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The work of the author with Dr. Elam on the straining of metallic
single crystals is described. The application of experimental results
with single crystals to polycrystalline aggregates is discussed.

In the May Lecture last year Professor Andrade ! gave a very clear
account of some of the main lines along which researches on metallic
crystals have developed. I hope now to discuss some of the questions
treated by Professor Andrade, but in greater detail than he was able
to do in the time at his disposal. I propose also to put forward some
thoughts about how our knowledge of metallic single crystals can help
us to understand the mechanical properties of crystal aggregates.

I must begin by making the confession that I am not a metallurgist;
I may say, however, that I have had the advantage of help from, and
collaboration with, members of your Institute, whose names are a sure
guarantee that the metals I have used were all right, even if my theories
about them are all wrong. Perhaps I may be excused if I give an
account of how I first came to have anything to do with metals. I was
present at the Royal Society on the occasion when Sir Harold Carpenter
described the fascinating series of researches which enabled him and
Dr. Elam to prepare very large single crystals of aluminium. He
showed test-pieces which had been pulled in a testing machine with the
result that lines originally scratched on them at right angles to their
longitudinal axes had become oblique during the plastic straining.
These lines, it seemed, must provide the clue to the relationship between
the crystallographic axes and the plastic strain. At that time the
existence of slip lines on the surface of strained metals was well known,
and it was known also that they are the traces of crystallographic
planes. It was freely stated that they became visible, owing to slipping
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5 .
of the metal, just as the edges of cards in a pack become visible when Prate XXXVIL

the top of the pack is pushed sideways. This, however, is a very
different matter from stating that the total strain is identical with that
which is produced in a pack when cards slide over one another. The
surface markings may, for instance, develop quite independently of
what goes on inside the crystal, because the surface is known to be in a
different physical state from the interior.

When the phenomena shown by Sir Harold Carpenter’s strained
crystalswereregarded from the geometrical point of view, it was clearthat
one could completely determine the strain in the crystal : (a)if the strain
was uniform, so that lines in the specimen which were originally parallel
remained parallel when it was strained, and (b) if the extensions or

contractions in six independent directions
2 could be measured. We may, for in-
stance, imagine that a square-sectioned 2
bar is cut from a single crystal. In
Fig. 1, ABCD is the square section which
we may suppose marked with seratches
on the surface, and AF, BE, CG are
edges of the bar. If now we measure the
proportional extension during strain of
the six lines, BA, BC, BE, AC, AE, EC,
then the strained position of every
F 4 patticle is determined. If we measure
only five, then the strain is not com-
E _ pletely determined, unless some further
Flﬁéngltﬂlt?ﬁcrgfﬁﬁ'ﬁi S%f-air?.lx assumption is made. We may find, for
instance, that the density is unchanged by
the strain ; then five,and only five,independent extensions or components
have to be measured to determine the strain. The six components of
strain need not, of course, be those shown in Fig. 1. One may, for
instance, measure the extensions BE, BA, BC, and the angles ABE,
CBE, and the angle between the faces of the specimen. Sir Harold
Carpenter and Dr. Elam’s original specimens were not suitable for
making accurate measurements of the six components of strain.
Accordingly, encouraged by Sir Harold, Dr. Elam and I collaborated in
preparing and marking single crystals of such proportions that accurate
strain measurements could be made. Fig. 2 (Plate XXXVII) shows
one of our specimens after 70 per cent. extension, The strain was
very uniform, even after such great extension.

The usual method by which strains are analyzed is to find the posi-

tions and elongations of the axes of the strain ellipsoid, 7.e. the strained

FiG. 2.—Marked Specimen Cut fro ini
i S m Aluminiu
Single Crystal, after 70 Per Cent. Extensioln.m

[To face p. 308.
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Fi6. 3.—Unextended Cone and Strain Ellipsoid.

