27-731 Texture & Anisotropy
(mini version of 27-750 Advanced Characterization and Microstructural Analysis), A.D. Rollett, J.V. Gordon

[bookmark: _GoBack]Homework 2; different representations of orientations (as rotations), effect of crystal and sample symmetry.  Solution Set as of 18th Jan ’20, corrected 29 Jan ‘20

Points: 110

Due: 11:59 pm, Sat., Jan. 25th.

You are expected to do the numerical exercises in Python/Matlab.  For each answer, provide your Python/Matlab script along with the values and/or graphs.  As usual, there is no problem about working together but you have to provide individual answers (i.e., there had better not be any identical Python/Matlab scripts!).



1. [45] In this exercise, we learn how to apply an axis transformation.

a. Draw a pair of orthogonal x-y axes (hint: the arrow.m package for Python/Matlab is helpful, which is posted on Canvas), with x pointing to the right, and y up the page (i.e., the standard arrangement);
b. Draw a second pair of x’-y’ axes that are rotated with respect to the first pair by 71° (hint: a positive angle corresponds to an anti-clockwise rotation, looking down the rotation axis, which is equivalent to the right-hand rule);
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c. Calculate the coefficients of the transformation matrix;





d. Compute the coefficients of the unit vector parallel to [410] in the first frame, assuming that x and y are parallel to [100] and [010], respectively;

 , |v|=

 						


e. Compute the coefficients of this same vector in the new, primed frame;



 0.82*0.970+ 0.57*0.243+ 0*0= 0.934

 -0.57*0.970+ 0.82*0.243+ 0*0= -0.357

 0*0.970+ 0*0.243+ 0*1=0 


f. Draw the vector in the same diagram;
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g. A stress tensor cannot be drawn as easily as a vector.  Therefore this part asks you to compute the coefficients in the new frame from the following stress tensor.







= (0.82*0.82*10* )+(0.82*0.57*5*)+(0.57*0.82*5* )+(0.57*0.57*15* )=23.01

 (0.82*-0.57*10* )+(0.82*0.82*5* )+(0.57*-0.57*5* )+(0.57*0.82*15* )=5.76

 
(-0.57*0.82*10* )+(-0.57*0.57*5*)+(0.82*0.82*5*)+(0.82*0.57*15*)= 5.76

(-0.57*-0.57*10*)+(-0.57*0.82*5*)+(0.82*-0.57*5*)+(0.82*0.82*15*)=12.248






Python/Matlab Hint: in a python/Matlab script, the commands “w2 = figure(1);” and  “print(w2,'-dpng', fileOut);”, where fileOut is the filename of the graph to be saved, and the plotting commands are between these two lines, are helpful.
Another Python/Matlab hint: this set of lines can be helpful for saving plots in your current directory.
“path = mfilename('fullpath');
[folder, name, ext] = fileparts(path);
fprintf(' current directory =  %s  \n',folder);
fileName = input('Enter a name for the Output file (.png will be added): ','s');
fileOut = strcat(folder,'/',fileName,'.png');”

h. Relate what you just did to the concept of Mohr’s Circle (which you can look up in Wikipedia).

Mohr’s Circle is simply a graphical method for accomplishing the same transformation as was performed numerically above.

i. Explain the equivalence of the index notation that we use for the transformation of a 2nd rank tensor with this version:  
[image: ]

This equation is the vector-matrix version of the axis transformation and is convenient to write because it does not depend on the reference frame.
\sigma' = O \sigma O^T

2. [20] In this exercise, we see how to perform a vector (active) rotation.

a. Draw the same x-y frame;
b. Draw the same unit vector parallel to [410] as above;
c.  Write out the transpose of the transformation matrix that you obtained above, which is the matrix that represents the corresponding rotation.




d. Compute and draw the new rotated vector.




 0.82*0.970+ -0.57*0.243+ 0*0= 0.656

 0.57*0.970+ 0.82*0.243+ 0*0= 0.755

 0*0.943+ 0*0.236+ 0*1=0 
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x





3. [30 points]
The exact location of the "S" texture component in Euler space is somewhat debated in the literature, so we will (somewhat arbitrarily) assign it Euler angle values of (32°, 58°, 18°).

a. Convert the Euler angles to a matrix.

Here we can use SteveSintay_Pole_Figures etc., although the variants_ADR.m script also provides it.

	Rotation Matrix, g (Passive Axis transformation)

	0.719765238
	0.642854487
	0.262061274

	-0.529131664
	0.263647909
	0.806541668

	0.449397023
	-0.719185573
	0.529919264




b. Apply crystal symmetry and generate the 24 equivalent points.  Convert each result from a matrix to Euler angles and list the result.  Try to make as compact a table of values as you can (i.e. include 4 columns with the 1st being the number of the symmetry operator and the other 3 columns containing the 3 Euler angles).


