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— Crystal lattices (fcc, bee, hep)
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— Cubic {hkl} naming

— Hcp {hkil} naming

— Twinning theory

— TEM i1mages of twins

Hcp twins & dislocations schematics and notation

Hcp twin & dislocation interaction computer
modeling done by A. Serra, D.J. Bacon, & R.C. Pond
(next week)



Motivation

* The mechanical response of hexagonal close-packed (hcp)
metals 1s strongly dependent on the combination of active
deformation modes, both slip and twinning.

— This 1s 1n turn dependent on the c/a ratio, available deformation
modes, critical resolved shear stress (CRSS) for slip, and twin
activation stress.

e Deformation-induced twins may act as barriers to further slip
— Some twin-dislocation interactions can actually assist twin boundary motion
under stress.
« Dislocation movement into or along a twin boundary depends on the
atomic arrangement at the interface and the dislocation core

— Serra, et.al., used atomistic computer simulation to investigate this, instead of
the classic purely crystallographic explanation or the continuum description.

A. Serra, D.J. Bacon, R.C. Pond, “Twins as barriers to basel slip in hexagonal-closed-packed metals,”
Metallurgical and Materials Transactions A, vol 33A, March 2002, p 809.




Motivation

Zirconium 1s a good representative hcp metal because 1t
is readily deformable, and exhibits a manageable number
of slip and twinning systems.

For typical hcp metals, the primary systems are:

— Basal slip {0001}<1210>

— Prismatic slip {1010}<1210>

— Pyramidal twins {1011}
At room temperature and below for Zr, the systems are:
— Prismatic slip {1010}<1210>

— Tension twins {1012}<1011>, and {1121}<1126>

— Compression twin {1122}<1123>

— And secondary pyramidal slip may play a limited role at RT
{1011}<2113>, or {1121}<2113>



Crystal lattices

bce fec hcp

body-centered-cubic  face-centered cubic hexagonal-close-packed

Various views of hcp lattice



Cubic Miller Indices
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Miller indices of directions in cubic lattices. After C. R. Barrett, W. D. Nix and A. S. Tetelman, The

Principles of Engineering Materials, Prentice—Hall, Englewood Cliffs, NJ (1973).

Vectors from one point to another are

reduced to the smallest whole numbers,

e.[1 0 1/3] becomes [301]

Any three points define a plane:

1) Express the intercepts of the plane
on the three coordinate axes in
number of unit cell dimensions.

2) Take reciprocals of these numbers.

3) Reduce reciprocals to smallest
integers by clearing fractions.

Note that the (hkl) planes are
perpendicular to the [hkl] vectors.
(hkl) = a plane
{hkl} = a family of planes

[uvw] = a direction (vector)
<uvw> = a family of directions




HCP crystal Miller-Bravais indices
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(hkll) indices:
Three basal axes, a,, a,, a;, which are
120 degrees to each other.
(The h, k, and 1 indices.)

« Fourth axis, c, 1s vertical along the unit
cell (the 1 index).

 HCP planes are sometimes identified by
only three indices (hkl) as h + k= -1

e Directions can similarly be indicated by
four indices as [uvtw], and u+ v =-t




fcc —
(111) plane

Formation of fcc and
hcp crystal structures by
stacking of atomic
planes
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Hcp vs. fcc closed packed planes
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c c FCC lattice, (B) Plan view of the ABABAB. . . stacking of close-packed planes leading to the HCP structure. h cp
A

ABC s 2 B
stacking ([ ) o ' stacking

(A) Side view of a hard sphere model of the FCC structure. (B) Side view of a hard sphere model of
the HCP structure.



Dislocation Slip Systems

Slip Slip Number of TCRSS

Structure and material plane direction slip systems (MPa) Slip geometry
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After H. W. Havden, W. G. Mottarr, and |. Wulft, The Structure and Properties of Materials,
Vol. 111, Wiley, New York (1965).



Burgers vectors on close-packed planes

FCC perfect Burgers vector splits into two | »
partials by the following equation:

aton = 45 a7
011 = g2111 + ¢(112]
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Figure 3.29

A portion of the atoms in a
(111) plane in a fcc crystal.
Unit slip in the B plane occurs
with displacement (a/2)[ 101].
Instead of slip occurring by
unit displacement it can take
place in two segmental steps
(X and Y). The displacement
X results in atoms in plane

B temporarily occupying a

C stacking sequence in the
fce lattice.

