
27-731	Texture	&	Anisotropy	
(mini	version	of	27-750	Advanced	Characterization	and	Microstructural	Analysis),	
A.D.	Rollett,	J.V.	Gordon	
	
Homework	2;	different	representations	of	orientations	(as	rotations),	effect	of	
crystal	and	sample	symmetry.			
	
Points:	110	
	
Due:	11:59	pm,	Sat.,	Jan.	25th.	
	
You	are	expected	to	do	the	numerical	exercises	in	Python/Matlab.		For	each	answer,	
provide	your	Python/Matlab	script	along	with	the	values	and/or	graphs.		As	usual,	
there	is	no	problem	about	working	together	but	you	have	to	provide	individual	
answers	(i.e.,	there	had	better	not	be	any	identical	Python/Matlab	scripts!).	
	
1.	[45]	In	this	exercise,	we	learn	how	to	apply	an	axis	transformation.	
	
a.	Draw	a	pair	of	orthogonal	x-y	axes	(hint:	the	arrow.m	package	for	Python/Matlab	
is	helpful,	which	is	posted	on	Canvas),	with	x	pointing	to	the	right,	and	y	up	the	page	
(i.e.,	the	standard	arrangement);	
	
b.	Draw	a	second	pair	of	x’-y’	axes	that	are	rotated	with	respect	to	the	first	pair	by	
71°	(hint:	a	positive	angle	corresponds	to	an	anti-clockwise	rotation,	looking	down	
the	rotation	axis,	which	is	equivalent	to	the	right-hand	rule);	
	
c.	Calculate	the	coefficients	of	the	transformation	matrix;	
	
d.	Compute	the	coefficients	of	the	unit	vector	parallel	to	[410]	in	the	first	frame,	
assuming	that	x	and	y	are	parallel	to	[100]	and	[010],	respectively;	
	
e.	Compute	the	coefficients	of	this	same	vector	in	the	new,	primed	frame;	
	
f.	Draw	the	vector	in	the	same	diagram;	
	
g.	A	stress	tensor	cannot	be	drawn	as	easily	as	a	vector.		Therefore	this	part	asks	you	
to	compute	the	coefficients	in	the	new	frame	from	the	following	stress	tensor.	
	

𝜎"# = %10 ∗ √2 5 ∗ √2
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,	

	
Python/Matlab	Hint:	in	a	python/Matlab	script,	the	commands	“w2	=	figure(1);”	and		
“print(w2,'-dpng',	fileOut);”,	where	fileOut	is	the	filename	of	the	graph	to	be	saved,	
and	the	plotting	commands	are	between	these	two	lines,	are	helpful.	



Another	Python/Matlab	hint:	this	set	of	lines	can	be	helpful	for	saving	plots	in	your	
current	directory.	
“path	=	mfilename('fullpath');	
[folder,	name,	ext]	=	fileparts(path);	
fprintf('	current	directory	=		%s		\n',folder);	
fileName	=	input('Enter	a	name	for	the	Output	file	(.png	will	be	added):	','s');	
fileOut	=	strcat(folder,'/',fileName,'.png');”	
	
h.	Relate	what	you	just	did	to	the	concept	of	Mohr’s	Circle	(which	you	can	look	up	in	
Wikipedia).	
	
i.	Explain	the	equivalence	of	the	index	notation	that	we	use	for	the	transformation	of	
a	2nd	rank	tensor	with	this	version:			

	
	
2.	[20]	In	this	exercise,	we	see	how	to	perform	a	vector	(active)	rotation.	
	
a.	Draw	the	same	x-y	frame;	
b.	Draw	the	same	unit	vector	parallel	to	[410]	as	above;	
c.		Write	out	the	transpose	of	the	transformation	matrix	that	you	obtained	above,	
which	is	the	matrix	that	represents	the	corresponding	rotation.	
d.	Compute	and	draw	the	new	rotated	vector.	
	