Fi1c. E.—Tront and Side Views of Compressed Disc Cut
from Single Crystal.
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shape and position of an originally spherical piece of material. In our
case, however, we found instead the cone which passes through the
intersection of the strain ellipsoid and the original sphere. This cone,
which is shown in Fig. 3 (Plate XXXVIII) with the strain ellipsoid,
evidently contains the strained positions of all directions which remain
unstretched, and is therefore termed the unstretched cone. OQur reason
for adopting this procedure was that if the whole strain is, in fact, due
to slipping parallel to one crystal plane, that crystal plane must form
part of this cone, because slipping parallel to a plane gives rise to
strain which leaves all directions in the plane of slipping unchanged in
length. If part of the unstretched cone consists of a plane, it is a
mathematical necessity that the whole cone must consist of two planes.

1 will not trouble you with the method by which we calculated the
position of the unstretched cone * in the strained specimen, but it is
necessary for the argument that one should understand how this cone
and the directions of the crystal axes were Tepresented on plane diagrams.
For this purpose we used the stereographic projection. Each direction
in space can be regarded as marking a point on a sphere. The surface of
this sphere is then projected on to a plane from a point on its
circumference.

In the projection, great circles on the sphere, which contain all
directions in space which lie in a plane, are projected into circles. Of
these, the great circle which represents the plane parallel to the plane of
projection is the smallest. I will call it the “ bounding circle.” The
patt of the projection which lies inside the bounding circle corresponds
with a complete hemisphere, and if we are thinking about orientations
in space, and are not concerned with the sense of directions on a straight
line—i.e. if we do not consider whether a vertical line is pointing upwards
or downwards, but only concern ourselves with the fact that it is
vertical—then all orientations can be represented on a hemisphere, and
so by the part of the stereographic projection which lies inside the
bounding circle.

One property of the stereographic projection is that small circles on
the sphere, which represent circular cones in space, also project into
circles. Small circles can be distinguished from great circles, however,
by the fact that projected great circles always cut the bounding circle in
the projection at opposite ends of a diameter. Small circles never do so.

When we came to set out on a stereographic projection the points
representing directions in our unstretched cone, calculated from the
measurements made on our stretched single crystal specimen, we found
that they did in fact lie on a circle which cut the bounding circle at
opposite ends of a diameter.
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Fig. 4 shows the stereographic projection of points on the unex-
tended cone calculated from measurements made before and after a
strain which extended a specimen cut from an aluminium crystal from
10 per cent. to 30 per cent. elongation. The circles drawn most nearly

through the calculated points are shown in the diagram. It wi}l be seen
that they do in fact cut the bounding circle at opposite ends of diameters. -
This is a proof that, in the case to which this diagram refers, the un-

stretched cone really does degenerate into two planes, s0 that the total dis-
tortion can in fact be produced by slipping on cither of these planes. It
is impossible from two sets of external measurements made before and

Fia. 4—Stereographic Projection of Unextended Cone, with Diameters
Marked to Prove that Cone is Two Planes.

after straining to say which of these two planes is the plane on which

slipping takes place, but we always found with aluminium that one of
the two coincides with an octahedral crystal plane. This plane we took
as the slip plane, and we found that the direction of slip is the diagonal
of a cube face or edge of the octahedron.

In Fig. 4, B’ is the direction of slip calculated from the external
measurements of lines on the specimen, and B marks the orientation of
a crystal axis represented by (101), i.e. it is in the direction of one of the

diagonals of a cube face, or an edge of the octahedron corresponding

with the cubic symmetry of the crystal. The point A’ represents the
direction of the normal to the plane which is represented in Fig. 4 by the

circular arc containing B'. The point A represents the crystal axis, :

determined by X-rays, which is the diagonal of the cube in cubic sym-
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metry. The crystal axes A and B are evidently associated with one of
the planes of the unextended cone, but not with the other. The plane
has accordingly been taken as the plane of slip. It will be seen that the
plane of slip is parallel to a face of the octahedron associated with the
cubic symmetry of the crystal and the direction of slip is parallel to an
edge of the octahedron. .

This method is more complicated than that used by Professor Andrade
and by practically all other workers in the field. They strain the erystal
and observe marks on the surface, which they prove are the traces of a
crystallographic plane. They then assume without further proof that
the strain is of a simple type consisting of a shear parallel to the plane
marked out by the surface markings, and then make the two angle or
extension measurements which are necessary to determine the direction
of slip if their initial assumption is true.