Hcp basal slip
<1210>




Possible hep shp systems

(0001) (1123)

(1310) (1210

Basal ship w © Pyramidal slip

(1210) (ii23)

(d)

Zr RT deformation systems are:
«Prismatic slip {1010}<1210> |

*Tension twins {1012}<1011>, %77 R
and {1121}<1126>
*Compression twin {1 152}<ﬁ23> (g)

Fig. 1. The planes and directions that are considered as possible sllp systems are
schem mcaily shown.

(a) Basal slip on (0001)1210;

(b) Prismatic slip on {1010} <1210
(c) {1071} <1210> and {1071} <1723
(d) {1012} <1210>

(e) {1013} <1T10>

(f) {1122} <1123

(g) {1120}



Twinning
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Twinning deformation 1n the bcce crystal structure.

(a) The untwinned structure. (b) Twinning occurs by
cooperative displacement of atoms in the [111] direction. The
result of twinning 1s to produce a permanent shape change
(plastic deformation).



A Twinning mechanism

EHZ- ————————————————————————— X
S —— #
‘:z{; — _“_::_:h_lj Mechanical twinning by edge-
R / dislocation motion. In (a) the
P stacking 1n the unstressed crystal

1s schematized 1n a manner
similar to the previous picture. (b)
Motion of the dislocations 1n the
[111] direction produces the twin
misorientation and in (c) the

process 1s complete.




TEM 1mage of microtwin

At some small angle boundaries, the twin fault can propagate
across the boundary. Different fringe structures can be seen on
either side of the boundary. Most likely the stress due to the pile-
up of fault dislocations against one side of the g.b. nucleated and
propagated a new fault in the adjacent grain.



TEM 1mages of microtwins

(A) BF of microtwin parallel to electron beam.
(B) Diffraction pattern showing twin spots

(C) DF using the (200) twin spot

(D) Boxed area in C at higher magnification
showing a thin twin parallel to the main twin.



TEM Examples of Twins

Work done by Dr. Chung-Ming Li
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TEM Examples of Twins

WBDF 1mage BF image
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Work done by Dr. Chung-Ming Li



TEM Examples of Twins

Work done by Dr. Chung-Ming Li



Twins & Dislocations in HCP
(continued)

Cindy Smith
7/15/03
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Review of hep slip systems
Twinning as a function of temperature
Twinning shear vs. c¢/a ratio

Notation for twinning planes and directions (K,
Ky, mp, o)
Notation for schematics of twins

Notation for dichromatic patterns

Notation for interface burgers vectors

The approach and model used by Serra, et.al.
The Results of Serra, et.al.



Possible hep shp systems

(0001) (1123)

(1310) (1210

Basal ship w © Pyramidal slip

(1210) (ii23)

(d)

Zr RT deformation systems are:
«Prismatic slip {1010}<1210> |

*Tension twins {1012}<1011>, %77 R
and {1121}<1126>
*Compression twin {1 152}<ﬁ23> (g)

Fig. 1. The planes and directions that are considered as possible sllp systems are
schem mcaily shown.

(a) Basal slip on (0001)1210;

(b) Prismatic slip on {1010} <1210
(c) {1071} <1210> and {1071} <1723
(d) {1012} <1210>

(e) {1013} <1T10>

(f) {1122} <1123

(g) {1120}



Possible hcp slip systems

Table Ill. Independent Modes of Deformation in hcp Crystals

Crystallographic Number of
Direction Plane Elements Independent Mode
s Basal Slip (0002) (1120) 2
a Prismatic Slip {1100} <1120 2
Pyramidal Slip {1107} <1120} 4
c {hki0} [0001]
c+a Pyramidal Slip  {hkif}*{1123> 5
Twinning (K} ¢t 0-5
*See Fig. L.
+See Table 4.
PYRAMIDAL
(1100)
PRISMATIC
| : (1700)
i3 [1120] (a(iosoﬂzl_l Y [1i53]
o SLIP =

Fig. 2—c¢ + a dislocation reaction showing decomposition of the edge
component into a and ¢ dislocations. This indicates also a source
mechanism by association of a and ¢ dislocations to form ¢ + a screw
dislocation. From Ref. 29,

(1011) (1011)

{1100)

73 [1123]



Twinning as a function of Temnerature

T1 crystal under compression
along the ¢ axis
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Fig. 5—The role of twinning when a Ti single crystal is compressed
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HOMOLOGOUS TEMPERATURE T7/T7,
Temperature-dependent yield strength and load drop in titanium (Paton and Backofen 1970)
-) and zirconium (Akhtar 1973) ( ) under compression along the ¢ axis.

