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SECOND PAPER ON STATISTICS ASSOCIATED WITH THE
RANDOM DISORIENTATION OF CUBES

By J. K. MACKENZIE

Drvision of Tribophysics, Commonwealth Scientific and Industrial Research
Orgamization, University of Melbourne, Australia

Theoretical density functions are obtained for the angle of disorientation (the least angle of rotation
required to rotate a cube into a standard orientation) and for Min¢ 100> (the least of the nine acute
angles between the edges of a cube and the edges of a fixed reference cube). These density functions and
their cumulative distribution functions have been evaluated numerically.

1. INTRODUCTION

In a recent paper Mackenzie & Thomson (1957) described a class of problems in three-
dimensional geometrical probability, and some of the associated density functions were
estimated numerically by means of random sampling. In this paper two of these density
functions are obtained in analytical form and, together with their cumulative distribution
functions, evaluated numerically.t

The two density functions obtained are those for the angle of disorientation and Min (100},
These two variables can be defined as follows. Consider two cubes, 4 and B, and imagine
A to be a reference cube with its edges parallel to a fixed set of co-ordinate axes and its
centre at the origin, while B is initially coincident with 4 but free to rotate in any manner
about the common centre of 4 and B. If Bis given an arbitrary rotation there are 24 definite
rotations which will restore B into coincidence with A; these are just the reverse of the
original rotation taken together with the 24 proper symmetry operations associated with
a cube having indistinguishable faces (see §2). The angle of disorientation is the least
(in magnitude) of the 24 angles of rotation so obtained, while Min (100) is the least of the
nine acute angles between the edges of the cube B in an arbitrary orientation and the
edges of 4.

The success of the present calculations has depended essentially on reducing the amount
of detailed calculation required although this is still quite considerable. Since this reduction
can be made for a whole class of problems, including the two special cases discussed in detail,
a formulation of this class is given in § 2 together with their formal solution in a form which
is of no practical use. Section 3 is devoted to reductions common to the whole class, while
§ 4 completes the reduction for the two special cases. The fact that these reductions involve
arguments which are basically of a group-theoretical nature suggests that a more systematic
use of group theory might make practicable a solution for the whole class.

The density functions for the angle of disorientation and Min (100) are given both
analytically and numerically in §§5 and 6. A large amount of algebraic detail has been
omitted in these sections and only a few important intermediate results are given.

1 Following the preparation of the paper by Miss Thomson and myself, a copy of which was sent via
Mr Hammersley to Mr D. C. Handscomb, the latter wrote to me to say that he had found the exact
distributions of the angle of disorientation by geometrical means, and gave the formulae (5:3), (5+5)
and (5-6) of my paper below. His method (the particulars of which I have not seen at the time of writing)
is, I understand, quite different from mine and I have therefore given my own derivation in full.
His paper, I am informed, is to appear in the Canadian Journal of Mathematics.
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2. FORMULATION OF PROBLEMS

Since the group of symmetry operations on a cube with indistinguishable faces (the cubic
group) plays a fundamental role in both the formulation and the reduction of the class of
problems, a brief statement of these symmetry operations will first be given.

If the cube A4 has indistinguishable faces it is invariant under the 48 symmetry operations
of the cubic group consisting of 24 proper rotations and 24 improper rotations, which are
proper rotations together with an inversion or a reflexion. The 24 proper rotations are
(@) the identity element or no rotation, (b) rotations of 180° about the three axes of reference,
(c) rotations of + 90° about the same axes, (d) rotations of 180° about axes parallel to the
six face diagonals of the cube, and (e) rotations of + 120° about axes parallel to the four
diagonals of the cube. On taking axes of reference parallel to the edges of the cube these 24
rotations can be represented by 3 x 3 orthogonal matrices. These matrices have only three
non-zero elements which are either +1 or —1 and these are arranged in all possible ways
such that there is a non-zero element in each row and column and the determinant of the
matrix is + 1.

