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Vector correlation

By M. A. STEPHENS
Mathematics Department, Simon Fraser University, Burnaby, British Columbia

SUMMARY

This paper discusses the measurement of correlation between two sets of vectors. The
vectors may be thought of as denoting directions in p dimensions. Two main measures of
correlation are proposed, based on the premise that the two sets would be perfectly correlated
if an orthogonal transformation, or less generally a rotation transformation, makes the
second set coincide with the first. Natural extensions exist to cover correlation without
rotation, or serial correlation. For testing for correlation, distributional results are given for
p = 2 and 3, and especially for uniform parent populations.

Some key words: Correlation between directions; Correlation between vectors; Correlation on the circle;
Correlation on the sphere.

1. INTRODUCTION

In some statistical work, the measurements of interest can be recorded as unit vectors.
These are drawn from the centre O of a hypersphere, of unit radius, to points on the circum-
ference or surface. In two or three dimensions the vectors may denote directional data, or,
if the circle is regarded as a clock, the endpoints can represent events. Suppose that the data
consist of paired vectors u; = OP, and v; = 0@, for i = 1, ...,n; for example, u; and v; might
be directions of magnetization of the ith rock sample before and after laboratory treatment.
Then P, and @, are points on the hypersphere of unit radius. It is of interest to develop a
theory of correlation for such paired vectors.

In this paper we propose several vector-correlation statistics, depending on the nature of
the relation expected. The main definition of correlation will be based on measuring how
close the u vectors can be brought to the v vectors by an orthogonal transformation H. Suppose
the two sets u; and v;, in p dimensions, are the rows of n x p matrices U and V; we shall
use U and V to refer both to the matrices and to the sets of vectors. Let H’ denote the
transpose of H. If H can be found so that H'u; equals v; for all ¢, we shall describe U and
V as perfectly correlated. The definition will be tightened to insist that the orthogonal
transformation be a rotation. Simple adaptations lead to measures of correlation between U
and V in situ, with no transformation allowed, for example to measure the directional
correlation between the prevailing wind at airports and the main runways, and of serial
correlation in one vector set U. These uses relate to work of Epp, Tukey & Watson (1971)
and of Watson & Beran (1967).

The problem of finding H to bring one set of vectors close to another can arise in many
configurational problems; for instance, Mackenzie (1957) discusses it in connexion with
crystallography and Downs, Liebman & McKay (1967) in connexion with vector cardio-
graphy. Downs (1972) makes a general study of orientation problems, and Downs, Liebman
& McKay also propose a different definition of vector correlation.

In the next section we define the correlation statistics and give the calculations to find H
and the statistics. The correlations might be used as measures of the U and V relation, with
different measures being appropriate for different problems; or they might be used as test
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statistics for testing independence of U and V. For this purpose, null distributions will be
required ; these depend on the parent populations of U and V and are in general difficult to
find. In §§3 and 4, we give some results for uniform parent populations, where, in p dimen-
sions, the point P moves uniformly over the surface of the p-sphere, together with tests and
tables.

2. VECTOR CORRELATION COEFFICIENTS
2-1. Definition of correlation

An orthogonal transformation H’ is applied to w; to give w; = H'u;. The maximum, r,
of r* = Zwjw,/n as H is varied, will be called the vector correlation coefficient. Clearly r is
positive and is 1 for perfect correlation. For some applications in two and three dimensions,
one may have reason to restrict H to the class of orthogonal matrices which describe rota-
tions. The orthogonal matrix must then have determinant +1, and such matrices will be
called H, matrices. When r* is maximized over all H, matrices we define the maximum, say
7., to be the sample vector rotation-correlation coefficient. Clearly when the H which maxi-
mizes r* overall is an H, matrix, r = r, ; otherwise r > 7. Another measure of close fit would
be the minimum, with respect to H or H,, of s* = n-1 (v, —w,)’ (v;—w;). But s* = 2(1 —r*),
so that this leads immediately to maximizing r* as before.

Let tr (Z) stand for the trace of a matrix Z. Suppose that the transformed vectors w) are
rows of a matrix W, with W = UH. Then nr* = tr (V'W), and for the maximum of 7* we
must find maxtr(H'4), where 4 = U’V/n and the maximum is taken over orthogonal
matrices H. Similarly r, = maxtr (P'4), where P is an H, matrix and the maximum is over
all matrices P.