Professor Andrade offers the opinion, in one of his papers, that this
simplified method is in some cases more accurate than the complete
analysis that I have described. I do not agree with this contention,
provided that proper precautions are taken to ensure that the specimen
is strained uniformly. In some cases the simplified method is in-
applicable, because the assumed strain by shearing parallel to a crystal
plane does not in fact take place; in others the slip lines on which the
method relies do not make their appearance.

Fig. 8 shows the stereographic diagram of one of the cases analyzed.
The unextended cone is nothing like two planes; in fact this diagram
was proved to correspond with compound slipping on two octahedral
planes. For cases to which it is applicable, the simple method provides
a quick means of identifying slip planes provided that one has made
certain, by complete strain measurements, that the strain is due to
shear parallel to a plane.

The accuracy of the complete analysis depends on the uniformity of
the strain. If a tensile specimen slips unequally in different parts of its
length, strain measurements on its surface will vary from place to place.
For this reason, I developed a method of straining in which flat discs
cut from a crystal were compressed between parallel steel faces. This
method ensured that the compression at all points of the disc was the
same, and thus secured uniformity in one, at any rate, of the com-
ponents of strain.

Fig. 5 (Plate XXX VIII) is a photograph of a circular disc cut from an
aluminium crystal, before and after compression. Inspite of reduction to
half the original thickness, the scribed lines are still quite straight, and
with this technique there is no * barrelling ” of the section perpendicular
to the parallel faces.
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The great uniformity of our compression specinixens was o.btained
by a special technique. If one compresses & short cylinder of solid metal
between parallel planes the friction at the top and b?ttom normally
holds the ends from expanding laterally and the specimen assumes a
shape like a barrel. If the compressing faces are ground and Imhshed
and then greased, the first thing that happens whe.u a compressive load
is applied is that the grease is squeezed out. This causes an outward
tangential force due to viscous drag to act over the top and bottom of
the specimen, that is, a force in the opposite direction to the fnctloP
which would act in the absence of grease. By compressing the speci-

alo
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(121) AXIS
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— in Orientation of Axis of Specimen (see Fig. 2) Relative to Crystal
Fia. 6.—Changein Axes, During Extension of 70 Per Cent.

o Observed by X-Rays. 1 Calculated.

men in very small stages on?an_inxhls s way get far greater unifomﬁty of
strain than can be obtained in a tensile specimen. —
~When a single crystal is extended, the orientation of the crystal
axes relative to the axis of extension varies as the straining proceeds.
If the strain simply consists of sliding parallel to a crysfml p]'ane ir'l a
crystal direction, the cause and nature of this change in orientation
becomes clear if we imagine the slip plane as fixed, and the orientation
of the axis of the specimen as changing. The spes:imen axis must
rotate in a great circle towards the direction 9f slip. In Flg. 6,0
represents the initial position of a specimen axis in one of the triangles

of cubic symmetry. The point (110) represents the crystal axis towards .

which slipping has occurred. The dotted line represents the great circle

Plastic Strain in Metals 313

along which the specimen axis would move if the slipping were of the
type contemplated, and the calculated positions of the specimen axes
for extensions of 9, 41, 51, and 70 per cent. are marked off on the
dotted line. The positions of the specimen axis measured by X-rays
are also shown. It will be seen that at 9 and 41 per cent. extension
there is good agreement, but that as soon as the representative point
reaches the boundary between the two symimetry triangles it does not
continue along the calculated path, but remains close to the boundary
of the two triangles. This is because symmetry requires that when
the representative point gets into the right-hand triangle slipping shall
start in the direction of the axis represented in Fig. 6 by (011).
Slipping towards the direction (011) would move the representative
point back to the boundary between the triangles. Thus slipping
continues on two planes, and the representative point remains on the
plane midway between the two directions of slip. Finally, it reaches

" a crystal axis shown by (121) in Fig. 6, which is the point midway
. between the two directions of slip (110) and (011).

