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In the case of the form I crystals, e indeed seems 
to be very small because the reflections were seen up 
to 5.5 A resolution along c. For the assumption that 
cos (27r/e) is close to 1 and /max is (165 ~ ) / (5 .5 /~ )  = 
30 to hold, the value of e for any two successive ab 
planes cannot be larger than 0.04 (or 0.04 x 165 = 7 A) 
for 0.99<-cos(27rle). Because of this statistical 
property of the random displacement errors in c 
spacing, normal reflections were observed only when 
I is even. According to formula (7), odd-/reflections 
should not be present at all. However, the odd-I 
reflections did not disappear completely. Some 
diffuse scattering was seen at positions of the odd-I 
reflections. This might be because the crystal has 
limited dimensions and /o r  the distribution of the 
displacement errors is not truly binomial. The crystals 
might be constructed by stacking of ordered micro- 
crystals consisting of several ab planes along c, 
instead of randomly distributed single ab planes. 
Nevertheless, the statistical analysis demonstrated 
that the random distribution of a small error in the 
spacing of the ab planes in the c direction will cause 
such an unusual diffraction pattern in which the odd-I 
reflections would be missing. 

Amino acid substitutions in the loops 

The crystals of B/mem/89 (form II) have the same 
space group as the other three crystalline forms, but 
they do not exhibit the disorder along c. The condi- 
tions used for crystallizing B/mem/89 NA did not 
produce crystals for the other three strains. Amino 
acid sequence analysis of the NAs indicated that there 
are five residues in the B/mem/89 NA head which 
are different from all the other strains (Air, Laver, 

Luo, Stray, Legrone & Webster, 1990). These differen- 
ces are Glu148 ~ Lys148, Glu250~ Lys250, Asp340~ 
Asn340, Arg345~ Leu345 and Lys436~Glu436.  
These residues are all located on the upper surface 
of the NA in comparison with the NA structure 
of the type A influenza virus and the substitutions 
all involved charge changes. It will be interesting to 
see what structural changes cause the unusual dis- 
brder when the atomic structure of the type B NA is 
determined. 

We are grateful to Pat Bossart, Y. Babu and Craig 
D. Smith for their help on diffraction data collection. 
We also thank Michael G. Rossmann for pointing 
out the similarity of the disorder with that of the 
catalase crystals. The work is supported by grants 
from NIH (AI-27518) and NCI (AI-13148) to ML 
and a NIH grant (AI-26718) to GMA. 
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Abstract 

Taking time reversal into account there are 122 crys- 
tallographic Shubnikov point groups and 21 limiting 
Shubnikov point groups containing oo-fold rotation 
axes. The restrictions on the form of the tensor 
describing the piezomagnetoelectric effect are given 
for all these groups and compared with results of 
other authors. Antiferromagnetic materials with non- 
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centrosymmetric point groups containing space-time 
inversion are suitable candidates for measuring the 
piezomagnetoelectric effect. 

I. Introduction 

The piezomagnetoelectric effect was first considered 
by Rado (1962) who derived its form for materials 
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with magnetic point group 3'm'  in view of the possible 
existence of this effect in Cr203. One way in which 
this effect will manifest itself is the appearance of an 
electric polarization P in a material subject to stress 
0" and to a magnetic field H, even if the material is 
neither piezoelectric nor magnetoelectric. Restricting 
attention to terms linear in H and 0", one can write 
the polarization as 

Pi = 7rijktI-lj0-kl, (1)  

where 7r denotes the piezomagnetoelectric tensor. 
Lyubimov (1965) showed that 7r may be different 

from zero in 69 of the 122 crystallographic Shubnikov 
point groups and he determined the number of 
independent components of 7r for the 69 groups. 
Stefanakos, Tinder & Thapliyal (1979) tried to deter- 
mine the form of 7r for these 69 groups and claimed 
that some of the results of Rado (1962) and Lyubimov 
(1965) were incorrect. It is the aim of the present 
paper to show that the form of 7r can be obtained 
easily by making use of the general results of Grimmer 
(1991a)* and that the criticized results of Rado and 
Lyubimov are correct in contrast to several forms 
given by Stefanakos et al. (1979). The form of 7r will 
also be given for the limiting point groups, which are 
relevant, for example to textured polycrystals. 

