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Abstract

We consider an anisotropic independent bond percolation model on Z2
+,

i.e. we suppose that the vertical edges of Z2
+ are open with probability p

and closed with probability 1−p, while the horizontal edges of Z2
+ are open

with probability αp and closed with probability 1−αp, with 0 < p, α < 1.
Let x = (x1, x2) ∈ Z2

+, with x1 < x2, and x′ = (x2, x1) ∈ Z2
+. It is natural

to ask how behaves the two point connectivity function Pp,α({0 ↔ x}), and
whether anisotropy in percolation probabilities implies the strict inequality
Pp,α({0 ↔ x}) > Pp,α({0 ↔ x′}). In this note we give affirmative answer
at least for some regions of the parameters involved.
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§1. Introduction

Anisotropic systems are a classical subject in statistical mechanics. In par-
ticular, there is a large literature studying anisotropy in fundamental lattice
models such as Ising/Potts models and percolation processes. In this paper we
focus our attention on anisotropic Bernoulli percolation in the square lattice.
The Bernoulli percolation process on the d-dimensional cubic lattice, proposed
originally by Broadbent and Hammersley in 1957 to describe the diffusion of
water in porous materials, is nowadays used to model a wide number of situ-
ations of disordered systems in many areas of physics and applied sciences in
general. In particular, the anisotropic version of the two-dimensional Bernoulli
percolation is useful in topics of condensed matter and solid state physics, see
e.g. recently, [2], [5] and references therein. In spite of its straightforward
mathematical formulation, there are very basic questions about 2D anisotropic
percolation which have not yet been established rigorously. In this short note
we answer partially to one of these questions which is directly related to the
anisotropy of the model. In order to describe the problem we need to introduce
some notations.

Let Z2
+ = (V, E) be the graph with vertex set V = {x = (x1, x2) : x1 ∈

Z+, x2 ∈ Z+} and edge set E = {e = {x, y} : x ∈ V, y ∈ V, |x−y| = 1}, where
|x − y| = |x1 − y1| + |x2 − y2| is the usual path distance in Z2

+. The set E is
naturally partitioned into two disjoint subsets Ev and Eh. Namely, Eh = {e =
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{(x1, x2), (y1, y2)} ∈ E : x2 = y2} and Ev = {e = {(x1, x2), (y1, y2)} ∈ E : x1 =
y1}. We say that e is a horizontal edge if e ∈ Eh, while an edge e is called a
vertical edge if e ∈ Ev.

We define a configuration ω of the system as a function ω : E → {0, 1} :
e 7→ ω(e). So, given a configuration ω of the system, we say that the edge e is
open if ω(e) = 1 while e is closed if ω(e) = 0. We denote by Ω the set of all
configurations of the system. We now suppose that each vertical edge e ∈ Ev is
open with probability p and closed with probability 1− p, independently from
all other edges, and each horizontal edge e ∈ Eh is open with probability αp
and closed with probability 1 − αp, independently from all other edges, where
α ∈ (0, 1]. We denote by µ(e) the Bernoulli measure with parameter p if e ∈ Ev

or αp if e ∈ Eh.
Then, the anisotropic bond percolation process on Z2

+ is described by the
probability space (Ω,F , Pp,α), where Ω = {0, 1}E, F is the σ-algebra generated
by the cylinder sets in Ω, and Pp,α =

∏
e∈E µ(e) is the product of Bernoulli

measures.
Given x, y ∈ V, let {x ↔ y} be the following event: there is a path γ of

open edges connecting x to y. Then its probability Pp,α({x ↔ y}) is called
the two-point connectivity function of the process. Let now x = (x1, x2) ∈ V,
with x1 < x2, and x′ = (x2, x1) ∈ V. If the model is isotropic, i.e. α = 1,
it is immediate, by symmetry, that Pp,α({0 ↔ x}) = Pp,α({0 ↔ x′}) where 0
denotes the origin in Z2

+. Concerning the anisotropic case, i.e. α < 1, in 1997,
E. Andjel raised the question whether the strict inequality Pp,α({0 ↔ x}) >
Pp,α({0 ↔ x′}) is true or not [1]. Crudely, the problem is to prove or disprove
the following conjecture:

Conjecture. Let x = (x1, x2) ∈ V and x′ = (x2, x1) ∈ V with x1 < x2, then
the strict inequality

Pp,α({0 ↔ x}) > Pp,α({0 ↔ x′}) (1.1)

holds for every x ∈ V, for every p ∈ (0, 1) and for every α ∈ (0, 1).

