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Abstract

The volumes of a crystal unit cell and of its reciprocal cell, the
relationships between direct and reciprocal interaxial angles
and the coordinates of the reciprocal vectors in the direct basis
are rederived in a concise way by means of an elementary
formula in vector algebra. The product of two rotations is also
considered.

The volumes of the direct and reciprocal cells of a crystal and
the relationships between direct- and reciprocal-lattice quan-
tities are classically derived using the algebra of determinants
and spherical crystallography or advanced vector methods
such as Lagrange formulas for products of four vectors. We
present here a simple vector formula from which all these
quantities are then rederived. Finally, the relationships
between direct- and reciprocal-lattice quantities are applied
to spherical trigonometry and the product of two rotations.
Consider three linearly independent vectors a, b, ¢ and
introduce the coordinates x, y, z of ¢ in the a, b, a x b basis:

c=xa+yb+zaxbh.

Taking the scalar product of this relation successively by a, b
and a x b, we find:

a.c=xa’+ya-b

b-c=xa-b+yb?

(a,b,¢) =zjax bj.
Using the Lagrange identity

fa x b|* = a®b® — (a-b),
we get finally the ‘basic’ formula
lax bf’lc=[b*(a-c)—(a-b)b-c)la
+[a*®b-c)—(a-b)a-c)lb+(a,b,c)axb. (1)

(a) Suppose that the three vectors a, b, ¢ define a crystal unit
cell: the cell edges are a, b, ¢ and the interaxial angles are
a, B, y. The volume V of the cell is equal to the triple scalar
product (a,b,c)=axb-c=a-bxc. Taking the scalar
product of (1) by ¢, we get the classical expression (Buerger,
1942; Carpenter, 1969; Neustadt & Cagle, 1968; Woolfson,
1970):

v = @®b*A(1 4 2cosacos Bcos y — cos’a — cos? B — cos’y),
0))

which is generally derived using the theory of determinants.
An interesting equivalent expression is (Donnay & Donnay,
1959)
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V2 = 4B [sin ssin(s — a) sin(s — ) sin(s — y)]

with2s=a+ 8+ .

(b) Consider now the reciprocal vectors a*, b*, ¢*. We want
to determine the reciprocal-cell edges a*, b*, ¢*, the interaxial
angles o*, B*, y* and the coordinates of the reciprocal vectors
in the a,b,c basis. Since v¢* =axb, we have c¢* =
absiny/v. Equation (1) gives immediately the expression
for ¢* in the direct basis:

v’¢* =[@-b)b-c)—b’(a-c)a
+[@-b)a-¢0)—d*®-c)b+|axbffc (3)
or
v*¢* = ab?c(cos wcos y — cos f)a
+ a®bc(cos Bcos y — cosa)b + a?b?sin’ y ¢ (3')
Comparing this with the general expression
=@ -cHa+®d -cHb+(c*-c*) 4

and equating the coefficients of b in (3) and (4), we get the
angle a*:

cosa* = (cos Bcos y — cosa)/ sin Bsin y 5)
Combining (3') and (5) gives
v’¢* = a’besinasin ycos * a
+ ab*csin Bsinycosa* b+ b sin*yc.  (6)
Calculating sino* from (5) and (2) gives
v = abcsin Bsin y sin o* ©)
and the sine relation
sina_sinf _ siny
sing*  siny*’
The volume v* of the reciprocal cell is given by an expression
similar to (7) and, from (8), one gets w* = 1.
(c) We translate now some of the preceding results into the

language of spherical trigonometry. cosy* is given by a
relation similar to (5) and the reciprocal relation is

®

sin o*

cos y* = cosa” cos B* — sina” sin B* cos y. 9)

Using (7) in the form v = abcsinasin Bsin y* and (8), we
may write (6) as

abcsino* sin B* a x b = a®besina* cos f* a
+ ab*csin B* cosa* b+a’b? sin y* c.
(10)

Suppose that the extremities A, B and C of the three vectors
a,b,c are on a unit sphere centered at the origin:
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a =b = c = 1. The side lengths of the spherical triangle are
equal to the interaxial angles «, 8, y and its dihedral angles are
7 —a*, 7 — B, m—y*. Using now the classical notations
a, b, ¢ for the side lengths and «, 8, y for the dihedral angles,
we get from (9) and (10), respectively,

cosy = —cosa cos B+ sinasin Bcos ¢ 11
siny ¢ =sinacosfa-+cosasin b+ sinasinfaxb.
(12)

These formulas were found by Altmann by a more
sophisticated procedure (Altmann, 1986). They can be used
to derive the product of two rotations around intersecting axes
from the Euler-Rodrigues-Hamilton theorem (Altmann,
1986; Sivardiere, 1994, 1995). According to this theorem, a
rotation of angle #, = 2« around u; = a followed by a rotation
of angle 6, =28 around u, =b is a rotation of angle
03 = 2(;x — y) around the unit vector u; = ¢. Introducing the
Euler vectors R; = sin(6,/2) u;, we obtain
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c0s(05/2) = cos(8,/2)cos(6,/2) — R, - R,
R; = cos(6,/2) R, +cos(6;/2) R, — R, x R,.

References

Altmann, S. L. (1986). Rotations, Quaternions and Double Groups.
Oxford: Clarendon Press.

Buerger, M. J. (1942). X-ray Crystallography. New York: John
Wiley.

Carpenter, G. B. (1969). Principles of Crystal Structure
Determination. New York: Benjamin.

Donnay, J. D. H. & Donnay, G. (1959). In International Tables for
X-ray Crystallography, Vol. II. Birmingham: Kynoch Press.

Neustadt, R. J. & Cagle, F. W. (1968). Acta Cryst. A24,
247-248.

Sivardiére, J. (1994). Am. J. Phys. 62, 737-743.

Sivardiére, J. (1995). La Symétrie en Mathématiques, Physique et
Chimie. Grenoble: Presses Universitaires de Grenoble.

Woolfson, M. M. (1970). An Introduction to X-ray Crystallography.
Cambridge University Press.