2-2. Calculation of r and of r_, and of the associated maximizing matrices

The determination of H, to maximize tr (H'A4) for given 4, is an old problem, though the
restriction to H, has attracted less interest. We quote a solution essentially given by
Mackenzie (1957); it uses the singular value decomposition. Other proofs are possible.
Suppose that 4’4, positive-definite with probability one, has eigenvalues A, > ... >2,>0,
and let A and Z be the diagonal matrices with A; = A;, and Z;; = JA; (i = 1,...,p). Then
A’A = CAC’, where C is orthogonal. Write 4 = GZ(C’, where @ = ACZ1; G is orthogonal,
since GG =Z1C'A’ACZ = Z1AZ-' = I. Then

tr (H'A) = tr (H'GZC") = tr (O"H'GZ) = tr (RZ),

where B = ("H'G is orthogonal, and where Z is diagonal with positive diagonal elements.
Clearly tr (RZ) is maximized when R = I, and then H' = 0G' = CZC'A-' = T A-1, where we
define

T = CZC". (1)

Thus we have:
(a) the matrix H,, which maximizes r* is given by

H, = TA-, 2)

(b) the maximum 7* is given by
r = max (r¥| H,) = tr (H,,4) = tr (T) = ZJA;, (3)

where the A; are the eigenvalues of 4'A4.
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Since det (7') is positive, det (H,,) has the same sign as det(4). The matrix 4 equals
U'V/n, and comes from the data. When the data give negative det (4), we may still wish to
maximize 7*, to obtain 7., by allowing only rotation for the vectors V, as discussed above.
Then suppose that the A, matrix which maximizes r* is H,,,. Define matrix Y to be the same
as matrix Z, but with a sign change for Y, that is ¥;; = W@E=1,..,p-1),buty,, = — Ay
and define

= At A=A,

Applying arguments similar to those above, we have:
(a) the H, matrix H,, which maximizes r* when det(4) is negative is given by
H',, =T*A, where T* = CY(’, and
(b) the maximum r* is then r, given above. Thus in general, r, =r; when det(4) is
negative, and r, = r when det (4) is positive.

2:3. Comments

The correlation coefficients are unaltered if either U or ¥ undergoes an orthogonal trans-
formation before the correlation is measured. Let U be transformed to U, = UH; then
A =U'V becomes A, = U;V, different from A, but 4’4 = A{4,, and the correlation
coefficients, which depend on 4’4, are unaltered. This is an important property for con-
sistency in the definitions of  and .

In certain cases, a geometric interpretation can be made of the correlation coefficients.
For example, suppose that U and V are perfectly correlated, so that an H exists for which
V = UH. Then X, the eigenvalues of 4’4, are the same as those of 44’ which is now U'U.
Suppose vector u; makes angle §; with an arbitrary unit vector 7'; then A; and A, are respec-
tively the maximum and minimum values of § = ;cos?6, as 7' is varied (Watson, 1965;
Anderson & Stephens, 1972). If the components of the vector u; are thought of as separate
random variables, the eigenvector associated with A; is the ith principal component of these
variables. When ), is very small, vectors u; must be close to the plane perpendicular to the
eigenvector corresponding to A,; because of the perfect correlation, vectors »; must also be
close to a plane, and in this situation 7, and r are almost equal, that is 7, for det (4) negative,
almost equals 7. It is then possible to find a rotation in two or three dimensions to produce
nearly as good correlation as allowing any orthogonal transformation. For the case of two
dimensions, an interesting geometrical construction exists to connect H,, and H,,. More
details are given in an unpublished report obtainable from the author.

Coefficients  and r, cannot be negative, in contrast to the situation for bivariate scalar
variables, say 2 and y, where the usual correlation coefficient r is an estimate of a population
parameter p which is zero if # and y are independent. With vectors, independent sets U and
V can give large values of 7; for example, if each set is tightly clustered around an axis.

Equation (2) may be written H,, = AT-1, and this solution for the general case was given
without proof by Downs, Liebman & McKay (1967); these authors also did not consider the
rotation case as a separate problem. They defined a correlation coefficient different from those
above; its distribution would seem to be more difficult than those of r and r_, and no results
were given along these lines. The authors gave their coefficient the sign of det (H). However,
a value of r with a negative det (H) differs only very little from its corresponding ., with
positive det (H), if A, is small, as we have seen above; this would be true also for the co-
efficient proposed by Downs, Liebman & McKay, so that it seems difficult to give a clear
interpretation to the sign of a correlation coefficient.
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2-4. Statistics for correlation without transformation and for serial correlation

The natural extension for correlation without moving U or V, that is correlation in sitw,
would be 7y = tr (U'V/n). The statistic nr, was proposed by Epp, Tukey & Watson (1971),
and they discuss its permutation distribution. For serial correlation, of a single set U,
Watson & Beran (1967) suggested the statistic L = Zuju;,;, with m = n—1 terms in the
sum; the natural modification to fit into the  class is 7, = L/(n—1). Watson & Beran, and
Epp, Tukey & Watson discuss the permutation test based on L. For both statistics we give
some sampling results in §3.