In spite of its apparent simplicity the question appears to be a stubborn one.
We learned recently that P. W. Kasteleyn was asking similar type questions in
the middle of eighties. Of course, in the best of all possible worlds, one would
like to prove the conjecture without any restriction, but as far as the general
problem seems difficult to resolve (if true), one could try to give partial answer
to the conjecture in regions that are still interesting from a “physical” point of
view.

In this spirit, it is important to understand how the quantity Pp,α({0 ↔ x})
is expected to depend on parameters p and α and on the vertex x.

First of all let us consider the dependence of Pp,α({0 ↔ x}) from the pa-
rameter p. This parameter measures the tendency of the system to have its
edges open or closed, no matter of their orientation. Namely, a small p means
that the system tends to keep its edges closed while p near 1 means that the
system prefers to have its edges open. Intuition does not suggest any particular
reason for the inequality (1.1) to depend in a special manner on this parame-
ter. Namely, we don’t expect the parameter p particulary important from the
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physical point of view for the conjecture to be true. So, it would be interesting
to show the conjecture at least for some region of the parameter p.

The story is completely different for the parameter α. This is the key
parameter which measures the degree of anisotropy of the system. Namely α
close to 1 means that the system is weakly anisotropic while α near 0 is the
opposite situation. Clearly, it should be easier to prove the inequality (1.1) for
α near zero than for α near 1. The latter could be the “dangerous” regime, i.e.
where the strict inequality (1.1) could not be true.

So one would like to prove the conjecture as uniformly as possible in the
parameter α. Namely one would like to prove that, as far as α < 1, which is
to say as far as there is anisotropy in the system, the inequality (1.1) is true at
least for some regions of the parameter p.

Finally, let us consider the dependence of the quantity Pp,α({0 ↔ x} from
x. Pp,α({0 ↔ x} depends clearly on the distance |x| of vertex x from the origin
but also on the slope ρ = x2/x1 of the vector x with the positive x axis. In
particular, if |x| → ∞ and simultaneously ρ → 1+, i.e. x goes to infinity in such
way that the angular distance of x from the diagonal goes to zero, then one
should reasonably expect that Pp,α({0 ↔ x}−Pp,α({0 ↔ x′} → 0 for any value
of p and α. So it seems very difficult to prove the inequality (1.1) uniformly
in x, due exactly to the region where |x| → ∞ and ρ → 1. On the other hand
these regions does nor seems particulary interesting from the “physical” point
of view, since |x| → ∞ and ρ → 1 means that x tends to stay on the diagonal.
So, in trying to prove the inequality (1.1) one could demand a uniformity in x
in the sense that inequality (1.1) holds for all distances |x| as far as the slope ρ
of x is not less than a fixed value greater that 1.

§2. The main result and some notations
In this paper we give a partial proof of the Andjel conjecture in the spirit

of the discussion of section 1. Namely we are able to show that, if the system is
anisotropic, even very weakly anisotropic, and the vertex x is at a fixed positive
angular distance from the diagonal, even very small, the inequality (1.1) holds
true at least in some regions of the parameter p. Our result can be summarized
by the following theorem

Theorem. Let x = (x1, x2) ∈ V and x′ = (x2, x1) ∈ V with x1 < x2 (i.e.
ρ > 1). Then, for any α ∈ (0, 1), there exists a p∗(α, ρ) > 0 such that

Pp,α({0 ↔ x}) > Pp,α({0 ↔ x′})

is true for all p < p∗.
The restriction p < p∗ (actually p sufficiently small) is due only to technical

reasons, so we expect that by using the appropriate techniques in the different
regions of p, the validity of the conjecture could be extended for p varying in
the whole interval (0, 1) or at least for p in the whole subcritical regime. We
recall that, as originally proved in [4] (see also [3]) the subcritical regime for this
model occurs when p(1+α) < 1. The conjecture seems to be less relevant from
the physical point of view in the supercritical region, since here the connectivity
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Pp,α({0 ↔ x}) is a less interesting quantity, due to the non zero probability that
0 and x are contained in the infinite cluster.