This, and the similar case of a single crystal under compression,

are the only two cases in which a preferred orientation of crystal axes

due to straining has been explained, though the phenomenon of
preferred orientation has been found experimentally by means of X-rays
in a large number of drawn, rolled, and otherwise worked metals.

I have mentioned that with aluminium the slipping is on an
octahedral plane in the direction of its edges. An octahedron has
eight faces, but pairs of them are parallel to one another so that there
are four possible slip planes, and on each of these there are three
possible directions of slip, making twelve possible types of slipping in
all. We have seen that, when a single crystal of aluminium is pulled,
the strain is due to one only of these twelve. As Professor Andrade
told you last year, we found that if the shear stress is resolved parallel
to all the four possible slip planes in each of the three possible directions
of slip, the operative slip is that one of the twelve possibles for which
the shear stress is greatest. We found, further, that this law of
maximum shear stress determines the same slip plane and direction
for all possible positions of the specimen axis within one of the
triangles into which the diagram of cubic symmetry is divided. When
a single crystal of aluminium, or an aggregate of such crystals, is
strained, the resistance to further straining increases as the plastic
strain increases. When the slipping is on one crystal plane, the
resistance to shear depends only on the amount of shear strain that
has occurred since the crystal was in its original fully annealed state.
Professor Andrade showed some curves giving the relationship between
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the plastic shear strain s and the shear stress S. Fig. 7 shows the
relationship between S and s, derived from experiments on the
crystals of identical material in tension and in compression. It will
be seen that the fact that though in one case there was compression
perpendicular to the slip plane, while in the other there was tension,
no difference is observed in the S—s relationship.

On the other hand, the resistance seems to increase rather more
rapidly when double slipping occurs than when the whole strain js due
to single slipping. One of our specimens had its crystal axes in the
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F1a. 7.—Shear Stress, S, and Shear Strain, s, of Aluminium Single Crystals Resolved
on to Slip Plane and Direction.

_:_} In Compression. ® In Tension.

symmetrical position where double slipping might be expected to take
place. The complete analysis of double slipping was carried out for
various stages of compression. The unstretched cone was worked out
from the measurements of the specimen, and also calculated on the
assumption of equal slipping on each of the two possible slip planes.
The two cones are shown in Fig. 8, and it will be seen that they are
only very slightly different. Thus, the strain is in fact very nearly
due to the type of double slipping which the symmetry and maximum
shear stress rule prescribés. Fig. 9 shows the S—s curve derived from
the analysis of double slipping; it is of the same type as that for
single slipping, but is rather higher.

Now we approach a complicated and difficult problem, namely the
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analysis of stress and strain in an aggregate of crystals when the whole
aggregate is strained plastically.

UNEXTENDED CONE FOR
COMPRESSION €=:667 TO E-566
’

v
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Fra. 8.—Stereographic Projections of Calculated and Observed Cones for
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Fia. 9.—Shear Stress, §, and Shear Strain, s, for Double Slipping.

I. think that I can say, without fear of contradiction, that no self-
consistent or valid theory of plastic crystal aggregates has yet been
put forward, though a number of invalid attempts have been made in
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this direction. The essential difficulty in connecting experimental
results obtained with single crystals with those obtained in aggregates

is to imagine how it is possible for slipping to go on inside crystals so

that the boundaries of meighbouring crystal grains shall still be in
contact after the slipping has taken place. All attempts made so far
to correlate the mechanical properties of crystal aggregates with thoss

of single crystals rest on the same fallacy, namely that each crystal

grain can be treated as though its neighbours did, not exist. The
recent work of Cox and Sopwith,? for instance, visualizes a crystal
aggregate as consisting of a large number of cylindrical single crystals
combined together into a cylindrical aggregate. When the aggregate
is extended parallel to the length of the cylinders each crystal extends
just as a single crystal would if it were removed from its neighbours,
and the total force required to extend the aggregate is the sum of the
forces required to extend each crystal. If the crystals fitted together
as a solid mass before straining they would certainly not, in this
conception, fit- together after straining, so that holes would be
produced between the grains.