To our knowledge, the piezomagnetoelectric effect 
has not been observed so far. Point-group symmetries 
are, therefore, pointed out for which this effect cannot 
be masked by other effects of lower or equal order 
in the applied fields. 

2. The form of the piezomagnetoelectric tensor 

A tensor is either invariant or changes sign under 
space inversion 1, time inversion 1' and space-time 
inversion 1'. Four combinations are possible: i tensors 
are invariant under all three inversions, s tensors only 
under space inversion, t tensors only under time 
inversion, and u tensors only under space-time inver- 
sion. Equation (1) shows that 7r is a u tensor because 
P is a t tensor, H an s tensor and 0" an i tensor. 7rOk~ 
is a tensor of rank 4, symmetric in its last two indices. 
Using a Cartesian coordinate system, Sirotine & 
Chaskolskaia (1984) give on p. 648 the form of an i 
tensor, h, of rank 4 and symmetric in its first two 
indices. Interchanging the first and second pairs of 
indices in h we obtain the form of 7r for the pure- 
rotation groups since, for materials with such point 
groups, the restrictions imposed on property tensors 
by Neumann's  principle obviously do not depend on 
the type of the tensor (s, t, u or i). 

It is usual to represent rr by a 9 x 6 matrix 7r,, with 
the nine rows corresponding to the following values 

* Note added in proof: General results similar to those of Grim- 
mer (1991a) were also given by Kopsk~ (1979). 

of the first two indices of 7"i'ijkl: 

row 1 2 3 4 5 6 7 8 9 

indices 11 22 33 23 31 12 32 13 21;  

and the six columns corresponding to the following 
values of the last two indices: 

column 1 2 3 4 5 6 

indices 11 22 33 23 31 12. 

The stress 0- is then described by a column vector 
with elements (O'11 , 0"22, 0"33, 0"23, O"31, 0-12)" If the 
convention of summation over repeated tensor 
indices is replaced by matrix multiplication, a factor 
of 2 must be introduced in 7r~,v if v--4,  5 or 6, e.g. 

"/'/'74 ~ 2 7 3 2 2 3  • 
A property tensor of type u must vanish if the point 

group of the material contains T or 1'. The form of 
7r~,v for the remaining 69 crystallographic Shubnikov 
point groups has been obtained using the general 
result by Grimmer (1991a) and is given in Tables 
1-3. These tables give the form of rr~,, for the point 
groups in all orientations in which they appear in the 
holohedry of the crystal system to which the point 
group belongs. They give the form for the holohedries 
in their conventional orientation with respect to 
the Cartesian coordinate system; the monoclinic 
holohedry is presented in the first and second setting. 
The different orientations are distinguished by the 
order of the entries in the Hermann-Mauguin  symbol. 
A symbol in parentheses refers to a point group that 
has been met before in a different orientation when 
the nine fields in each table are read in the usual 
sequence from left to right and downwards. 

The orientation of the axes x, y and z of the right- 
handed Cartesian coordinate system with respect to 
the symmetry elements in the Hermann-Mauguin  
symbol follow the usual conventions. For cubic crys- 
tals x, y and z have directions corresponding to the 
first entry in the Hermann-Mauguin  symbol; for 
tetragonal, trigonal and hexagonal crystals z has 
direction corresponding to the first entry and x has 
direction corresponding to the second entry. (If there 
is no second entry then x may be any direction perpen- 
dicular to z.) For orthorhombic crystals x has the 
direction of the first entry, y the second and z the 
third. The monoclinic axis has direction z in the first 
setting and y in the second setting. For anorthic 
(=triclinic) crystals any right-handed orthonormal 
system may be chosen. 