In all that follows, the matrices representing these proper symmetry rotations will be
denoted by S; (i = 1,...,24); the improper rotations are then —S,. Further, the 3 x 3
orthogonal matrix which represents an arbitrary proper rotation through an angle ¢ about
an axis in the direction n = [n,7,7,] will be denoted by R with elements r;; given by (3-1)
and this rotation will be described briefly as either the rotation R, the rotation i, n or the
rotation yY[n,nyn,].

Since Tr(R) = r;;+ 79+ 733 = 1 +2cos Y, (2-1)

it follows that the angle of disorientation i, is given by
1+2cosy, = MaxTr(RS)),
J

= Max Tr (S;RS;), (2-2)
1,7

on using the facts that for any matrices B, C Tr (BC) = Tr(CB) provided both products

exist and that the product S;S, is another symmetry rotation.

Further, a generalized variable Min {uvw) can be defined as follows. Let u be a 3x 1
column matrix with elements equal to the direction cosines of the direction [uvw], so that
the set (uvw) of variants of [uvw] are the 24 directions S,u together with the 24 directions
— S, u. Thus, the cosine of the angle 0;;between a variant, + S;u, and what another variant,
+ S;u, becomes after a rotation R, is given by cos 6;; = + u’S;RS,u when the usual scalar
product is written in matrix notation. Then

cos (Min (uvw)) = Max | u'S;RS;u |, (2-3)
%)

= Max | Tr(S;RS,uu’) |. (2-4)
%7

Since the variants (100) of [100] are parallel to the edges of the cube A the definition of
Min (100) given in the introduction is a special case of (2:3). Equation (2-4) leads to an
equivalent definition of Min (100). For, if u = [100], S;uu’S; is a matrix with only one non-
zero element which is + 1 and may be in any position in the matrix; the trace of the product
with R then gives + the corresponding element in R’. Thus, the cosine of the angle Min (100)
is the largest of the moduli of the elements of the orthogonal 3 x 3 matrix R.
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If in (2-4) the S;, S, are allowed to range over the full cubic group, the modulus sign can
be dropped. Then comparison of (2-2) with (2-4) shows that all cases are special cases of

z(A) = Max Tr (S;RS;A), (2-5)
%7

where A is a given (symmetric) matrix and the S range independently either over the whole
cubic group or over the subgroup of proper rotations. If ¥V(R)is a given probability measure
on the space of (proper) orthogonal matrices, the cumulative distribution function of z(A) is

PE(A)<X) = [aV(R), (2:6)

where the region of integration includes all R for which
r(A)< X. (2-7)
This formal solution is no more than a statement of what is required and the practical

problem is first to assign a suitable measure to V(R) and second to determine the region of
integration.

3. THE PROBABILITY MEASURE AND REDUCTION OF THE REGION OF INTEGRATION

When concerned with problems in geometrical probability the appropriate probability
measure is determined by a principle of invariance enunciated by Deltheil (1926, p. 13).
This principle asserts that the result of the calculation must be invariant for any displace-
ment of the whole figure. In the present case, this means invariant for any rotation of the
cubes-4 and B together as a unit.

Writing ¢ = 1 —cos ¢ and s = sin ¢/, the rotation {, n has the matrix representation

l—c+nfc, mMaCc—ny8, MNyNgC+nys
R =| nynyc+ngs, l—c+nfc, nynyc—m,s |, (3-1)

Ny NgC—NyS, MNgNgC+ny8, 1—c+nic
and in this case Deltheil (1926, p. 105) shows that the element of probability measure is
given by dV(R) = (1/2n2)sin? }yrdyds, (3-2)

where dS is an element of area on the surface of the unit (hemi-) sphere n2 +nf +n = 1
and, if spherical polar co-ordinates 6, ¢ are used to specify the axis of rotation

dS = sin0dOdg. (3-3)

The whole space of R is covered once if —7 <y <7, 0 < ¢ < 27 and 0< 6 < {7, and the total
volume of the space is unity.