I have said that it is a fallacy to think of the grains in an aggregate
as being independent of one another so far as strain is concerned, but
it seems to me that a still more fundamental fallacy is involved in the
existing way of thinking of stresses in the grains of plastic aggregate
at all. When a cylindrical specimen cut from a single crystal is
subjected to an end load, it is only possible to think about the stress
at any point inside it because that stress can be assumed to be uniform.
On the other hand, if two single crystal cylinders are stuck together
along their length, and an end load is applied, the stress is quite
indeterminate until they begin to stretch, because one may be
subjected to an initial compressive load which is balanced by an equal
tensile load in the other.

A crystal aggregate may be likened to a mechanical system in
which each part bears on its neighbours with a frictional contact. A
simple model which illustrates some of the properties of frictional
systems is shown in Fig. 10. It consists of a board lying in the angle
made by vertical and horizontal boards. The stress in it is quite
indeterminate, and might have any value between certain limits. If,
for instance, one were to push on the vertical board, bending it
slightly, one could intrease the compression in the sloping board
without making it slip. Now suppose we push the sloping board till
it slips. Amonton’s law of friction, according to which the ratio of
the tangential to the normal force at a sliding contact is equal to the
coefficient of friction, now makes the forces everywhere determinate.
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If, instead of obeying Amonton’s law, the friction at both sliding
surfaces were independent of normal force, the force system would
again be determinate if the tangential force at each contact were
known. To find P, the force with which the sloping board must be
pushed in order that it may slide, we can solve the equations of
equilibrium, calculating normal reactions at the points of contact. On
the other hand, we can proceed more simply by what is called the
principle of virtual work. We imagine that the force P pushes the
system through a distance x at its point of application. The work
done is then Px. If s, and s, are the distances through which the
ends of the sloping board slide, and the friction forces are f; and f, the

P—> P

" Tia. 10.—Model Hlustrating Fi1g. 11.—Friction System with
Simple System with Friction. Two Possible ModZs of Slip.

energy wasted at the points of sliding contact is s;f; + s,f,. The
principle of conservation of energy then gives

=75 S
P=ft1,
.8 s .
The ratios 551 and »; are determined by purely geometrical considera-

tions. It will be seen that by this principle of virtual work we have
dﬁtermined the force P without bringing in the conception of stress at
all.

Now consider the more complicated system consisting of two
boards, which is shown in Fig. 11. When the outer sloping board is
pushed, one of two things happens: either the inner sloping board
remains fixed, the contacts at the two ends of the outer board slipping,
or no slipping occurs at the contact of the two sloping boards, but all
the remaining three contacts slide. One cannot arrange the boards so
that all the possible contacts slide at once when the outer one is
pushed. In systems like this the only general rule that can be given
for determining the force necessary to cause motion is to assume that
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there is no slipping at as many of the frictional contacts as is possible
in view of the geometrical constraints in the system. We can then
calculate the force P which corresponds with each of the motions wh?ch
satisfy this condition, using the principle of virtual work. The motion
which actually occurs will be that for which P is least. :

Now let us see how this principle can be used to determine tl‘\a
combination of shears or slips which will arise when any given strain
is forced on a crystal by an external agency. Take first the case of a
cubic single crystal extended in one direction, and al')le to expand_ or
contract freely in all perpendicular directions. The single geometrical
condition can be satisfied if one only of the twelve possible types 9(
slipping is operative. In this case, the virtual wqu equation is
Ss — Px, where s is the amount of slip corresponding with extension, z,
so that if the shear strength S is the same for all the twelve possible

types of slip, the principle of least possible energy dissipation for a

given extension tells us that only that slip plane is opel:ative for which
s is least when  is prescribed. It is a matter of simple geometry -

to show that with single slipping, ’; ig identical with the  stress

- FE
factor,” i.e. it is equal to the ratio ES-,, so that the condition thnt;

shall be the least possible is identical with the condition, derived from
: - . 8.
the conception of stress that the operative slip is that for which ps

the greatest of the twelve possible values. )

We are now in a position to see how one can determine .the system
of complex slipping which will occur when any given strain is produced
in a crystal. A strain has, as I stated earlier, six components, but
when the strain is composed of shear strains only, without volume
expansion, this is reduced to five. Tf these five components of strain
are given, we can combine five out of the twelve possible shears or
modes of slipping to produce the required strain. We could, .of
course, combine six, seven, or more shears to produce the same strain,
but our study of the mechanics of frictional systems shows thgt the
least energy is wasted, or virtual work done, with a combinntl'on of
five only. To choose the five, we can only try every combina.tlon of
five out of the possible twelve, and see which corresponds with the
least virtual work or energy dissipated.