The Hermann-Mauguin  symbols are given in the 
heading of the matrix together with the crystal system, 
the number of independent components (between 
square brackets) and a letter A to F used by Grimmer 
(1991a) to name the matrix. The number preceding 
the letter refers to the column in Tables 1 and 2 of 
that paper. The form of the tensor is shown similarly 
to that in Stefanakos et al. (1979). For the anorthic, 
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Table 1. The form of 7r.~ for anorthic, monoclinic and orthorhombic point groups 

A n o r t h i c ,  4 A ,  [ 5 4 ]  

1, i '  
11 12 13 14 
21 22 23 24 
31 32 33 34 
41 42 43 44 
51 52 53 54 
61 62 63 64 
71 72 73 7¢ 
81 82 83 84 
91 92 93 94 

M o n o c l i n i c ,  4B, [28] 
(2nd s e t t i n g )  

2, m', 21m' 
15 16 
25 26 
35 36 
45 46 
55 56 
65 66 
75 76 
85 86 
95 96 

11 12 13 15 
21 22 23 25 
31 32 33 35 

44 
51 52 53 55 

64 
74 

81 82 83 85 
94 

46 41 

66 61 
76 71 

96 91 

M o n o c l i n i c ,  4C, [26] 
(2nd setting) 
m, 2', 2'/m 

14 16 
24 26 
34 - 36 

42 43 45 
54 - 56 

62 63 65 
72 73 75 

84 - 86 
92 93 - 95 

M o n o c l i n i c .  5A, [28] 
( l s t  s e t t i n g )  

(2, m', 21m') 
11 12 13 
21 22 23 
31 32 33 

44 45 
54 55 

O r t h o r h o m b i c .  5 B .  [15 ]  

222, m'm'2, (m'2m', 2rn'm') 
O r t h o r h o m b i c ,  5 C .  [13 ]  

ram2, 2'2'2, 2'rnm', (m2'm')  

16 
26 
36 

61 62 63 66 
74 75 
84 85 

Fllt lllt  Tll# 

° 

66 61 62 

91 92 93 

f f l  D l r n  t 

85 
96 

54 
63 

11 12 13 
21 22 23 
31 32 33 

16 
26 
36 

45 

° 

75 
84 

° 91 92 93 96 - 

Monocfinic, 5D, [26] Orthorhombic, 5E, [13] Orthorhombic, 5F, [13] 
(lst setting) (rn2m, 2'22', 2're'm, ram'2' (2ram, 22'2', m'2'm, rn'm2' 

(rn, 2', 2'/m) rare'm) m'rnm) 
- - 14 

° 

° 

° 

56 
65 

° 

86 
95 

- - 15  

- - - 2 5  

- 35 
° 

51 52 53 
- 64 

81 82 83 
94 

14 15 
24 25 
34 35 

46 
56 

64 65 
76 
86 

94 95 

41 42 43 
51 52 53 

71 72 73 
81 82 83 

° 

46 41 42 43 

. . 

76 71 72 73 

. . 

24 
34 

monoclinic and orthorhombic point groups con- 
sidered in Table 1 a matrix element either vanishes 
(marked -) or may have an arbitrary value (marked 
by the indices of the matrix element). For the 
tetragonal and cubic point groups given in Table 2, 
two matrix elements may be equal (marked by the 
same integer) or opposite (marked by integers with 
the same modulus but opposite sign). For the trigonal 
and hexagonal point groups given in Table 3, more 
complicated connections between matrix elements 
appear, as explained in the caption. The heading of 
the forms 8 A - 8 C  in Table 3 shows that these forms 
are valid not only for certain hexagonal point groups 
but also for circular point groups, i.e. point groups 
with an to-fold rotation axis (see Grimmer 1991b). 
The form of ~r~,~ for the spherical point groups ~ 
and oo~m' is given by 9B in Table 2 with the addi- 
tional restriction 44 = 11-12, which reduces the num- 
ber of independent components to two. 

It follows from Grimmer (1991a, b) that the same 
forms of the matrices also appear for s, t and i tensors 
of rank 4 that are symmetric in two indices. Only the 
groups that appear in the heading have to be changed. 
For the crystallographic groups this is done according 
to Table 2 in Grimmer (1991a) and for the limiting 
groups according to the table at the end of Grimmer 
(1991b). 

An example is the t tensor F describing induced 
gyrotropic birefringence according to 

where e denotes the dielectric tensor, H the magnetic 
field and k the wave vector of the light wave. The 
tensor F is symmetric in its first two indices so that 
the matrices given in Tables 1-3 must be transposed. 
Induced gyrotropic birefringence has been observed 
in LilO3 (Markelov, Novikov & Turkin, 1977). 