We also remark that the inequality (1.1) could be proved for larger (but
still subcritical) values of p. E.g., via a calculation similar to the one presented
here (but easier) it is possible to show that for all ρ > 1 and for all α is smaller
than a fixed quantity α∗ = α∗(ρ) (actually, α sufficiently small), the equality
(1.1) holds true for all p < 1/3. However this regime is less interesting from
a physical point of view, since the system here presents in general not weak
anisotropy.

In order to obtain the proof we will need to introduce some notations. In
general, if V is any finite set, we denote by |V | the number of elements of
V . A lattice animal is defined to be a connected and finite subgraph A =
(VA, EA) ⊂ Zd

+, with vertex set VA and edge set EA. We will denote by ∂eA
the edge boundary of a, i.e. the set ∂eA = {e ∈ E − EA : e ∩ VA 6= ∅}.
Given an animal A = (VA, EA), we will denote shortly |A| = |EA| as the
number of edges constituting A, we also denote |A|h as the number of horizontal
edges of A, and consistently with previous notations |∂eA|v and |∂eA|h denote
the number of vertical edges and horizontal edges respectively in ∂eA, and
|∂eA| = |∂eA|v + |∂eA|h is the total number of edges in ∂eA. Finally, we will
denote by Ax the set of all lattice animals in E such that {0, x} ⊂ VA.
A self avoiding path γ ⊂ Zd

+, joining 0 to x, is an animal γ = (Vγ , Eγ) ∈ Ax

such that Vγ = {x1, . . . , xn} (xi 6= xj if i 6= j), with x1 = 0, xn = x, Eγ =
{e1, . . . , en−1}, where ei = {xi, xi+1}. We denote by |γ| the number of edges
contained in γ. We also denote by |γ|h the number of horizontal edges contained
in γ. Finally Γx will denote the set of all self avoiding paths connecting the
origin to x. A path γ ∈ Γx is minimal if |γ| = |x|. Observe that the number Cx

of minimal paths connecting 0 to x is given by

Cx =
∑
γ∈Γx
|γ|=|x|

1 =
(x1 + x2)!

x1!x2!
(2.1)

Note also that, for all paths γ ∈ Γx we have that

|∂eγ| ≤ 2|γ|+ 4 (2.2)

§3. Proof of the Theorem

In order to get the lower bound for Pp,α(0 ↔ x) we use the standard repre-
sentation of Pp,α(0 ↔ x) in terms of lattice animals, i.e.

Pp,α(0 ↔ x) =
∑

A∈Ax

p|A|α|A|h(1− p)|∂eA|v(1− αp)|∂eA|h

Then, using (2.2) we get

Pp,α(0 ↔ x) >
∑
γ∈Γx

p|γ|α|γ|h(1− p)|∂eγ|v(1− αp)|∂eγ|h ≥
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≥
∑
γ∈Γx

p|γ|α|γ|h(1− p)|∂eγ| >
∑
γ∈Γx
|γ|=|x|

p|γ|α|γ|h(1− p)|∂eγ| >

> Cxαx1(1− p)4
[
p(1− p)2

]x1+x2

So, we obtained the lower bound

Pp,α(0 ↔ x) > Cxαx1(1− p)4
[
p(1− p)2

]x1+x2

(3.1)

Now we will get an upper bound for Pp,α(0 ↔ x′). First observe that if x =
(0, 1), then it is easy to check that Pp,α(0 ↔ x) > Pp,α(0 ↔ x′), ∀ p, α ∈ (0, 1).
Indeed,