At first sight, this seems a formidable task, because there are
792 ways of choosing five things from a group of twelve. We must
remember, however, that the range of choice is much more restricted
than that contemplated in this estimate. In the first place, the three
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directions of slip on any one plane are not independent, since the
strain due to slipping in one direction can be produced by combining
shears in the two other directions. Thus, the twelve shears are
divided into four groups of three shears each and only two can be
assigned to any one group. This reduces the number to 648. Next
it is found that the geometrical condition for a given strain cannot be
satisfied if the five shears are chosen so that two are taken from one
group, i.e. one slip plane, and the remaining three are chosen one from
each of the three remaining groups. This reduces the number of
choices to 324, all of which must be chosen so that two shears occur
on each of two planes, one on the third and none on the fourth. Next
it must be noticed that on a plane where there are two shears there
are three ways of choosing the pair. Thus, if we work out any one of
the 324 combinations, eight more can immediately be deduced without
further analysis. This reduces the 324 in the ratio 9:1, 4. to 36.
Finally, it turns out that a further geometrical inconsistency rules out
one-third of these 36, so that, finally, we are left with an irreducible
number of 24 combinations of five shears.

Since the resistance to shear S has been shown, experimentally, to
be the same for all the twelve crystallographically similar shears, the
energy dissipated in any combination of five shears is simply equal to
8 multiplied by the sum of the five component shears. Thus, to find
which of the 24 combinations is effective, we must take each of the 24
possible combinations of five shears and determine their five values so
that they give rise to the given external strain (which is specified, of
course, by five components) when combined together. In each case we
then form the sum of the five shears, without regard to sign. The
smallest of the 24 resulting sums is that which, by the principle of
virtual work, or least energy dissipation, corresponds with the operative
combination of five shears. All this sounds complicated, but the whole
process involves only the simplest mathematical operations, repeated a
great many times.

I have now described how the system of complex slipping which
will occur on application of any given externally applied strain to a
single crystal can be determined. It remains to apply the results to
crystal aggregates. If you look at a microphotograph of the cross-
section of a drawn wire, you will see that the crystal grains are all
clongated in the direction of extension, and contracted in the
perpendicular direction. Each grain, in fact, suffers exactly the same
strain as the surrounding material in bulk. With this strain, all the
grain boundaries necessarily remain in contact, no holes forming
between them. I have therefore taken the case of an aggregate in
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Fia. 13.—Stereographic Projection Showing g{rix‘ainmtxons for which Complete

o Calculations were Made. o

Figures are Sum of Shears when Extension Per Unit Length 'of Aggregate is 272.

. g-i- Crosses Show Orientations for which Complete Calculations were Made.

Plastic Strain in Metals 321

which the grains take up all possible orientations, and have imagined
that the aggregate is strained by extending it by a small amount in
one direction, while at the same time contracting it by half the amount
in all perpendicular directions, thus keeping the volume unchanged.
The diagrams shown in Fig. 12, which are drawn to scale, show on the
left an imaginary section of a coarse-grained, round bar, on the right
the same bar with the same grains when extended to 2} times its
initial length.

I selected a number of orientations of the axis of extension in
relation to the crystal axes, and have worked out by the method
described above and with the help of Mallock’s equation-solving
machine, the particular combination of five shears which is effective at
each orientation. The points representing the axis of extension are
nearly uniformly distributed over the fundamental spherical triangle
of cubic symmetry (see Fig. 13) so as to represent random orientation
in the aggregate.

REsuLts.