	
3.	[30	points]	
The	exact	location	of	the	"S"	texture	component	in	Euler	space	is	somewhat	debated	
in	the	literature,	so	we	will	(somewhat	arbitrarily)	assign	it	Euler	angle	values	of	
(32°,	58°,	18°).	
	
a.	Convert	the	Euler	angles	to	a	matrix.	
	
b.	Apply	crystal	symmetry	and	generate	the	24	equivalent	points.		Convert	each	
result	from	a	matrix	to	Euler	angles	and	list	the	result.		Try	to	make	as	compact	a	
table	of	values	as	you	can	(i.e.	include	4	columns	with	the	1st	being	the	number	of	
the	symmetry	operator	and	the	other	3	columns	containing	the	3	Euler	angles).	
	
c.	Plot	the	points	as	a	3D	plot	(Euler	angle	space)	and	show	2	or	3	different	views.		It	
is	good	practice	to	control	the	axes	so	that	the	1st	and	3rd	angles	range	from	0	to	
360°	and	the	2nd	0	to	180°.		The	following	Python/Matlab	commands	worked	for	me,	
where	{x,y,z}	are	vectors	of	equal	length	containing	the	Euler	angle	values:	

	
scatter3(x,y,z,'MarkerFaceColor','r');	
axis([0	360	0	180	0	360]);	
xlabel('\phi_1');	
ylabel('\Phi');	
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zlabel('\phi_2');	
The	backslash	("\")	in	front	of	e.g.	"Phi"	tells	Python/Matlab	to	treat	the	
following	letters	as	a	symbol.	

	
d.	Now	apply	orthorhombic	sample	symmetry		(222	point	group)	in	addition	to	
cubic	crystal	symmetry	(432	point	group)	and	re-draw.		Make	two	views,	one	with	
the	full	range	of	Euler	angles,	and	a	second	one	with	the	range	limited	to	0-90°	for	
all	3	angles.	
		
e.	How	many	points	are	listed	in	the	new	table?	
	
f.	How	many	of	the	points	lie	within	the	range	0-90°	for	all	three	angles?	
	
	
4.		[15	points]	
This	question,	and	the	one	following	are	intended	to	develop	your	skills	for	
interpreting	pole	figures.	
a.	[10]	What	sample	symmetry	does	the	following	pole	figure	have,	which	is	taken	
from	a	paper	on	texture	(Quey	et	al.	J.	Mech.	Phys.	Solids	60	(2012)	509–524),	if	you	
include	both	the	red	and	blue	peaks?			
b.	[5]	What	sample	symmetry	is	present	if	we	only	consider,	say,	the	red	peaks?	
	

	
	
	
	
Appendix	
	
The following fortran90 code shows how to generate the 24 
symmetry operators that belong to the (432) point group and 
that describe cubic crystal symmetry.  Note that the first 
6 lines of code specify the entries are all zero; the code 
that follows then changes the appropriate entries in each 
matrix to 1.  This is more reliable than writing out (or 
assigning) each and every value.  An exclamation point 
means that all characters after that (to the right of the 
!) are treated as a comment. 

modes such as plane strain compression, which cause most grains to rotate quickly into stable texture components (Quey
et al., 2010a,b), will not lead to large numbers of fragmented grains. Other deformation modes, for example those imposed
by torsion or equal-channel angular pressing, do not favor rapid movement to stable orientations. Instead, they tend to
favor the development of large orientation spreads and eventually widespread grain orientation fragmentation (Goran
et al., 2011). The experimental conditions of the present work (hot plane strain compression) are therefore expected to
generate a limited proportion of fragmented grains, and which clearly facilitate their study by the present in situ technique.
Of course, hot plane strain compression is widely employed in many industrial applications (50% of metallic alloys are hot
rolled) so the results presented here are of strong technological relevance.