The density function defined by (3-2) is the analogue of a uniform density for a one-
dimensional variable with a finite range. Further, the invariance properties of this density
and its uniqueness arising therefrom ensure that it is identical with that implied by Mac-
kenzie & Thomson (1957) in the construction of their random orthogonal matrices.

The region of integration can now be subdivided into 242 = 576 equivalent regions. For,
consider the pair of rotations R and S, RS,. Since products of the type S;S, or S;S; run
through the complete sequence of symmetry rotations as S; or S; do so, it follows from (2-5)
that the value of 2(A) is the same for both rotations. But the invariance properties of the
probability measure defined by (3-2) ensure that corresponding regions in the neighbourhood
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of the two rotations have equal volumes and so only 1/576 of the total volume need be
considered.

The same result can also be reached using the geometrical model mentioned in the intro-
duction. For suppose that the cube B is subjected to the sequence of rotations S,RS,.
The above result now follows on using Deltheil’s principle of invariance, provided that the
final geometrical relationship between the cubes 4 and B is the same whatever the symmetry
rotations S;, §;may be. That this is so can be seen as follows. After the symmetry rotation S;
the cube B is still coincident with the cube A so that after the further rotation R the relation-
ship between 4 and B is independent of S,. If the two cubes are now rotated together as
a rigid body by the rotation S,, the cube B reaches its final orientation and A remains
invariant; thus, the final relationship between the cubes 4 and B is independent of S, also.

Although a preliminary subdivision of the region of integration into 24 equivalent regions
can be defined in a simple way in the general case, the further subdivision of each of these

regions into 24 parts is carried out in a manner suited to the two special problems. The
preliminary subdivision is determined by the fact that if R represents a rotation i, n then
SRS~ represents a rotation ¥, Sn. The end-point of the unit vector n lies on the surface
- of a unit hemisphere and the product Sn simply permutes the components of n in order
‘and sign. Thus, the surface of the unit hemisphere can be divided into 24 equivalent spherical
triangles bounded by great circles for which either the moduli of two components’of n are
equal or one of the components is zero. It suffices to consider those axes n which lie in any
one of these triangles.

Since rotations about the same axis and through the same angle but in opposite senses
leaves the geometrical relationship between the cubes 4 and B unchanged, a further halving
of the region of integration is achieved. Thus, it may be assumed that the angle of rotation

¥ is positive and that the axis of rotation lies in the spherical triangle defined by

Ny > Ng =13 20.

4. THE REGION OF INTEGRATION

It is convenient to carry out first the final subdivision and specification of the region of
integration for the case of the angle of disorientation and then show that the same region is
suitable for Min (100).

Given any rotation R there is, in general, just one equivalent rotation RS, for which the
angle of rotation is minimum.t Then, there is a unique equivalent matrix R* = S,RS, S;1
for which the angle of rotation is least and the axis of rotation lies in the triangle defined by
7y =1y >ng > 0. But according to the result obtained in the last section it suffices to consider
only those rotations R for which ¥ > 0and n, >n,>ng > 0. The final reduction of the region
of integration is now determined by the conditions which ensure that R = R*,

When R is given by (3-1), calculation shows that the cosine of half the angle of rotation
determined by the matrix RS is given by the modulus of one of the five expressions

cos %zﬁ, n, sin %lﬁ,
(nysin 3y + cos §9)[y/2,  [(ny+ny) sin }y/1//2, (41)
$(ny+ ny + ng) sin 3 + § cos 3y,