Used variants_ADR.m (in Python/Matlab)
loop_number  phi1   PHI   phi2  (degrees) 
 1      32.0000     58.0000     18.0000 
 2     212.0000    122.0000    162.0000 
 3     243.5145     36.2406    153.6862 
 4      63.5145    143.7594     26.3138 
 5     212.0000    122.0000    342.0000 
 6      32.0000     58.0000    198.0000 
 7      63.5145    143.7594    206.3138 
 8     243.5145     36.2406    333.6862 
 9      32.0000     58.0000    108.0000 
 10     311.7695    105.1924    123.3060 
 11     212.0000    122.0000     72.0000 
 12     131.7695     74.8076     56.6940 
 13      32.0000     58.0000    288.0000 
 14     131.7695     74.8076    236.6940 
 15     212.0000    122.0000    252.0000 
 16     311.7695    105.1924    303.3060 
 17     311.7695    105.1924     33.3060 
 18     243.5145     36.2406     63.6862 
 19     131.7695     74.8076    146.6940 
 20      63.5145    143.7594    116.3138 
 21     131.7695     74.8076    326.6940 
 22     243.5145     36.2406    243.6862 
 23     311.7695    105.1924    213.3060 
 24      63.5145    143.7594    296.3138 

c. Plot the points as a 3D plot (Euler angle space) and show 2 or 3 different views.  It is good practice to control the axes so that the 1st and 3rd angles range from 0 to 360° and the 2nd 0 to 180°.  The following Python/Matlab commands worked for me, where {x,y,z} are vectors of equal length containing the Euler angle values:

scatter3(x,y,z,'MarkerFaceColor','r');
axis([0 360 0 180 0 360]);
xlabel('\phi_1');
ylabel('\Phi');
zlabel('\phi_2');
The backslash ("\") in front of e.g. "Phi" tells Python/Matlab to treat the following letters as a symbol.

View 1
[image: ]


View 2
[image: ]

d. Now apply orthorhombic sample symmetry  (222 point group) in addition to cubic crystal symmetry (432 point group) and re-draw.  Make two views, one with the full range of Euler angles, and a second one with the range limited to 0-90° for all 3 angles.