3. Comparison with earlier results 

Comparing the numbers of independent components 
for the various point groups in Tables 1-3 with the 
results in Table 2 of Lyubimov (1965) one finds that 
they agree; only a few underlines, which correspond 
to our primes, are missing in the point-group symbols. 

Rado (1962) defined the tensor 7r in his equation 
(A18) to be symmetric in its first two indices; he did 
not change from tensor components to matrix ele- 
ments. Taking these differences into account one finds 
that his restrictions (A19) of the form of ~- for Cr203 
(Shubnikov point group 3'm') agree with our result 
7B for 3'm'. 

The critical remarks of Stefanakos et al. (1979) 
concerning the papers by Rado and Lyubimov are 
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Table 2. The form o f  ~r~,,, for  tetragonal and cubic point groups 

T e t r a g o n a l ,  6A, [14] Tetragonal, 6B, [8] Tetragonal, 6C, [6] 
4, a,' 422, 4m'm' ,  a,'2rn', (74'm'2) 4rnm, 42'2', ,i 'm2', (7t'2'm) 
4/m' 4 / m ' m ' m '  4/m'rnm 

16 11 12 13 16 
-16 12 11 13 - -16 

11 12 13 
12 11 13 
31 31 33 

44 45 
54 55 

61 62 63 66 
55 -54 
-45 44 

-62 -61 -63 66 

T e t r a g o n a l ,  6D, [14] 
;t, 4' 
4'/m' 

11 12 13 

44 

-12 -11 -13 
31 -31 

44 45 
54 55 

61 62 63 - 

- -55 54 
- 45 -44 

62 61 63 

11 
13 11 12 
12 13 11 

- - 4 4  

- - 44 
. ° 4 4  

- 74 

31 31 33 
44 - 

55 
- 66 

- 55 
44 

66 

T e t r a g o n a l ,  6E, [7J 
7t2m, 4'22', ,]m'2', 4'm'm 

4'/m'm'm 
11 12 13 

-12 -11 -13 
31 -31 

-55 
-44 

55 
66 

61 62 63 
- - -54 

- -45 
-62 -61 -63 

T c t r a g o n a l ,  6F, [71 
(74m2, 4'2'2, ~12'm', 4'ram' 

4'/m'mm') 

66 61 62 63 

45 
54 

54 
45 

-66 -66 62 61 63 

C u b i c ,  9A, [5] Cubic, 9B, [3] Cubic, 9C, [2] 
23, m',]' 432, a/3m', m':] 'rn'  2J3rn, 4'32', m'SYm 

t 

12 13 

44 
44 

--44 
-44 7 4  - 

74 

11 12 12 
12 11 12 
12 12 11 

44 
44 

4 4  - 

44 

12 -12 
-12 12 
12 -12 

44 

. 

- 4 4  -44 

therefore not justified. The results of Stefanakos et 
al. (1979) are given in their Table 1. It contains each 
of the six tetragonal forms twice. The result for the 
point group 3 is erroneous, which also affects most 
of the other trigonal and hexagonal forms because 
they are obtained by combining the restrictions for 3 
with restrictions for other generators of the point 
group in question. Their result for 32 has been 
obtained by combining the restrictions for 3 and 211y 
instead of 21Ix as usual. Also the result for the cubic 
group 43m is not correct. 

4. Possibilities for measuring the effect 

Instead of measuring the electric polarization P in a 
material subject to or and H it is also possible to 
measure the magnetic polarization M in a material 
subject to o- and an electric field E or the strain e in 
a material subject to E and H. Up to second order 
in the applied fields, the three experimental situations 
can be described by the relations 

P, = K ° + aVI-I j + d,k,Crk, + Aefl-IjHk 

Of- 7TijklHjO'kl + OiklmnCTklO'mn , (2) 

Mj = X ° + auE, + ~Ork, + Ajk, EkE, 

+ "a'ijvdEiOrkl + QjklmnOrklO'mn, (3) 

ekt = sOt + diktE, + qjktI-I~ + eijk,EiEj 

+ 7rijkiEit'lj + mimHit-lj, (4) 
where K ° and X ° denote the spontaneous electric and 
magnetic polarizations, s o the spontaneous strain (cf. 
Aizu, 1970, or Schmid, 1973), a the magnetoelectric 
tensor, A and A' second-order magnetoelectric 
tensors, d and q the piezoelectric and piezomagnetic 
tensors, D and e second-order piezoelectric tensors 
and Q and m second-order piezomagnetic tensors 
(e and m describe electrostriction and magneto- 
striction). 