t If this angle happens to be negative the transposed (or inverse) matrix represents an equivalent
rotation through a positive angle.
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together with the modulus of what these five expressions become when n,, n,, n, are per-
muted in all possible ways in order and in sign (24 values in all). Those written down corre-
spond to the cases where S is the rotation identity, 180°[100], 90°[100], 180°[110} and
—120°[111]. Clearly, when 0 < ¢ <7 and n, > n, > ng > 0, the largest value of the cosine will
be one of those set out explicitly in (4-1).
If R = R*, then cos 3 must be the greatest of the five expressions in (4:1) and after some
manipulation of inequalities the region of integration is found to be
O<tany<(y2-1)/n, for \2n;>n,+ng,
O<tandyr<1/(n,+n,+m;) for /2m <ny+mg, (4-2)
Ny =ng=ng=0.
The same region is also suitable for Min (100} since r,, is the greatest element in R*.
For, within the region (4-2), it is easily shown by using (3-1) that
T112 Mgy > 73320, }

T3g 21132 Ty =119 > 131 2 Ta3,

(4-3)

and that r,, > 0, 75, < 0, while r,, may be either positive or negative. Finally r;, > r3, provided
[1— (n; +my +ng) tan 3] [1 — (ny —my —ng) tan §3] > 0, (4-4)

and in the region (4-2) both factors are positive.

5. THE ANGLE OF DISORIENTATION

When attention is restricted to the region of integration defined by (4-2) and the axis of
rotation is specified in spherical polar co-ordinates the probability element (3-2) becomes

dV(R*) = (576/n?)sin @ sin® §yrdOdpdi. (6-1)
Thus, the density function for the angle of disorientation ¢ is found by integrating (5-1)
with respect to 6 and ¢ with ¥ fixed and for all 6 and ¢ within the region (4:2),i.e. over part
of a unit spheré.

The spherical triangle within which 7, >n, > ny > 0 is shown as ST'U on part of a’'stereo-
graphic projection (Barrett, 1952) in Fig. 1. The region ABSU contains that part of the
region of integration determined by the first set of inequalities in (4-2) while A BT contains
the part determined by the second set. Now for a fixed ¢ the first inequality of (4-2) can
be written 1, < (2~ 1)/tan 3y, (5-2)
and it is clear that for 0 < tan 3y <.,/2—1 or 0 < < 45°, this is always satisfied. Similarly,
the second inequality is always satisfied for 0 <y < 60°. Thus, for 0 < < 45° the region of
integration is the whole of STU. When y > 45°, equality in (5-2) determines a small circle
P,Q, with its centre at [100], so that for 45° <y < 60° the region of integration is ST'U with
the part SP,Q, removed. Likewise when ¢ is just greater than 60° a part 7'P; @; determined
by a small circle centred on [111] is removed from consideration so that only the region
P, P;Q;UQ, remains; it is readily verified that the arc P, @, is just short of a small circle
joining U and B. As y increases further the arcs P, @, and P;@] move towards one another
until P, and P} coincide with B (and @, with U) when tan 4y = /2 (,/2—1) or ¢ = 60-72°.
Finally, the common point P, moves along the arc B4 until the region of integration F,(),@;
disappears at A when tan 3y = (,/2—1) (5—24/2)} or = 62-80°.
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Thus, there are four ranges of ¥ to consider and, within each, the density function takes
a different analytical form. Each range is considered in turn below and the densities have
all been multiplied by 1157 so that i is measured in degrees.

(@) 0<tan}P<4/2—1 or 0< Y <45° The surface area of the triangle STU is {47 so

that the density function is
oY) = (2/18) (1 —cos ¥). (5-3)
(6) J2—1<tan}yr<1/{3 or 45°<yr<60°. In this case, a contribution from the area

SP,Q, must be subtracted from (5-3). Using polar co-ordinates 6, ¢ with [100] as pole and
¢ = 0 on SU the area SF @, is given by

im : dx = }n[1—(J2—1)cot $y], (5-4)

—_|
[100]
Fig. 1. Part of a stereographic projection of a hemisphere, showing the region of integration
for calculating the density function for the angle of disorientation.

where x = cos§ and n, is given by (5-2) with the sign of equality. Thus,
p(¥) = (2/15)[3(y2—1)siny - 2(1 — cos ¥)]. (5-5)