Used variants_xtal_sample.m (in Python/Matlab)
i   j   phi1   PHI   phi2  (degrees) 
 1  1     32.0000     58.0000     18.0000 
 1  2    148.0000    122.0000    198.0000 
 1  3    328.0000    122.0000    198.0000 
 1  4    212.0000     58.0000     18.0000 
 2  1    212.0000    122.0000    162.0000 
 2  2    328.0000     58.0000    342.0000 
 2  3    148.0000     58.0000    342.0000 
 2  4     32.0000    122.0000    162.0000 
 3  1    243.5145     36.2406    153.6862 
 3  2    296.4855    143.7594    333.6862 
 3  3    116.4855    143.7594    333.6862 
 3  4     63.5145     36.2406    153.6862 
 4  1     63.5145    143.7594     26.3138 
 4  2    116.4855     36.2406    206.3138 
 4  3    296.4855     36.2406    206.3138 
 4  4    243.5145    143.7594     26.3138 
 5  1    212.0000    122.0000    342.0000 
 5  2    328.0000     58.0000    162.0000 
 5  3    148.0000     58.0000    162.0000 
 5  4     32.0000    122.0000    342.0000 
 6  1     32.0000     58.0000    198.0000 
 6  2    148.0000    122.0000     18.0000 
 6  3    328.0000    122.0000     18.0000 
 6  4    212.0000     58.0000    198.0000 
 7  1     63.5145    143.7594    206.3138 
 7  2    116.4855     36.2406     26.3138 
 7  3    296.4855     36.2406     26.3138 
 7  4    243.5145    143.7594    206.3138 
 8  1    243.5145     36.2406    333.6862 
 8  2    296.4855    143.7594    153.6862 
 8  3    116.4855    143.7594    153.6862 
 8  4     63.5145     36.2406    333.6862 
 9  1     32.0000     58.0000    108.0000 
 9  2    148.0000    122.0000    288.0000 
 9  3    328.0000    122.0000    288.0000 
 9  4    212.0000     58.0000    108.0000 
 10  1    311.7695    105.1924    123.3060 
 10  2    228.2305     74.8076    303.3060 
 10  3     48.2305     74.8076    303.3060 
 10  4    131.7695    105.1924    123.3060 
 11  1    212.0000    122.0000     72.0000 
 11  2    328.0000     58.0000    252.0000 
 11  3    148.0000     58.0000    252.0000 
 11  4     32.0000    122.0000     72.0000 
 12  1    131.7695     74.8076     56.6940 
 12  2     48.2305    105.1924    236.6940 
 12  3    228.2305    105.1924    236.6940 
 12  4    311.7695     74.8076     56.6940 
 13  1     32.0000     58.0000    288.0000 
 13  2    148.0000    122.0000    108.0000 
 13  3    328.0000    122.0000    108.0000 
 13  4    212.0000     58.0000    288.0000 
 14  1    131.7695     74.8076    236.6940 
 14  2     48.2305    105.1924     56.6940 
 14  3    228.2305    105.1924     56.6940 
 14  4    311.7695     74.8076    236.6940 
 15  1    212.0000    122.0000    252.0000 
 15  2    328.0000     58.0000     72.0000 
 15  3    148.0000     58.0000     72.0000 
 15  4     32.0000    122.0000    252.0000 
 16  1    311.7695    105.1924    303.3060 
 16  2    228.2305     74.8076    123.3060 
 16  3     48.2305     74.8076    123.3060 
 16  4    131.7695    105.1924    303.3060 
 17  1    311.7695    105.1924     33.3060 
 17  2    228.2305     74.8076    213.3060 
 17  3     48.2305     74.8076    213.3060 
 17  4    131.7695    105.1924     33.3060 
 18  1    243.5145     36.2406     63.6862 
 18  2    296.4855    143.7594    243.6862 
 18  3    116.4855    143.7594    243.6862 
 18  4     63.5145     36.2406     63.6862 
 19  1    131.7695     74.8076    146.6940 
 19  2     48.2305    105.1924    326.6940 
 19  3    228.2305    105.1924    326.6940 
 19  4    311.7695     74.8076    146.6940 
 20  1     63.5145    143.7594    116.3138 
 20  2    116.4855     36.2406    296.3138 
 20  3    296.4855     36.2406    296.3138 
 20  4    243.5145    143.7594    116.3138 
 21  1    131.7695     74.8076    326.6940 
 21  2     48.2305    105.1924    146.6940 
 21  3    228.2305    105.1924    146.6940 
 21  4    311.7695     74.8076    326.6940 
 22  1    243.5145     36.2406    243.6862 
 22  2    296.4855    143.7594     63.6862 
 22  3    116.4855    143.7594     63.6862 
 22  4     63.5145     36.2406    243.6862 
 23  1    311.7695    105.1924    213.3060 
 23  2    228.2305     74.8076     33.3060 
 23  3     48.2305     74.8076     33.3060 
 23  4    131.7695    105.1924    213.3060 
 24  1     63.5145    143.7594    296.3138 
 24  2    116.4855     36.2406    116.3138 
 24  3    296.4855     36.2406    116.3138 
 24  4    243.5145    143.7594    296.3138 
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e. How many points are listed in the new table?
24*4 = 96.
f. How many of the points lie within the range 0-90° for all three angles?
Three.

4.  [15 points]
This question, and the one following are intended to develop your skills for interpreting pole figures.
a. [10] What sample symmetry does the following pole figure have, which is taken from a paper on texture (Quey et al. J. Mech. Phys. Solids 60 (2012) 509–524), if you include both the red and blue peaks?  
b. [5] What sample symmetry is present if we only consider, say, the red peaks?
(a) The red and blue peaks taken together define an orthorhombic sample symmetry to high accuracy.  If (b), we take only the red peaks then the only remaining symmetry is a diad (180° rotation) on the sample Z-axis, i.e. monoclinic sample symmetry.
[image: ]



Appendix

The following fortran90 code shows how to generate the 24 symmetry operators that belong to the (432) point group and that describe cubic crystal symmetry.  Note that the first 6 lines of code specify the entries are all zero; the code that follows then changes the appropriate entries in each matrix to 1.  This is more reliable than writing out (or assigning) each and every value.  An exclamation point means that all characters after that (to the right of the !) are treated as a comment.
Note that all 24 matrices are listed in the Kocks-Tomé-Wenk book and in the lecture notes (and can be copied directly from there although be careful about corrections that are given in the lecture notes).