For both experimental and simulation results, orientation fragmentations have been detected and described through a
methodology based on mathematical tools to characterize the size and shape of an orientation distribution (Glez and
Driver, 2001; Barton and Dawson, 2001; Pantleon, 2005). Using these tools, we were able to determine the fragmentation
directions and to decompose the fragmented in-grain orientation distributions into their different modes. The number of
fragmented grains was found to increase nearly linearly with strain in both experiment and simulation (Fig. 5). The
proportions of fragmented grains at the final strain (e¼ 1:2) are 10% and 20%, respectively. The lower degree of
fragmentation in the experiment can be attributed partly to the fact that only a subregion of the grains is observed in
this case: the modes that actually develop within the grain may not all be visible in a 2-D RD–ND section. Fragmentation
out of this plane could occur, which under simple geometrical considerations would represent about 1/3 of the total
amount of fragmentation, so that the proportion of fragmenting grains could in fact be close to 15%. In both experiment
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Note that all 24 matrices are listed in the Kocks-Tomé-Wenk 
book and in the lecture notes (and can be copied directly 
from there although be careful about corrections that are 
given in the lecture notes). 
 
DO I=1,3 
     DO J=1,3 
        DO K=1,24 
           SYM(I,J,K)=0. 
        end do 
     end do 
  end do 
 
  !   1 
  SYM(1,1,1)=1. 
  SYM(2,2,1)=1. 
  SYM(3,3,1)=1. 
  !   5 
  SYM(1,1,2)=1. 
  SYM(2,3,2)=-1. 
  SYM(3,2,2)=1. 
  !   2 
  SYM(1,1,3)=1. 
  SYM(2,2,3)=-1. 
  SYM(3,3,3)=-1. 
  !   11 
  SYM(1,1,4)=1. 
  SYM(2,3,4)=1. 
  SYM(3,2,4)=-1. 
  !   7 
  SYM(1,3,5)=-1. 
  SYM(2,2,5)=1. 
  SYM(3,1,5)=1. 
  !   12 
  SYM(1,3,6)=1. 
  SYM(2,2,6)=1. 
  SYM(3,1,6)=-1. 
  !   3 
  SYM(1,1,7)=-1. 
  SYM(2,2,7)=1. 
  SYM(3,3,7)=-1. 
  !   4 
  SYM(1,1,8)=-1. 
  SYM(2,2,8)=-1. 
  SYM(3,3,8)=1. 
  !   13 
  SYM(1,2,9)=1. 
  SYM(2,1,9)=-1. 



  SYM(3,3,9)=1. 
  !   6 
  SYM(1,2,10)=-1. 
  SYM(2,1,10)=1. 
  SYM(3,3,10)=1. 
  !   20 
  SYM(1,2,11)=-1. 
  SYM(2,3,11)=1. 
  SYM(3,1,11)=-1. 
  !   23 
  SYM(1,3,12)=1. 
  SYM(2,1,12)=-1. 
  SYM(3,2,12)=-1. 
  !   19 
  SYM(1,2,13)=-1. 
  SYM(2,3,13)=-1. 
  SYM(3,1,13)=1. 
  !   21 
  SYM(1,3,14)=-1. 
  SYM(2,1,14)=1. 
  SYM(3,2,14)=-1. 
  !   18 
  SYM(1,2,15)=1. 
  SYM(2,3,15)=-1. 
  SYM(3,1,15)=-1. 
  !   22 
  SYM(1,3,16)=-1. 
  SYM(2,1,16)=-1. 
  SYM(3,2,16)=1. 
  !   9 
  SYM(1,2,17)=1. 
  SYM(2,3,17)=1. 
  SYM(3,1,17)=1. 
  !   8 
  SYM(1,3,18)=1. 
  SYM(2,1,18)=1. 
  SYM(3,2,18)=1. 
  !   17 
  SYM(1,2,19)=1. 
  SYM(2,1,19)=1. 
  SYM(3,3,19)=-1. 
  !   24 
  SYM(1,1,20)=-1. 
  SYM(2,3,20)=1. 
  SYM(3,2,20)=1. 
  !   10 
  SYM(1,3,21)=1. 
  SYM(2,2,21)=-1. 



  SYM(3,1,21)=1. 
  !   15 
  SYM(1,1,22)=-1. 
  SYM(2,3,22)=-1. 
  SYM(3,2,22)=-1. 
  !   16 
  SYM(1,3,23)=-1. 
  SYM(2,2,23)=-1. 
  SYM(3,1,23)=-1. 
  !   14 
  SYM(1,2,24)=-1. 
  SYM(2,1,24)=-1. 
  SYM(3,3,24)=-1. 
 
	
 


