27-731 Texture & Anisotropy (mini version of 27-750 Advanced Characterization and Microstructural Analysis), A.D. Rollett, J.V. Gordon

Homework 2; different representations of orientations (as rotations), effect of crystal and sample symmetry.

Points: 110

Due: 11:59 pm, Sat., Jan. 25th.

You are expected to do the numerical exercises in Python/Matlab. For each answer, provide your Python/Matlab script along with the values and/or graphs. As usual, there is no problem about working together but you have to provide individual answers (i.e., there had better not be any identical Python/Matlab scripts!).

1. [45] In this exercise, we learn how to apply an axis transformation.

a. Draw a pair of orthogonal x-y axes (hint: the arrow.m package for Python/Matlab is helpful, which is posted on Canvas), with x pointing to the right, and y up the page (i.e., the standard arrangement);

b. Draw a second pair of x'-y' axes that are rotated with respect to the first pair by  $71^{\circ}$  (hint: a positive angle corresponds to an anti-clockwise rotation, looking down the rotation axis, which is equivalent to the right-hand rule);

c. Calculate the coefficients of the transformation matrix:

d. Compute the coefficients of the unit vector parallel to [410] in the first frame, assuming that x and y are parallel to [100] and [010], respectively;

e. Compute the coefficients of this same vector in the new, primed frame;

f. Draw the vector in the same diagram;

g. A stress tensor cannot be drawn as easily as a vector. Therefore this part asks you to compute the coefficients in the new frame from the following stress tensor.

$$\sigma_{ij} = \begin{bmatrix} 10 * \sqrt{2} & 5 * \sqrt{2} \\ 5 * \sqrt{2} & 15 * \sqrt{2} \end{bmatrix}$$

Python/Matlab Hint: in a python/Matlab script, the commands "w2 = figure(1);" and "print(w2,'-dpng', fileOut);", where fileOut is the filename of the graph to be saved, and the plotting commands are between these two lines, are helpful.

Another Python/Matlab hint: this set of lines can be helpful for saving plots in your current directory.

```
"path = mfilename('fullpath');
[folder, name, ext] = fileparts(path);
fprintf(' current directory = %s \n',folder);
fileName = input('Enter a name for the Output file (.png will be added): ','s');
fileOut = strcat(folder,'/',fileName,'.png');"
```

- h. Relate what you just did to the concept of Mohr's Circle (which you can look up in Wikipedia).
- i. Explain the equivalence of the index notation that we use for the transformation of a  $2^{nd}$  rank tensor with this version:

$$\sigma' = O\sigma O^T$$

- 2. [20] In this exercise, we see how to perform a vector (active) rotation.
- *a*. Draw the same x-y frame;
- b. Draw the same unit vector parallel to [410] as above;
- *c.* Write out the transpose of the transformation matrix that you obtained above, which is the matrix that represents the corresponding rotation.
- d. Compute and draw the new rotated vector.

## 3. [30 points]

The exact location of the "S" texture component in Euler space is somewhat debated in the literature, so we will (somewhat arbitrarily) assign it Euler angle values of (32°, 58°, 18°).

- a. Convert the Euler angles to a matrix.
- *b*. Apply crystal symmetry and generate the 24 equivalent points. Convert each result from a matrix to Euler angles and list the result. Try to make as compact a table of values as you can (i.e. include 4 columns with the 1<sup>st</sup> being the number of the symmetry operator and the other 3 columns containing the 3 Euler angles).
- c. Plot the points as a 3D plot (Euler angle space) and show 2 or 3 different views. It is good practice to control the axes so that the  $1^{\rm st}$  and  $3^{\rm rd}$  angles range from 0 to  $360^{\circ}$  and the  $2^{\rm nd}$  0 to  $180^{\circ}$ . The following Python/Matlab commands worked for me, where  $\{x,y,z\}$  are vectors of equal length containing the Euler angle values:

```
scatter3(x,y,z,'MarkerFaceColor','r');
axis([0 360 0 180 0 360]);
xlabel('\phi_1');
ylabel('\Phi');
```

zlabel('\phi\_2');

The backslash ("\") in front of e.g. "Phi" tells Python/Matlab to treat the following letters as a symbol.