The tensor 7r can be measured most conveniently 
if all other terms on the right-hand sides of (2)-(4)  
vanish. The Neumann principle requires property 
tensors to be invariant under the point group of the 
material. Property tensors of  type u must vanish for 
all point groups containing 1 or 1', those of type t if 
the group contains 1 or 1' and those of type s if the 
group contains 1' or 1'. Tensors of low rank may 
vanish for additional point groups. The property 
tensors appearing in (2)-(4)  have the following types: 

Type Property tensor 
U O~, "/7" 

t K ° , A , d , D  
s x ° , A ' , q , Q  
i s ° , e , m .  
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Table 3. The form of zr~,~ for trigonal and hexagonal point groups 

6 6 = 1 1 - 1 2 ,  1 6 = 6 2 - 6 1  

Boldface numbers designate elements that are twice the element with the same number in normal type style. 

Trigonal, 7A, [18] Trigonal, 7B, [10] Trigonal, 7C, [8] 
3, 3' 32, 3m',  ~]'m' . 3m, 32', ~]'m 

11 12 13 14 -25 16 
12 11 13 -14 25 -16 
31 31 33 
41 -41 44 45 82 
-52 52 54 55 71 
61 62 63 25 14 66 
71 -71 55 -54 52 
-82 82 --45 44 41 
-62 -61 -63 25 14 66 

Hexagonal, 8A, [12] 
6, 8' 
6/1,l' 

~ ,  ~.*~0/171 ! 

11 12 13 14 
12 11 13 -14 - 
31 31 33 
41 -41 44 

55 
14 

71 -71 55 
44 

71 -52 52 
66 61 62 63 

41 -82 82 

-25 16 
25 -16 

45 82 
54 
25 

-54 52 
-45 

11 12 13 
12 11 13 
31 31 33 

44 45 
54 55 

61 62 63 
55 -54 

- -45 44 
~ 2  -61 -63 

Hexagonal, 8D, [6] 
6, 6' 
6'/m " 

14 -25 
-14 25 

41 -41 82 
-52 52 71 

25 14 

16 
-16 

66 

14 66 

Hexagonal, 8B, [7_] 
622, 6m'm' ,  6 '2m' ,  (6 'm'2) 

6 / ; ; z t  ll~t l l l  t 

@,0-,2, C'~ID, I~ ~ / I T ~ l T n  I 

44 
55 

66 

11 12 13 
12 11 13 
31 31 33 

55 
44 

-62 -61 -63 25 

Hexagonal, 8C, [5] 
6ram, 62'2', 6 'm2' ,  (6 '2 'm) 

OolTz, 002 I, oo/rn~'m 

- 45 
54 

-54 
-45 

61 62 63 

-62 -61 -63 

71 -71 52 
-82 82 41 

25 14 

Hexagonal, 8E, [31 
62m, 6'22', ~]m'2'. 6'm'm 

6'/.~m'm 
14 - 

-14 - 

41 -41 

71 -71 

Hexagonal, 8F,  [3] 
(6rn2, 6'2'2, 62 'm' ,  6'rnm' 

6' / ,nmm')  
- -25 

25 

16 
-16 

71 -52 52 
14 

41 -82 82 
14 

25 

82 

The tensor a has the same type as zr but its 
hexagonal forms D, E, F and its cubic form C vanish, 
so that a may differ from zero in only 58 instead of 
69 crystallographic Shubnikov point groups (in addi- 
tion to eight circular and two isotropic groups). Three 
among the 11 additional groups in which a vanishes 
contain 1', viz 6'/m, 6'/mm'm and m'3'm. It follows 
that only the term containing zr survives in (2) and 
(3) for these three groups. Equation (4) contains the 
tensors s °, e and m, which may be different from zero 
in every point group.* OleO, Kajzar, Kucab & Sikora 
(1976) do not list materials with point groups 6'/m, 
6'/mm'm o r  m"3'm. 