2-5. Ezxample

The data below concern directions of magnetization of rock samples in three dimensions,
before, U, and after, V, heat treatment in a laboratory. The sample is rather small, » = 6,
but will serve for illustration. The basic data, omitted to save space, were the spherical polar
coordinates (6, $); the three components given in U or V are sinf cos ¢, sin §sin$ and cos 6.
The U and V data matrices, to 3 decimal places, are given in Table 1, together with matrices
A, H, and W. For this example, det (4) is positive, but if it were necessary to use r; as the
correlation, the value, 0-8985, differs negligibly from r; this is because the smallest value of
JA for 4’4 is 0-454x10-3, and the difference between r and r, is therefore 0-0009. The
matrix W is printed for interest, although it is not always easy from inspection to see how
close W is to V. The values of w;v,; are successively: 0-9898, 0-9841, 0-9607, 0-5928, 0-9690,
0-9002, so that the vectors match closely except for the fourth pair. Although it has no
practical significance in this context, the correlation in sttu is 0-7958.

Table 1. Data, U and V, and matriz calculations for rock magnetism data

U 14
—0-321 0-580 0-749 —0-237 0268 0934
—0-387 0-505 0-772 —0-293 0283 0914
—0-074 0-849 0-522 —0-109 0-156 0-982
0-645 0-716 0-267 —0-186 0214 0-959
—0-188 0-455 0-870 —-0-179 0252 0-951 W = UH,
—0-313 0-329 0-891 —0149 0132 0-980 —0-322 0367 0-873
—0-412 0-383 0-827
A=U7V/n H, 0-103 0-334 0-937
0-026 —0-026 —0-099 0-491 —0-854  0-172 0-548 —0-282 0-788
—0107 0-124 0-546 0-569 0463  0-679 —0-407 0-167 0-898
—0-133 0-149 0-646 —0-660 —0-235  0-714 —0-553 0210 0-806

Eigenvaluos of 4’4 : 0-793, 0-692 x 10-4, 0-206 x 10-%;
det (4) = 0-336 x 10-5;
r = 0-8994, r, = 0-8985, ry = 0-7958.

3. DISTRIBUTION THEORY OF VECTOR-CORRELATION STATISTICS
3-1. Distribution theory for uniform parent populations

If measures of correlation are to be used as test statistics, usually for independence of U
and V, the null distributions will be needed. These will depend on the parent populations of
U and V. For scalar variables z and y, the distribution of the correlation coefficient r also
depends on parent populations, but is dependent only on p when this population is bivariate
normal, and is further much simplified when p = 0. There does not appear to be such a
convenient general population for vectors. However, results can be found when U and V
have uniform populations for the two extremes when U and V are independent or perfectly
correlated, i.e. there exists an H for which V = UH.
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3-2. Distribution theory for independence

When U and V are independent, the entries in 4, for large n, become normally distributed,
with zero means and variances 1/(np?), and with asymptotically zero covariances. Suppose
that the column vectors of 4 are Z,, ...,Z,; then A’A = £Z,Z;. Asymptotically, 4’4 has a
Wishart distribution W(V, p), where V = I,/(np?) is the covariance of each Z,. The joint
density of the A; can then be found, but for p > 2 it does not seem easy to derive the distribu-
tion of » = X /A, and still less that of r,. However, the asymptotic distribution of np?Z),,
from the diagonal terms of the Wishart matrix, is x3. This implies that rJn and 7, Jn have

asymptotic distributions, and so therefore does r, | ; all three statistics r, r, and 7, approach
zero in probability as n—co.