- d. Now apply orthorhombic sample symmetry (222 point group) in addition to cubic crystal symmetry (432 point group) and re-draw. Make two views, one with the full range of Euler angles, and a second one with the range limited to 0-90° for all 3 angles.
- e. How many points are listed in the new table?

f. How many of the points lie within the range 0-90° for all three angles?

## 4. [15 points]

This question, and the one following are intended to develop your skills for interpreting pole figures.

- *a.* [10] What sample symmetry does the following pole figure have, which is taken from a paper on texture (Quey *et al. J. Mech. Phys. Solids* **60** (2012) 509–524), if you include both the red and blue peaks?
- b. [5] What sample symmetry is present if we only consider, say, the red peaks?



## **Appendix**

The following fortran90 code shows how to generate the 24 symmetry operators that belong to the (432) point group and that describe cubic crystal symmetry. Note that the first 6 lines of code specify the entries are all zero; the code that follows then changes the appropriate entries in each matrix to 1. This is more \_\_\_\_\_\_\_\_ out (or assigning) each and every value. An exclamation point means that all characters after that (to the right of the !) are treated as a comment.

Note that all 24 matrices are listed in the Kocks-Tomé-Wenk book and in the lecture notes (and can be copied directly from there although be careful about corrections that are given in the lecture notes).

```
DO I=1,3
     DO J=1,3
        DO K=1,24
           SYM(I,J,K)=0.
        end do
     end do
  end do
      1
  SYM(1,1,1)=1.
  SYM(2,2,1)=1.
  SYM(3,3,1)=1.
  !
      5
  SYM(1,1,2)=1.
  SYM(2,3,2)=-1.
  SYM(3,2,2)=1.
      2
  SYM(1,1,3)=1.
  SYM(2,2,3)=-1.
  SYM(3,3,3)=-1.
      11
  SYM(1,1,4)=1.
  SYM(2,3,4)=1.
  SYM(3,2,4)=-1.
  SYM(1,3,5)=-1.
  SYM(2,2,5)=1.
  SYM(3,1,5)=1.
     12
  SYM(1,3,6)=1.
  SYM(2,2,6)=1.
  SYM(3,1,6)=-1.
  SYM(1,1,7)=-1.
  SYM(2,2,7)=1.
  SYM(3,3,7)=-1.
  SYM(1,1,8)=-1.
  SYM(2,2,8)=-1.
  SYM(3,3,8)=1.
      13
  SYM(1,2,9)=1.
  SYM(2,1,9)=-1.
```

```
SYM(3,3,9)=1.
    6
SYM(1,2,10)=-1.
SYM(2,1,10)=1.
SYM(3,3,10)=1.
    20
SYM(1,2,11)=-1.
SYM(2,3,11)=1.
SYM(3,1,11)=-1.
!
    23
SYM(1,3,12)=1.
SYM(2,1,12)=-1.
SYM(3,2,12)=-1.
    19
SYM(1,2,13)=-1.
SYM(2,3,13)=-1.
SYM(3,1,13)=1.
    21
SYM(1,3,14) = -1.
SYM(2,1,14)=1.
SYM(3,2,14)=-1.
    18
SYM(1,2,15)=1.
SYM(2,3,15)=-1.
SYM(3,1,15)=-1.
    22
SYM(1,3,16)=-1.
SYM(2,1,16)=-1.
SYM(3,2,16)=1.
SYM(1,2,17)=1.
SYM(2,3,17)=1.
SYM(3,1,17)=1.
    8
SYM(1,3,18)=1.
SYM(2,1,18)=1.
SYM(3,2,18)=1.
    17
SYM(1,2,19)=1.
SYM(2,1,19)=1.
SYM(3,3,19) = -1.
    24
SYM(1,1,20)=-1.
SYM(2,3,20)=1.
SYM(3,2,20)=1.
    10
SYM(1,3,21)=1.
SYM(2,2,21)=-1.
```

```
SYM(3,1,21)=1.
! 15
SYM(1,1,22)=-1.
SYM(2,3,22)=-1.
SYM(3,2,22)=-1.
! 16
SYM(1,3,23)=-1.
SYM(2,2,23)=-1.
SYM(3,1,23)=-1.
! 14
SYM(1,2,24)=-1.
SYM(2,1,24)=-1.
SYM(3,3,24)=-1.
```