Solid lines are Ti, dotted lines are Zr
under compression along the ¢ axis



Twinning shear vs. c¢/a ratio

| Twinning showing a positive
slope causes a contraction along
the ¢ axis. Twinning showing a
negative slope causes extension
along the c axis.

g, TWINNING SHEAR

Note that the {1012} twin is a
“compression” twin for Cd and
Zn but a “tension” twin for the
rest, including Ti and Zr.

¥ = cla, aXlaL RATIO
Fig. 4—Varation of twinning shear with the axial ratio. For the seven
hexagonal metals, a filled symbol indicates that the twin mode is an
active mode.



K,, K,, ,, n, notation

'
i
Ky

Fig. 1. Schematic illustration of a twinned crystal showing
the twinning elements K. #,, K, and »,, and the interfacial
step associated with a twinning dislocation.

Fig. 4. Schematic illustration of a twinned crystal showing
the twinning elements X,, n,, K, and »,, and the interfacial
step associated with a twinning dislocation (of class 1 or 2).

F ‘ig.ﬁ3;C‘«rysfallographic elements of twinning. The unit cell defined
by n,, n,, and S is homogeneously sheared to the unit cell in twin
defined by %,, 73, and S.

K, = twinning plane

K, = conjugate twinning plane

1, = twinning direction

1, = conjugate twinning direction
s = twinning shear



K,, K,, ,, n, notation

Table IV. Crystallographic Elements and Parameters of Compound Twin Systems in hep Structure y = c/a

N. e

'Kl K:. m L] A "h';'. f\rrl q B T n
i 2 11 _ L a3 - L ki
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* Absolute value of the difference.

K, = twinning plane

K, = conjugate twinning plane

1, = twinning direction

1, = conjugate twinning direction
s = twinning shear



Notation for schematics of twins

Example: compression twin plane in Zr: {1 1§2}
{1122} surface (ii23)

>

7
O

{HEZ}

B
% A
{1122} surface

(1210}

fioio}

Fig. 3. A {1122} surface of a hep crystal made of closely packed spheres. Many

of the spheres are labeled A4 or B to indicate the stacking sequence of the close-
packed (0002) planes. A perfect crystal is continued by pE;icing spheres at the
octahedral positions such as those labeled Oc. The broken circle at 0 shows the
position of one such sphere. Tr indicates a triangular hole. A sphere in an octa-
hedral position simultaneously occupies a EI’i:ln:.;uI;n’ position. T, and T, are
tetrahedral positions attainable by a displacement in the {1123> direction from
octahedral positions on A and B planes respectively. The numbers 1, 2, 3, 4 indicate —

the successive positions assumed by a sphere which moves from 0 along the slip { 10 1 O} Surface
direction <1123 maintaining as nearly as possible its nearest ncighhnr configuration.

The positions 0 and 4 are octahedral positions in A planes while the positions 2
are in B planes.




Notation for schematics of twins
Example: compression twin plane in Zr: {1122}

(1210}

(1123)

Co ) <ii23>—
“’:..L,u...r" A i
{1122} plane A_ 122}
j"" %

{1700}

A B A

Fig. 4. Atom positions in stacking faults on {1 122) planes. The plane of the paper
isa {1100}; and the {1132} is normal to the paper, appearing as a horizontal trace.
The symbols {», A, O, [, are structure sites at progressively lower levels with
respect to the plane of the paper. The underlined numbers indicate the number of
nearest neighbors. D is the displacement of the crystal. The diagrams were drawn
for ¢/a approximately 1.8.

(a) A simple fault.



Notation for schematics of twins

Example: compression twin plane in Zr: {1122}

A B A B

Tg /¥ ¢ _
s <lie3>
<I1123>—
Tg L T‘ [ ]
1122} \ l_,{uiz}
{1700} {iToo}
<C> I
Q 5\
O
A B A \&
Fig. 4. Atom positions in stacking faults on {1 122} planes. The plane of the paper A B
15a {1100};: and the {1122} is normal to the paper, appearing as a horizontal trace.
The symbols (>, ! are structure sites at progressively lower levels with : . i 591 : o
’ o : gD, 2 ments re € 'm « F ) '{ planes. ¢ Hols
respect to the plane of the paper. The underlined numbers indicate the number of I 1g. 2- Atom _T“”\tmu“'\ ““‘{L”H’d to form a twin fault on h 1 e f lanes %'\ mt L_
nearest neighbors. D is the displacement of the crystal. The diagrams were drawn are the same as in I'IIQL:I re 4. The &lﬂ;:h_‘ 24 defines the orientation of the second undis-

for ¢/a approximately 1.8, : ; : : p
i eproximately torted plane K,. In the diagram c/a is approximately 1.8. Dilatations in the twin
Esmple foult. interfaces have been ignored.

