	variable	and	computes	the	
energy.	Then	a	new	value	is	chosen,	generally	as	a	small	perturbation	away	from	the	
initial	value	and	a	new	energy	is	computed.		If	that	new	energy	is	lower	than	the	
previous	value,	the	change	is	accepted;	otherwise	the	change	is	rejected.		The	energy	
landscape	has	to	do	with	the	shape	or	morphology	of	the	variation	in	energy	with	the	
independent	variable.		If	this	shape	is	just	a	simple	variation	with	a	single	minimum	then	
finding	the	global	minimum	is	likely	to	succeed	easily.		If,	as	in	HEDM,	the	energy	varies	
very	little	but	every	now	and	again	there	is	a	deep	“well”	then	the	method	have	to	use	a	
very	large	number	of	iterations	before	it	finds	the	deepest	well	and	one	can	be	
confident	that	the	global	minimum	has	been	identified.		In	the	case	of	Calphad,	it	is	
often	the	case	that	one	is	dealing	with	intersecting	polynomial	functions	that	have	very	
small	gradients,	which	also	makes	it	difficult	to	find	the	true	global	minimum	(Gibbs	
free)	energy.	
	
Question	3.			
a)	Use	Matlab	to	construct	your	own	Hough	transform	of	the	figure	shown	below	(also	
available	as	a	JPG	on	Box).		The	expected	result,	obviously,	is	that	you	will	obtain	the	



same	set	of	three	butterfly	pattern	described	in	the	notes.		To	accomplish	this	will	
require	following	the	procedure	shown	in	the	link	below	rather	carefully.		Hint:	I	had	to	
expand	the	angle	axis	in	the	recommended	plot	in	order	to	obtain	a	reasonable	aspect	
ratio	(presumably	because	the	image	is	large	in	pixels).	
http://www.mathworks.com/help/images/ref/hough.html	
	
	

	
	
The	expected	result	is	as	follows:	



	
	
b)	Read	the	paper	by	Hart	provided	(also	on	Box)	and	report	on	what	equation	is	used	to	
transfer	intensity	from	each	point	in	a	measured	(or	synthesized)	image	to	the	
accumulator	diagram	in	the	Hough	transform.	
	
Equation	(1)	defines	the	development	of	a	line	in	Hough	space	from	a	point	in	the	
image.	

	
	
c)	Show	how	to	read	off	the	angles	between	the	lines	from	the	Hough	transform.	
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photographs. (The patent is assigned to 
the U.S. Atomic Energy Commission.) 
As related by Hough, while walking 
home from work one evening he had 
one of those inexplicable yet genuine 
“aha!” insights: Mapping a zero-dimen-
sional point to a one-dimensional 
straight line—which by increasing the 
dimensionality seems to make the prob-
lem more complicated—actually led to a 
simple solution that could be imple-
mented using analog electronic compo-
nents of the day [6].

Regardless of how the idea came 
about, Hough’s 1962 patent clearly 
disclosed a key idea that underlies 
the transform used today:  colinear 
points in the image plane can be 
identified by mapping them into geo-
metric constructions (for Hough, 
straight lines) that intersect in the 
transform space. But equally clearly, 
the geometric transform as described 
by Hough is hardly recognizable as the 
one that has been used by the computer 
vision community for decades; several 
more steps were needed to get there (see 
“Longevity”).

AZRIEL ROSENFELD’S 
TRANSFORM DEFINITION
In 1969 Azriel Rosenfeld published his 
foundational book on computer vision, 
Picture Processing by Computer. In a 
single paragraph, seemingly almost as an 
afterthought at the end of a chapter, he 
presents an “interesting alternative 
scheme for detecting straight lines that 
makes use of a point-line transforma-
tion” [7]. He references the Hough pat-
ent and—for the first time, to the best of 

my knowledge—defines the transform 
algebraically in the form given by (1), 
where 1xi, yi 2  are points in the image 
plane, and x and y are the axes of the 
transform plane:

 y5 yi  
x1 xi. (1)

He points out that if a set of points 1xi, yi 2 , i 5  1, c, n, are  colinear, then 
it is easily proved that the corresponding 
lines in the transform plane will all pass 
through a single point. 