Pp,α(0 ↔ x) = Pp,α(0 ↔ x ↔ x′) + Pp,α({0 ↔ x}\{0 ↔ x′}) =

= Pp,α(0 ↔ x ↔ x′) + p(1− αp) > Pp,α(0 ↔ x ↔ x′) + αp(1− p) =

= Pp,α(0 ↔ x ↔ x′) + Pp,α({0 ↔ x′}\{0 ↔ x}) = Pp,α({0 ↔ x′}

Suppose now x1 + x2 ≥ 2. In this case

Pp,α({0 ↔ x′} ≤
∑

γ∈Γx′

p|γ|α|γ|h ≤ p|x|αx2

∞∑
n=|x|

pn−|x|N(x, n) =

p|x|αx2
∑

n≤ 3
2
|x|

pn−|x|N(x, n) + p|x|αx2
∑

n> 3
2
|x|

pn−|x|N(x, n) (3.2)

where
N(x, n) =

∑
γ∈Γx′
|γ|=n,

1

is the number of paths of length n connecting 0 to x′ which, by symmetry, is
equal to the number of paths n connecting 0 to x.
We get an upper bound for the second term in the left hand side of (3.2) using
the estimate

N(x, n) =
∑

γ∈Γx′
|γ|=n

1 ≤ 4 · 3n−1 (3.3)

So

p|x|αx2
∑

n> 3
2
|x|

pn−|x|N(x, n) ≤ 4
3
p|x|αx2

∑
n> 3

2
|x|

pn−|x|3n =

=
4
3
p|x|αx2

∑
m> 1

2
|x|

pm3m+|x| <
4
3
p|x|αx2

∑
m> 1

2
|x|

pm33m
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The last series in the r.h.s. of equation above converges if p < 1/27 and in this
case we get the upper bound

p|x|αx2
∑

n> 3
2
|x|

pn−|x|N(x, n) <
36px1+x2+1αx2

1− 27p
, for p <

1
27

(3.4)

Concerning now the first term in the left hand side of equation (3.2), we use
a more careful estimate of the factor N(x, n) when n is small. We follow [6],
page 446.

p|x|αx2
∑

n≤ 3
2
|x|

pn−|x|N(x, n) = p|x|αx2
∑

m≤ 1
2
|x|

pmN(x,m + |x|)

Now observe that

N(x,m + |x|) ≤ 3mCx

(
m + |x|

m

)
= 3m Cx

(
|x|
m

) m∏
j=1

|x|+ j

|x| −m + j
≤

≤ 3m Cx

(
|x|
m

) [
|x|+ 1

|x| −m + 1

]m

≤ 6m Cx

(
|x|
m

)
So

p|x|αx2
∑

n≤ 3
2
|x|

pn−|x|N(x, n) ≤ Cxp|x|αx2
∑

m≤ 1
2
|x|

(
|x|
m

)
(6p)m ≤

≤ Cxp|x|αx2

|x|∑
m=0

(
|x|
m

)
(6p)m = Cxp|x|αx2 [1 + 6p]|x|

Then, if x1 + x2 ≥ 2 and p < 1
27 , we have the second upper bound:

Pp,α({0 ↔ x′} ≤ px1+x2αx2

[
36p

1− 27p
+ Cx (1 + 6p)x1+x2

]
.

Comparing this upper bound with the lower bound previously obtained, we
have that Pp,α(0 ↔ x) > Pp,α(0 ↔ x′) if

αx2−x1

[
36p

1− 27p
+ Cx (1 + 6p)x1+x2

]
< Cx(1− p)4

[
(1− p)2

]x1+x2

Inequality (1.1) above is satisfied for all α such that

α < α̃(p, x1, x2)

where the function α̃(p, x1, x2) is defined for all p < 1/27, all x1 + x2 ≥ 2 and
x2 − x1 ≥ 1 and it is given explicitly by

α̃(p, x1, x2) =

Cx(1− p)4
[
(1− p)2

]x1+x2

36p
1−27p + Cx (1 + 6p)x1+x2


1/(x2−x1)
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Note now that α̃(p, x1, x2) → 1− as p → 0+. Observe also that, for fixed slope
ρ > 1, lim|x|→∞ α̃(p, x1, x2) = f(p, ρ) and limp→0+ f(p, ρ) = 1. This ends the
proof of the theorem.
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