A simple fault A twin fault on {1 152} plane



Dichromatic Patterns

Adjacent crystals are labeled black () and white (A),

and the two lattices are projected on top of one another.

Fioure 1. Schematic representation of the difference between a dichromatic pattern (a) and
h”:a dichromatic complex (b). (@) (001) Projection of black and white f.c.c. lattices rotated
i\_‘:;‘:b}’ 36.9° about [001] (£ = 5); the space group is 14/mm’m’. (b) (001) Projection of black
“'and white lattice complexes for diamond-cubie structures having the same relative orien-
o tation as in (a); the space group is 142'm’, Large and small circles represent sites at levels
10 (or 1) and } along [001] respectively; large and small squares represent sites at levels

© . } and § respectively. Two-coloured symbols are neutral (grey) sites. (This diagram is

.'Ialsu the projection for sphalerite-type structures: see text.)
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Figure 3. Schematic representation of a bicrystal structure in 8i; the adjacent crystals are
twin related (£ = 3) and the interfacial plane is (211), in the coordinate system of the
white erystal. The figure shows a holosymmetrie structure: III*(b) = p2'mm’.
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Burgers Vectors Notation

Bicrystal is imagined to be created by joining white (A) and black (u) crystals (fig a).
Interface dislocations arise when the black and white crystal surfaces have surface
features which are not complimentary (fig b & c).

In figure b, the steps are characterized by the translation vectors t(A); and t(w);
By joining the two crystal surfaces so the interfacial structures are identical on either
side of the perturbations, a dislocation is introduced with the Burgers vector of:
b, = t(0); — Pt(w),
when written in the A | o

frame, where P expresses
the relationship between

the co-ordinate frames of | ] _/7/4“*-‘ I E—
I} Y e o\
the two crystals. ! ) f o2
|

i
Note: the vector n is

perpendicular to the w | A |



Burgers Vectors Notation

The magnitude of the normal component of b;; 1s designated
b, and 1s equal to the difference between the two surface step
heights (h) expressed in the A frame.

h(A), =n * t(A) ;

h(w); =n * Pt(w) ;

b, = h(h); — h(w),

It 1s convenient to designate the total Burgers vector by an
appropriate subscript. For twins, Burgers vectors are written as
b, Where p and q are defined as:

h(k) =pd and h(w),=qd

Where d 1s the iterplanar spacing, 1.e. d 41, for the (1012)
lattice planes.

Owing to symmetry: b ,.=-b_, - and for the pairs b, and b, the |
components b, and b, are the same but the b, components are opposite.



Burgers Vector Notation

[1210] projection of the dichromatic pattern (1210) .
.associated with the (1012) twin boundary. N 78 =
| & & & 4 W o {1210} \ 2 {ioie} CLEi
: @ A @ .. R 7 e

The Burgers vectors for crystal

i 5 = lh’li o pu! ] V
’
t e ]n,quI E\:m \ .-’

0,200 00 ' dislocations, for which h 1s always zero,
| a 3 !. os - O J . . .
| & W Egpen ' can be represented 1n this notation. For

e e e o s o s o e o | example, defects in the A crystal with:
BLEW SRR !bZaareeitherbl/Oorbo/O

« oe __”,_fo ce o .
e =5 w0 c = oo = ‘The screw component of b 1s not

— cfa=1.59

| = ] =0

i - o | —

» ﬁ._:o -‘ _2_,__3{- D- o. D- o._; o. | b =c are b2/0
e * e ceniee b =c+aare by,
i a a m O m O ‘l_-_D ‘

2 _

|

— — represented explicitly 1n this notation.
ig. 2. [1210] projection of Lhc LfiChI'OInilllL‘ pattern associ- . .
peg ith (@) the (1012) twin boundary and (b) the incom- For example: the screw dislocation