3-3. Distribution theory with complete dependence

At the other extreme, suppose now that U is a sample from a uniform population, and that
V is perfectly correlated with U, that is V = UH. The roots of matrix 4’4 now depend on
those of UU’[n; this matrix has been considered in another connexion by Anderson &
Stephens (1972). Let ¢; = \n(JA;—1/p); since r =1, T,A; =1 and Z¢; = 0. Anderson &
Stephens have given the joint density of the ¢;, and have shown that asymptotically
1p(p +2) Z8 has the yj, distribution, where £ = $p(p +1)—1. In principle, the density of #,
could be found, and hence percentage points for ;, since \n(r; —1+2/p) = 2t,, but this will
be difficult for p > 3; results for p = 2 and 3 are given below. However, it follows from these
results that, for U uniform and U, V perfectly correlated, ZA; converges in probability to
1/p and r; to 1—2/p. More details are given in the unpublished report referred to above.

3-4. Further results for two and three dimensions

When p =3, with perfect correlation, we have r, =1-2JA; and Jn(r;—3%) = —2i,;
Anderson & Stephens (1972) have given the asymptotic density of —{,;, and have tabulated
percentage points of |A; = f5/n+% (Anderson & Stephens, Table 1); A, is their Sy;,. For
example, 95%, and 999, points for »;, when n = 10, are 0-826 and 0-884; when n = 20, they
are 0-698 and 0-752. The corresponding asymptotic points for |n(r; — %) are 1-746 and 2-076.

For the circle we have more results for » and r,. Suppose that the four entries of 4 are
in usual notation a,y, @y, @g;, gy ; it can be shown that

7‘2 = (‘/Al +\/A2)2 = )\1 +A2 + 2{det (A/A)}} = Z’I:,j a’%f + 2 | det (A) l,
T% = zi”'a%j - 2 | det (A) I.

Let det (4) = ay; @9y — 1505, be positive, and let by = @y + a9y, by = @15 — gy, by = Ay — Ang,
by = aj5+ay; then 72 =03+0% and 7 = b2+b2. If det(4) is negative, 72 =0b3+b and
r? = b2+ b3. When U and V are independent, det (4) >0 with probability %, and 2 and 72
are respectively the larger and smaller of two quantities with the same marginal distribution,
that of b2 + b%; when in addition the parent populations are uniform, 2n(b3 + b3) is asymptotic-
ally x2. Then nr? and nr? are asymptotically distributed as the order statistics of a sample of
two from the density f(x) = e=® (x>0). The asymptotic densities of P = nr? and Q = nr?
are then for x>0

fol@) = 2em—e2),  fola) = 2e°7. (4)

Finally, r, = r or r, = r; each with probability } in this situation; thus if § = ns2, the
asymptotic density of S8 must be

fs (@) = $fp(@) + 1 fo(x) = 2¢7=. (5)
Equations (4) and (5) imply that asymptotically 4nr? = x2 and 2nr% = 3.
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When 7V is perfectly correlated with U, we have r = JA; +yA; = 1 and r; = JA; —/A;. Let
R be the length of the resultant or vector sum of the set ;. Then yA; and /A, are respectively
3(14+R/n) and }(1 — R/n) (Anderson & Stephens, 1972, §4), and r; has the same distribution
as R/n, for which exact percentage points for all » are given by Durand & Greenwood (1957)
and Stephens (1969). The known asymptotic result 2R?/n = x3 gives 4n(ZA;—0-5) = x3 in
agreement with the result for X2 in § 3-3 above, and also 2nr? = x3; thus 72 is stochastically
half as big for independence as for perfect correlation.

3-5. Correlation without rotation and serial correlation

For independent uniform populations, it is straightforward to find the asymptotic dis-
tribution of 7, defined in § 2-4. For dimension p, a term in the diagonal of 4 will be asymptotic-
ally normal, mean zero, variance (np?)~1; thus r, is asymptotically normal, mean zero,
variance (np)~!. Similarly, for r, measuring serial correlation, the asymptotic distribution
will be normal, mean zero, variance {(n—1) p}~*.

For r, we can also find the moments for finite n, for uniform independent parents. For
p =2, cumulants of ryyn become k, =% and k, =—9/(16n); the B; value is 0, and
B: = 3—9/(4n). Similar calculations for p =3 give, for 7ryyn, k,=1%, ;=0 and
B, = 3—6/(5n). If we approximate the distribution using the first four cumulants to fit
Pearson curves we can expect excellent accuracy, and percentage points given by these
approximations are given in Table 2. On the hypothesis of no serial correlation, points for r,
for a sample of size n + 1, will be the same as those for 7, for a sample of size n.

4. TESTS AND TABLES OF PERCENTAGE POINTS

The above distributional results can be used for tests of the hypothesis H, that « and v are
independent, assuming the parent populations are uniform. The procedure is as follows.