(c) 1/y/3<tan$yr<4/2(y2—1)or 60° <y <60-72°. In addition to the area given by (5-4)
the area of the region 7'P; ()] must also be subtracted from ST'U. This is most simply done
in terms of polar co-ordinates with [111] as pole and ¢ = 0 on ST'; the range of ¢ is to {7
and the limits for cos & are 1 and (cot 41)/,/3. The final result is

p(¥) = (2/15) [{3(y2 —1) + 4//3} sin Yy — 6(1 — cos ¥)]. (5-6)

(d) J2(J2—1)<tan < (y/2—1)(5—24/2)} or 60-72° <y < 62:80°. This case is a little
more complicated than the preceding cases as it involves finding the area of the region
BPF,Q,U (where B and U are joined by a small circle centred at [100]) and the area of an
analogous region on the other side of AB. Using polar co-ordinates as in (), it is found that



J. K. MACKENZIE 235

for a fixed 0 the extreme values of ¢ at points such as @, and P, are arcos (cotd) and
4m — arcos (cot 0) respectively. Thus the area of BF,Q,U is given by

1Uve
f [3m — 2 arcos {z/(1 —x2)}}] dz, (5:7)

"

where x and n, are the same as in (b). Similarly, using [111] as pole as in (¢) the analogous
area on the other side of 4B is found to be

ﬁ%ﬂ-—arcos {(y2—1)2z/(1 —a?)t}] dz, (5-8)

the range of integration being from (cot ¢)/4/3 to (y2+ 1)/,/6. Finally, evaluating all the
integrals and combining the results as required gives
() = (2/15) [{3(y2—1) +4/{/3}siny — 6(1 —cos )]
— (8/5m) [2(4/2 — 1) arcos (X cot 3¥r) + (1/4/8) arcos (¥ cot $¢)]sin ¢
+ (8/5m) [2 arcos {(y/2 + 1) X [|/2} +arcos {(y/2+ 1) Y[/2}] (1 —cos ¥), (59)
where X = (y2-1)/[1—(y2—1)2cot? Y]},
Y = (J2—1)%/[3—cot? 3yt }

The density function has been computed from (5-3), (5-5), (5-6) and (5-9) and is tabulated
together with the cumulative distribution function in Table 1; the latter function was
obtained by numerical integration of the density function. The mean, the standard deviation

and the median were calculated to be

7 =40-736°, o = 11-315°, e = 42:341° (511)

(510)

Table 1. Distribution of the angle of disorientation

[/ () c.D.F.t [/ oY) c.D.F.}
0 0-00000 0-00000 60-0 0-01015 0-99228
5 -00051 -00085 60-2 . -00856 -99415

10 -00203 -00676 60-4 -00695 -99570

15 -00454 -02277 60-6 -00533 -99693

20 -00804 -05383 60-72... -00434 -99752

25 0-01249 0-10477 61-0 0-00283 0-99850

30 -01786 -18028 61-4 -00151 -99935

35 -02411 -28487 61-8 -00070 -99978

40 -03119 -42280 62-2 -00024 -99996

45 -03905 -59810 [ 62-6 -00003 1-00000

50 0-03167 0-77586 62-799... 0-00000 1-00000

55 -02201 -91097

60 -01015 -99228

t ©.p.F. = cumulative distribution function.
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The density function has also been plotted in Fig. 2 and has a sharp peak at 45°; in fact the
first derivative is discontinuous at i = 45 and 60°, while the second derivative is dis-
continuous at 60-72°. This confirms substantially the guess made by Mackenzie & Thomson
(1957) concerning the true nature of the distribution. The dots on Fig. 2 give a graphically
smoothed estimate of the density function obtained from the random sampling calculations.
The agreement between this estimate and the true density function is rather better than that
expected since a sample of only 150 was used.