;Tknxumln 90" -tilt lmund iIry in Ti. The outline of
exagonal unit cells in the 4 and pu crystals are indicated, . _ .
d}? are the p/¢ values used to define the Burgers vector of Wlth b_a, parallel tO the lnterface, can
¢ selected crystal and interfacial dislocations, as -
explained in Section 2. be deﬁned asS bO/O — 1/3 [12 1 O]



chhromatlc pattern of the twin

» 0 A2 <1100> projection of the {1 122}
v e e twin, with the set of burgers
vectors of admissible interface
dislocations indicated by arrows

° by, indicates interface step of
L, one interplanar distance
_ RN L b,/; Indicates interface step of
iy st three interplanar distances

b,/; has narrow core and is sessile in
computer model, while b,,; has wide
core and high mobility.

However, the sense of twinning shear
1s the reverse of that found in practice.




Schematics of hep twins

BURGERS VECTOR OF THE

TWlNNl’NG DISLOCATION
___________________ [0001]* [0001]
DIRECTION DIRECTION

TWINNED
MATERIAL _ i [To]

UNTWINNED DIRECTION
MATERIAL o

0

Fig. 4. Twinning on (1072) planes in zirconium. Projection of the lattice on the
(T270) plane. Circles are in the plane of the page. Squares are a/2 above and below
the page. Solid symbols indicate atom positions in the twin. (After reference 14.)

(1210}

(1210 il

V

(1011)

. 0 [000T]
2 2__‘ DIRECTION
A Q C_ ¢ [000T]"
DIRECTION

TWIN O
MATRIX &

[1128] DIRECTION

Fig. 7. Zirconium lattice projected on the (1100) plane. Solid symbols show atom
positions after homogeneous shear on (1121) planes. Circles are in the plane of the
page. Squares, diamonds and triangles are in first, second and third planes below
the page.

-
c+a SLIP
[o00T]
P S DIRECTION
MATRIX o & . [0001]"
-, [1135] DIRECTION
DIRECTION
y——
TWIN o = 0
TWINNING ot i
DISLOCATION %
BURGERS ! A "
VECTOR v X
w
MATRIX v Y
YTt ¥ T aTinl®
z[1270] z[2110]

Fig. 9. Projection of the zirconium lattice on the (1100) plane. Solid symbols
represent atom positions in the twin. Circles are in the plane of the page. Squares
are 4/3af3 below the page, diamonds are +/3a/2 below the page, and triangles are
54/3a/6 below the page. An X superimposed on a symbol indicates that it is shifted
v/3a/6 closer to the page.



The model used by Serra, Bacon, and Pond

Simulations were carried out by a many-body
interatomic potential of Finnis-Sinclair type for o-

titanium, as derived by Ackland, et.al.
Crystal models of this type exhibit proper:

— c/a lattice parameter ratio,
— Elastic constants,
— Stacking fault energies

They do NOT describe:

— The directional nature of bonding inherent in transition metals

— The potential favors basal slip, while prism slip is preferred in
the real metal.

The simulations are best considered as those of a model
hcp system.



The model used by Serra, et.al.

(ii23)

* Perfect (1 121) and (1 122) twins were
created 1n the relaxed state with periodic
boundary conditions along the [1100] axis

— Inner relaxable region contained up to 3000  fioo;
atoms

— Thickness along [1100] e \/_qual to the repeat
distance of the lattice, vV3a

— The dislocation was parallel to the interface
due to the periodicity requirements.

A. Serra, D.J. Bacon, R.C. Pond, “Twins as barriers to basel slip in hexagonal-closed-packed metals,”
Metallurgical and Materials Transactions A, vol 33A, March 2002, p 809.




Approach & Results of Serra, et.al.

* Applied a shear stress resolved for basal slip
toa {1012} twinned bicrystal
— Screw dislocations with b=1/3<1120> and line

direction parallel to the boundary (also called
b,) are able to cross the twin interface

— No residual dislocations are left behind.

— Cross-slip 1s facilitated by core constriction at
the boundary, but interface 1s still a significant
barrier to glide.

A. Serra, R.C. Pond, D.J. Bacon, “Computer Simulation of the Structure and Mobility of Twinning
Dislocations in HCP Metals,” Acta Metll.Mater. vol 39, 1991, p 1469.