He also remarks parenthetically that 
if the points 1xi, yi 2  are on a line that is 

nearly parallel to the x axis, then the 
lines become nearly parallel, so that 
their point of intersection recedes to 
infinity. Perhaps taking a hint from 
Hough’s suggestion to “scan each pic-
ture twice at right angles,” Rosenfeld 
recommends overcoming this difficulty 
by interchanging xi and yi  in (1).

Rosenfeld made one additional rec-
ommendation. He notes, again paren-
thetically, that the transform space can 
be represented as an array of counters, so 
that “. . . the presence of many  colinear 
1’s . . .” in the image plane will give rise to 
a high value in the array.

How Rosenfeld discovered the Hough 
patent cannot be determined at this late 
date. It is known that Hough and 
Rosenfeld were not personally acquainted 
[6]. Rosenfeld was certainly a prodigious 
scholar, and perhaps he simply found the 
patent on his own. But regardless of how 
he found it, we can say that Rosenfeld 
took several steps along the path that led 
from Hough’s patent to the transform 
used today: He gave the first explicit 
algebraic form for the transform, he pro-
posed a simple digital implementation of 
the transform space as an array of coun-
ters, and he introduced to the computer 
science and computer vision community 
an idea initially presented as an 

obscure—at least to that community— 
analog circuit-based patent.

Azriel Rosenfeld was a towering fig-
ure in the history of computer image 
processing, with his ideas flowing across 
more than 600 papers and dozens of 
books. But I suspect that few are aware 
of the role he played in bringing one of 
the most important algorithms in com-
puter vision to its present form.

A DETOUR THROUGH 
INTEGRAL GEOMETRY
In the early days of pattern recognition 

research, many alternative mathe-
matical approaches were proposed 
that have long since been forgot-
ten. One of these approaches was 
based on integral geometry [8], a 
branch of pure mathematics that 
studies the probability of random 
geometric events. A prototypical 
problem in integral geometry, first 

posed in the 18th century, is the 
Buffon’s needle problem: Drop a needle 
on a floor made of planks and calculate 
the probability that the needle will lie 
across a crack. Other classical prob-
lems are to calculate the probability 
that a line intercepts a figure and to 
calculate the expected length of a ran-
dom chord of a circle. During the 
1960s, attempts were made by re -
searchers in pattern recognition to use 
the statistics of random geometric 
events as a way to characterize proper-
ties of shapes in an image [9]. Some of 
this research came to my own atten-
tion during that period.

A key problem confronting mathe-
maticians was how to formalize the 
notion of a “random” geometric event. 
Even an apparently simple event—toss-
ing a line “at random’’ on a finite subset 
of a plane—can lead to paradoxes if a 
suitable probability space is not care-
fully defined.

Mathematicians resolved this prob-
lem by introducing an invariance 
requirement. If we require the results of 
random line-tossing calculations to be 
invariant to translation and rotation of 
geometrical figures in the plane, then it 
can be shown that there is only one 
parameterization of a line that can be 

[FIG3] Using the normal parameterization 
of a straight line resolved the problem 
of “throwing a line at random” and also 
suggested a superior transform for 
computer vision purposes. 
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THE 1962 HOUGH PATENT IS 
A MARVEL OF BREVITY, BEING 

BARELY MORE THAN FIVE 
PAGES LONG INCLUDING 
FIGURES AND CLAIMS.
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It	should	be	fairly	obvious	that	one	drops	vertical	lines	from	the	center	of	each	butterfly	
down	to	the	angle	axis	and	reads	off	the	differences	in	angular	position.	
	