DO I=1,3
     DO J=1,3
        DO K=1,24
           SYM(I,J,K)=0.
        end do
     end do
  end do

  !   1
  SYM(1,1,1)=1.
  SYM(2,2,1)=1.
  SYM(3,3,1)=1.
  !   5
  SYM(1,1,2)=1.
  SYM(2,3,2)=-1.
  SYM(3,2,2)=1.
  !   2
  SYM(1,1,3)=1.
  SYM(2,2,3)=-1.
  SYM(3,3,3)=-1.
  !   11
  SYM(1,1,4)=1.
  SYM(2,3,4)=1.
  SYM(3,2,4)=-1.
  !   7
  SYM(1,3,5)=-1.
  SYM(2,2,5)=1.
  SYM(3,1,5)=1.
  !   12
  SYM(1,3,6)=1.
  SYM(2,2,6)=1.
  SYM(3,1,6)=-1.
  !   3
  SYM(1,1,7)=-1.
  SYM(2,2,7)=1.
  SYM(3,3,7)=-1.
  !   4
  SYM(1,1,8)=-1.
  SYM(2,2,8)=-1.
  SYM(3,3,8)=1.
  !   13
  SYM(1,2,9)=1.
  SYM(2,1,9)=-1.
  SYM(3,3,9)=1.
  !   6
  SYM(1,2,10)=-1.
  SYM(2,1,10)=1.
  SYM(3,3,10)=1.
  !   20
  SYM(1,2,11)=-1.
  SYM(2,3,11)=1.
  SYM(3,1,11)=-1.
  !   23
  SYM(1,3,12)=1.
  SYM(2,1,12)=-1.
  SYM(3,2,12)=-1.
  !   19
  SYM(1,2,13)=-1.
  SYM(2,3,13)=-1.
  SYM(3,1,13)=1.
  !   21
  SYM(1,3,14)=-1.
  SYM(2,1,14)=1.
  SYM(3,2,14)=-1.
  !   18
  SYM(1,2,15)=1.
  SYM(2,3,15)=-1.
  SYM(3,1,15)=-1.
  !   22
  SYM(1,3,16)=-1.
  SYM(2,1,16)=-1.
  SYM(3,2,16)=1.
  !   9
  SYM(1,2,17)=1.
  SYM(2,3,17)=1.
  SYM(3,1,17)=1.
  !   8
  SYM(1,3,18)=1.
  SYM(2,1,18)=1.
  SYM(3,2,18)=1.
  !   17
  SYM(1,2,19)=1.
  SYM(2,1,19)=1.
  SYM(3,3,19)=-1.
  !   24
  SYM(1,1,20)=-1.
  SYM(2,3,20)=1.
  SYM(3,2,20)=1.
  !   10
  SYM(1,3,21)=1.
  SYM(2,2,21)=-1.
  SYM(3,1,21)=1.
  !   15
  SYM(1,1,22)=-1.
  SYM(2,3,22)=-1.
  SYM(3,2,22)=-1.
  !   16
  SYM(1,3,23)=-1.
  SYM(2,2,23)=-1.
  SYM(3,1,23)=-1.
  !   14
  SYM(1,2,24)=-1.
  SYM(2,1,24)=-1.
  SYM(3,3,24)=-1.
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modes such as plane strain compression, which cause most grains to rotate quickly into stable texture components (Quey
et al., 2010a,b), will not lead to large numbers of fragmented grains. Other deformation modes, for example those imposed
by torsion or equal-channel angular pressing, do not favor rapid movement to stable orientations. Instead, they tend to
favor the development of large orientation spreads and eventually widespread grain orientation fragmentation (Goran
et al., 2011). The experimental conditions of the present work (hot plane strain compression) are therefore expected to
generate a limited proportion of fragmented grains, and which clearly facilitate their study by the present in situ technique.
Of course, hot plane strain compression is widely employed in many industrial applications (50% of metallic alloys are hot
rolled) so the results presented here are of strong technological relevance.



For both experimental and simulation results, orientation fragmentations have been detected and described through a
methodology based on mathematical tools to characterize the size and shape of an orientation distribution (Glez and
Driver, 2001; Barton and Dawson, 2001; Pantleon, 2005). Using these tools, we were able to determine the fragmentation
directions and to decompose the fragmented in-grain orientation distributions into their different modes. The number of
fragmented grains was found to increase nearly linearly with strain in both experiment and simulation (Fig. 5). The
proportions of fragmented grains at the final strain (e¼ 1:2) are 10% and 20%, respectively. The lower degree of
fragmentation in the experiment can be attributed partly to the fact that only a subregion of the grains is observed in
this case: the modes that actually develop within the grain may not all be visible in a 2-D RD–ND section. Fragmentation
out of this plane could occur, which under simple geometrical considerations would represent about 1/3 of the total
amount of fragmentation, so that the proportion of fragmenting grains could in fact be close to 15%. In both experiment
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Fig. 11. (continued)
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