Approach & Results of Serra, et.al.

e Similar modeling of {1011} twins revealed:
— Total absorbtion of the screw dislocation by its transformation
into a pair of twinning dislocations.
e Computer modeling of {1012} twin boundary and a
perfect dislocation gliding on the (0001) plane with b
inclined at 60 deg to the dislocation line (also called b, ,):

— Slip was not transferred from one crystal to the other, instead the
dislocation decomposes into boundary dislocations, also referred
to as interfacial defects.

byp=b_5.6 T 3by,

— This results 1n a source for new twinning dislocations, which
produces further twinning growth.

A. Serra, R.C. Pond, D.J. Bacon, “Computer Simulation of the Structure and Mobility of Twinning
Dislocations in HCP Metals,” Acta Metll.Mater. vol 39, 1991, p 1469.

A. Serra, D.J. Bacon, R.C. Pond, “Twins as barriers to basel slip in hexagonal-closed-packed metals,”
Metallurgical and Materials Transactions A, vol 33A, March 2002, p 809.




Results of Serra, et.al.
» {1122} twin boundary, with 30 deg dislocation, b,

— Dislocation dissociates into two shockley partials 1n the
perfect crystal, 1.e. a screw partial and a 60 deg partial.

— When the dislocation interacts with the 60 deg partial
leading 1t 1s stopped by the boundary

— With increased applied shear stress the following reaction
OCCUTS:

b_1p=b_.1 T by

— This creates a twinning dislocation that allows the crystal
dislocation to cross the boundary and continue to glide in
the next crystal. (See fig 2a)

A. Serra, D.J. Bacon, R.C. Pond, “Twins as barriers to basel slip in hexagonal-closed-packed metals,”
Metallurgical and Materials Transactions A, vol 33A, March 2002, p 809.




Results of Serra, et.al.

* When the screw partial )
leads, 1t can cross slip ¢
into the next crystal
without resistance, |
leaving the 60 deg partial /
at the interface. ‘

* Since the previously
noted reaction 1s not
possible, this leaves the
partial anchored at the
boundary. (see figure 2b)

A. Serra, D.J. Bacon, R.C. Pond, “Twins as barriers to basel slip in hexagonal-closed-packed metals,”
Metallurgical and Materials Transactions A, vol 33A, March 2002, p 809.




Results of Serra, et.al.

» {1122} twin boundary, with edge dislocation b _,,

— Dislocation dissociates into two 60 deg partials 1n the
basal plane in the model crystal.

— Reaction:
b _,0=2b,.; T by,

— The first dislocation can decompose into two twinning
dislocations and a perfect edge dislocation in the other
crystal.

A. Serra, D.J. Bacon, R.C. Pond, “Twins as barriers to basel slip in hexagonal-closed-packed metals,”
Metallurgical and Materials Transactions A, vol 33A, March 2002, p 809.




Results of Serra, et.al.

» The {1121} twin is similar to A L
the {1122} twin, and the
previous two reactions can R
occur in principle. e

* Due to symmetry of the 1/ ]
bicrystal, another reaction 1s . b=}
. o~/
possible: b /1 . o
S e o w

 This dislocation 1s very wide -
and has much lower energy, Y, e 20y o
and 1s very mobile. P

A. Serra, D.J. Bacon, R.C. Pond, “Twins as barriers to basel slip in hexagonal-closed-packed metals,”
Metallurgical and Materials Transactions A, vol 33A, March 2002, p 809.




Results of Serra, et.al.

o The {1121} twin interaction with the 30 deg
dislocation b :

— When the 60 deg partial leads, the complete dislocation 1s
transmitted through the boundary

— If the screw partial leads, it 1s still transmitted, although the
stress required 1s much higher.

 The {1121} twin interaction with the 30 deg
dislocation b, :

— This dislocation 1s stopped by the boundary and 1s not even
partially transmitted to the other crystal.

— The change 1n the stacking sequence of the basal plans when
crossing the twin boundary 1s a strong barrier.

A. Serra, D.J. Bacon, R.C. Pond, “Twins as barriers to basel slip in hexagonal-closed-packed metals,”
Metallurgical and Materials Transactions A, vol 33A, March 2002, p 809.




Conclusions

e Serra, Bacon, and Pond have done many
computer simulations of hcp twins and
dislocation/twin interactions, only a few of
which I have shown here.

* The reactions discussed 1n this talk included:
— {LOTZ} twin and b,,, and b,
— {1011} twin and by,
— {1122} twinand b, and b
— {1121} twinand b ,,,and b, ;and b |/,