0-05

0-04 0-015

0-03 A 0-010

0-02 (/ \ 0-008
A

0-01 4 4 O 61 & &

ol |

]
0 10 20 30 40 50 60 70
Angle of disorientation

o=

Fig. 2. The density function for the angle of disorientation. The ordinate is probability density
when the angle is measured in degrees and the dots are estimates derived from random sampling.

6. Mix (100)
If o is the value of Min (100), then, using (3-1) and the result of § 4, it follows that

sin o = sin 6 sin 1y, (6-1)

and the probability element (5-1) becomes

dV(R*) = (288/m%)sinadadfdg, (6-2)
where [ = arsin (¢ cot. 6), (6+3)
t = tan ja. (6-4)

The density function for « is found by integrating (6-2) with respect to £ and ¢ over the
region determined by (4:2) and (6-1). The main difficulties are the determination of the
appropriate limits of integration and the reduction of the double integrals to single in-
tegrals.

The limits of integration are determined in two steps. First, a diagram is constructed
which shows the limits of the variables € and ¢ for the case where the ¢ integration is carried
out first. Most of the results réquired to do this are available as a result of the calculations
in the preceding section, the only extension necessary arising from the fact that no use
can now be made of the simplifications which arose previously by the use of a pole at [111].
The second step is to use this diagram together with (6-1) to obtain the limits for 6, and hence
B, when «a is fixed.
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The diagram is shown in Fig. 3 and the limits for ¢ in the three regions are
I. 0<¢<im,
II: arcos(cotf)< ¢ <}, 65
ITL: arcos (cot0) <¢ < 47 — arcos [(cot 3 — cos 0)/4/2 sin 0], (%)

or arcos [t71sin £] < ¢ < 3 —arcos [t sin (37 — £)].