(i) Calculate 4 = U’'V/n and find eigenvalues A; of 4’4 ; let A, be the smallest eigenvalue.
(ii) Then r = X;); and r; = r—2/A,. From these, find 7, as follows. If det (4) is positive,
r, =r. If det (4) is negative, r, = r,.

(iii) The in situ coefficient r, is tr (4).

In making a test for independence, use 7 if any orthogonal transformation is permitted to
obtain correlation. If a rotation only is allowed, use 7. ; when det (4) is positive, this then
equals 7, but the rotation constraint means that a different table is used for the test.
Similarly, when the data are such that det (4) is negative, one might use r, and the r; table,
making the test conditional on the sign of det (4), but such an application would seem to be
rare. If the test required is for correlation ¢n situ, use r,.

The statistics should be used with the appropriate part of Table 2; reject H, at level o if
the statistic exceeds the percentage point at this level. As an illustration, suppose, in three
dimensions, 7 is large enough to enable asymptotic points to be used, and the test is to be
made at the 5%, level. Then ry,/n can go as high as 0-95 before rejection; if a rotation is
allowed to bring the U nearer the V, the critical value, for 7, |, goes up to 1-70, while if any
orthogonal transformation, i.e. rotation accompanied by reflexion, is permitted, »n can go
to 2-06.

Table 2 has been constructed from the asymptotic results given in § 3, together with Monte
Carlo studies for » finite. It can be seen that the percentage points converge fairly quickly
to the asymptotic values. The asymptotic points, for r/n, p = 3 were found from a plot of
percentage points against 1/z for fixed values of a.
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It will be useful to have a preliminary test for uniformity of U and V. A good test against
clustering around one axis uses the length R of the resultant, or vector sum, of the appro-
priate set; exact percentage points are given by Watson (1956) and Stephens (1964, 1969).
For large samples, pR2/n is to be compared with the upper tail of x%, in p dimensions. Tests
for randomness against other alternatives are given by Anderson & Stephens (1972) and
Watson (1965). The tests for correlation will not apply to the example above since the R test
clearly indicates that both U and V are strongly clustered. For U, R? = 28-8, and for V,
R2 = 35-7. For a more complete treatment of vector correlation, it will be necessary to deal
with samples exhibiting clustering, and it is hoped to return to this subject in another paper.

There are other uses to which the basic ideas may be adapted. For instance, the vectors
to be matched may not be of unit length; 12 vectors around a circle might denote the monthly
incidence of a disease, for example, and one wants to compare Britain with Australia. Also,
the two sets may not be paired, but it may be desired to rotate one to match the other.
These points too will be discussed on another occasion.

Table 2. Upper tail percentage points of correlation statistics for independent, uniform vectors
in p dimensions

Percentage level Percentage level
Statistic n 10 5 2-5 1 10 5 2-5 1
ryn 5 1-62 1-78 1-96  2-10 176 1-86  1:91 2-02
10 1-67 1-85  2-03  2:20 1-81 195 2:05 2-18
20 170 1-89 2-06 2-25 1-84 2:00 212 2-27
50 1-71 191 2-08 228 1-88 2:04 218 233
[o4) 1.72 192 210 2:30 1-89  2-06 222  2-38
ron 5 1-44  1-61 1-78  1-98 1-67 1-76  1-87 1-93
10 1-48 1-67 1-85  2-06 1-71 1-84 196  2-07
20 150 170 1-89  2:10 1.73 1-88  2:00 2:15
50 1-51 172 191 213 1.75 1-90 2:03  2:19
[o4) 1-52 1-73 1.92  2-15 176 192 2:056 221
ry 4N 5 1-03 119 1-36  1-49 1-50  1-59 1-69 1-81
10 1-06 121 1-36  1-50 1-53 1-64 174 1-86
20 1-06 1-21 1-36  1-51 1.55  1-67 1-77 1-89
50 1-07 122 1-36  1:52 1-56 169 1-78 1-91
od] 1-07 122 136 1-52 1-57 170 179 1-92
To AN 5 0933 1-166 1-352 1-547 0-751 0-952 1120 1-306

10 0-919 1-166 1-373 1-603 0-745 0951 1-126 1-326
20 0912 1-165 1-380 1-625 0-743 0-950 1-129 1-335
50 0909 1-164 1-384 1-637 0741 0-950 1-130 1-340
(9] 0-906 1-163 1-386 1-645 0740 0-950 1-132 1:343
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