* The vanishing of  terms in (2)-(4) may conveniently be dis- 
cussed making use of  Table II in Schmid (1973). The crystallo- 
graphic Shubnikov point groups admitting the piezomagnetoelec- 
tric effect are exactly those that in the column 'Type of  ordering' 
have no D in the subcolumn 'Magnetic' and no O in the subcolumn 
'Electric'. The term K ° is permitted for the groups with an E in 
the column 'Permitted terms of stored free enthalpy', X ° for the 
groups with H, a for those with EH, A and d for those with EHH,  
A'and q for those with HEE. 

The 21 crystallographic and four limiting point 
groups containing 1' but neither T nor 1' describe 
materials that are ordered antiferromagnetically and 
antiferrolectrically (cf Schmid, 1973). Because 
property tensors of types s and t must vanish for 
these point groups, only terms with a and 7r can 
survive in (2) and (3). We have seen that a also 
vanishes for three of these point groups. The remain- 
ing ones are 

i', 2/m', m' m' m', 2'/m, mmm' 

4/ m', 4/ m'm' m', 4/ m' mm, 4'/ m', 4'/ m' m' m 

3', 3'm', i'm, 6/m', 6/m'm'm', 6/m'mm 

m']', m'3' m', ool m', ool m' m', c~l re'm, oOoom'. 

Some of these symmetries are also convenient for 
measuring the piezomagnetoelectric effect. Consider, 
as an example, Cr203 with point-group symmetry 
3'm'. The non-vanishing components of a are a11= 
a22 and o~33. Assume that Cr20 3 is subject to stress 
and to a magnetic field H = (0, 0, H3). Equation (2) 
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and the form of 7r given in Table 3 then show that 

P1 = [27r2311 °'12 + 277"23230"31] Ha 

P2 = [ 7r23i 1 (0"11 - 0"22) + 2 7"/'23230"23 ]/-/3 

P3 = [ a33 + 7r33,,(0",, + 0"22) "It- or33330"33] H3, 

i.e. only the piezomagnetoelectric effect contributes 
to PI and P2. Also U2N2P, U2NES, Nb2C0409 and 
Nb2Mn409 have symmetry 3'm' according to Ole~ et 
al. (1976). 

The author is indebted to Professor H. Schmid for 
his suggestion to investigate the form of the piezomag- 
netoelectric effect and for stimulating discussions. 
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Abstract 

Resolution is a crucial parameter to consider in mak- 
ing surface comparisons. A method is presented here 
for the rapid, objective and automatic comparison of 
selected parts of protein surfaces as a function 
of resolution using differences and correlations of 
Fourier coefficients. A test-case application of this 
procedure to the surfaces of five immunoglobulin 
antigen-combining sites allowed them to be parti- 
tioned into two categories. 

I. Introduction 

Knowledge of the topography of protein surfaces is 
essential to understanding molecular recognition. A 
solved X-ray crystal structure contains a wealth of 
information about these surfaces and using modern 
graphics technology it is relatively easy to examine 
and compare them in all their detail (e.g. Max, 1984; 
Connolly, 1983a). However, comparisons based on 
human observation are subjective, qualitative and 
time-consuming. The number of solved structures is 
continually increasing and so are the methods for 
generating new conformations and surface descrip- 
tions from these structures - e.g. C O N G E N  (Bruc- 
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coleri & Karplus, 1987) and the molecular surface 
(Richards, 1977). The time necessary to look through 
a comprehensive sample of surfaces can be prohibi- 
tive. Consequently, it is expedient to develop an 
objective and quantitative procedure for comparing 
protein surfaces rapidly and automatically. 

An essential parameter to consider in any surface- 
shape comparison method is resolution. Surfaces - 
such as those of two human faces - that are different 
in medium-resolution detail may have similar low- 
resolution features and high-resolution texture. By 
comparing surfaces in terms of Fourier coefficients, 
one naturally obtains information ordered in terms 
of increasing resolution. 

We are specifically interested in immunoglobulin 
recognition and have tested our approach by compar- 
ing the surfaces of antigen-combining sites. The prob- 
lem of surface comparisons is particularly evident for 
these molecules, since recombination of a small num- 
ber of genes can produce an estimated 108 different 
antigen-combining sites, each with distinctly different 
surface-recognition properties (Milstein, 1990). 
However, before the results of the procedure on this 
specific case is described, it is presented in a more 
general context. 
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