63—

B A T T 1 T
62
61
.¢,0
60
\ \
| a=43° || a=465°
59 1 1 1 1 1 1
45 47 49 R 51 53 55
70, T
60 -
N o =465°
50 o= 43°
40 =
¢.0
30 .
20‘ \\\\ -4
~~~_]U
T e
101 =
S Il 1 1 1 U 1 T ]
0 10 20 30 0040 50 60 70

Fig. 3. Diagrams showing the limits of the variables 6 and iy when the ¢ integration is carried
out first. Some typical curves with « a constant are shown dotted.

For a fixed ¢, the boundaries SS’, BU and 7T’ are determined by the values of 6 at the
corresponding points in Fig. 1; the values of cos6 are 1, 1/,/2 and 1//3, respectively. The
boundary S’BA is determined by the value of 6 on the arcs F,, on Fig. 1, BT" by the value
of 6 at P; and AT" by the value of 6 at @,. Thus, on

S'BA: cos 0 = (y2—1)cot 3¢,
BT": cos 0 +4/2sin 6 = cot 3, (6:6)
AT’: cos@+sinf(cos¢ +sing) = cot v,

cos¢ = cot. 6.
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The dotted curves like hyperbolae drawn on Fig. 3 are curves of constant o determined
by (6-1), and the change of variables implied by (6-2) means that the integration with respect
to f is along these curves on the diagram. The limiting values of £ are determined by the
intersections of the dotted curves with the solid boundaries drawn on Fig. 3. After some
calculation it is found that at

X,on S8'BA: p=1in,
Y, on BT': f = }m—arsint,
Z,on AT': p = arsin[tcos(im+7v)],} (6-7)
T, on TT': p = arsin (t/,/2),
U ,on UB: g = arsint,
where sin?y = [({2+1)%t2—1]/4,/2¢2. (6-8)

Clearly there are three ranges of o to be considered according as the curve a = constant
intersects 8'B, BA or AT when the subscript 7 in (6-7) takes the values 0, 1 or 2, respectively.

The required integrals are all reduced in much the same way and only the case where
the curve a = constant intersects S’B will be treated; in this case

O<tanda<[(y2—1)/242], or 0<oa<41-88°.

Using Fig. 3, (65), and (6-7), the required double integral is written down and the integra-
tion over ¢ carried out first. Then the term arcos (t-1sin $) arising from this integration is
immediately replaced by an integral again. Omitting the factor (288/n2)sin «, the result

at this stage is~
i arsin? arcos (¢~ !sin 8)
o f dp - f B f dg. (69)
arsin (£/4/2) arsin (¢//2) 0

Finally, inverting the order of integration in the second integral and evaluating gives the
result

ﬁﬂ”—fﬁ arsin (£ cos ¢) dg. (6-10)
0

The same result (6-10) is obtained for the next range of a, but a different result is obtained
in the third range of «. When « is measured in degrees, the required density function is

in
p(a) = (8/6m)sina [3—15712 —f arsin (¢ cos ¢) d¢] , (6-11)
0
when 0<a<45° and
. *" . i”+y
pla) = (8/5m) sina [ﬁnz —f arsin (£ cos @) d¢ — tmy +f arsin (¢t cos @) d¢] ,
0 tn—y
(6-11")
when 45° < < arcos = 48:19° and where
t.= tan }a,
sin?y = [(y2+ 1)2£2— 1]/42 tz.f (6-12)
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For small «, equation (6-11) gives p(a) = (;1;7)9sina, in agreement with the estimate
made by Mackenzie & Thomson (1957).

Both the density function and its cumulative distribution function have been computed
and the results are given in Table 2 and Fig. 4. The density function and its first derivative
are continuous at o = 45°, but the second derivative is discontinuous there. The dots on

J. K. MACKENZIE

Table 2. Distribution of angle Min (100)

a’ p(e) c.n.F.T a’® p(a) c.n.F.t
0 0-00000 0-00000 45 0-00290 0-99723
5 -01232 -03196 46 -00119 -99917

10 -02180 -11846 47 -00033 -99987

15 -02835 24508 48 -00001 1-00000

20 -03191 -39701 48-18... -00000 1-00000

25 0-03241 0-55910

30 -02980 -71591

36 -02403 -85181

40 -01508 -95093

45 -00290 99723

1 ¢.D.F. = cumulative distribution function.
0-04 0-004
003 // \ 0003
0-02 \ 0-002 \\
0-01 / \— 0-001 \\
N 0-000 !

010 20 30 40 50 4445 46 47 48 D
Min (100) :

Fig. 4. The density function for the angle Min (100). The ordinate is probability density when the angle
is measured in degrees and the dots are estimates derived from random sampling.

Fig. 4 give a graphically smoothed estimate of the density function obtained from the
random sampling calculations and again the agreement with the true density function is
better than would have been expected. The mean, standard deviation, median and the
mode were calculated to be

& = 23-164°,

o= 10~312°,]
Fmed, = 23~183°,J' (6:13)
Loqe = 23:308°.
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The integrals in (6-11) were evaluated by direct numerical integration while the integral
in (6-10) was calculated from the power series

in ®
J2J‘ arsin (¢ cos @) dg = Y a,, ¥+, (6-14)
0 ’ r=0
where a, =1, a;=>5/36, a;=43/800, a,=177/6272,
a, = 2867/165,888, a,, = 11,531/991,232, (6-15)

a5 = 92,479/11,075,584, a,; = 74,069/11,796,480.
In the neighbourhood of a = 45° the behaviour of the density function is given by
pa) = p_(a) = 0-002896 — 0-002763z — 0-00007022, (6-16)
for = 45— negative and
p(a) = p.(x) = p_(a)+0-0011072% + 0-00001 8%, (6-17)
for x positive. Near the limit of the distribution at o = 48-19°
 p(a) = 0-000217(c — 48-19)2, (6-18)
in agreement with the behaviour predicted by Mackenzie & Thomson (1957).

I wish to thank Mr D. C. Handscomb for communicating to me the final result for the
density function for the angle of disorientation. -
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