The sum of the five shears necessary to give rise to an extension
of the aggregate equal (in arbitrary units) to 272 is shown in Fig. 13
(in the same units for each orientation). From this, the direct stress
P which must be applied to the aggregate in order that plastic strain
by complex slipping may proceed, has been calculated. Then
assuming, as is warranted by experiments on single crystals, that the
increase in shear stress on a crystal plane in complex slipping depends
on the sum of the shears in the same way that S depends on s in single
slipping, one can deduce the load-extension curve for an aggregate
from the S—s curve of a single crystal. The result is shown in Fig. 14.
Fortunately, Dr. Elam had measured the load-extension curve with a
polycrystalline specimen of the same material from which the single
crystals had been grown. Her observed points are marked in Fig. 14.

The rotation of the crystal axes due to the five shears in each grain
inside the aggregate was next calculated, in exactly the same way as
the rotation due to single slipping. The rotation of the specimen axis
relative to the crystal axis for an extension of 237 per cent. is shown,
in Fig. 15, for each of the caleulated orientations. This diagram is
not a stereographic one; it shows in rectangular co-ordinates the
co-latitude 6 and longitude ¢ of the specimen axis referred to crystal
axes placed with a cubic axis at the pole and a cubic plane as the
meridian ¢ = 0. Comparison with TFig. 13 shows that this diagram is
only slightly distorted when compared with a true stereographic
projection. The arrows in Fig. 15 show the extent of the rotation;

VOL. LXIL b3
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the orientation at the beginning of the extension is represented by the
point from which the arrow springs, and the final position by the
point of the arrow. You will see that over a large part of the total
area of the triangle there are two arrows radiating from each point.
This is because at points within those areas two different combinations
of five shears correspond with exactly the same sum of the shears.
Any combination of these two sets of five shears taken in varying
proportions could equally well occur. 1 have accordingly filled in the
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angles between the arrows to show the range of possible movement of
the specimen axis relative to the crystal axes. The whole triangle is
divided into areas within which one or two combinations of five shears
are effective. Each operative combination of five shears is denoted
by a letter in Fig. 15. It will be seen that within the area G the axes
of all grains rotate so that a (111) axis tends to come into line with
the axis of extension of the aggregate. Moreover, the representative
points of many grains which are in the area EC will move until they

Measured by Dr. Elam.
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Ccross t‘he boundary between ¢ and EC and will then move along
ll.namb{guous paths towards the (111) axis. Grains whose representa-
tive points are in the neighbourhood of the (100) corner of the triangle

Plasic Strain in Metals

AXIS OF EXTENSION

N
|

(101)
',

will rotate until a cubic axis is parallel to the specimen axis. The
crystal axes of grains which are near the (101) axis will tend to rotate
towards either the (111) or the (100) axes. Thus, the aggregate will
tend to attain a state in which the crystal axes of grains have either

Fic. 15.—Rotation of Crystal Axes in Aggregate During Extension of 2:37 Per Cent.
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a (111) or a (100) axis, but no grains with a (101) axis in the direction
of extension. For compression of a crystal aggregate, exactly the
reverse rotation would occur; no grains would be expected with (111)
or (100) axes in the direction of compression, but the crystal axes of
all grains would tend to rotate until a (101) axis was in or near the
direction of compression. These preferred orientations are in fact
exactly those found by X-rays.
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OBITUARY.

AUGUST BOERNER.

August Boerner, a prominent figure in the German metallurgical and
mining industries, died suddenly on November 27, 1937.

Born at Emmerich (Rhine) in 1884, Herr Boerner studied economics at
the Handelshochschule, Cologne, before becoming secretary to William
Merton, the former director of the Metallgesellschaft, Frankfort. Subse-
quently, he was appointed to the board of the Metallbank and of the Metallur-
gische Gesellschaft, of which he was the London representative in the years
before the war. During the war, he was employed on the erection of new
factories for the introduction of special processes, and afterwards was engaged
in restoring the foreign interests of his company. In 1929, after 18 years with
the Metallgesellschaft, Herr Boerner became director of the Krupp works at
Berndorf in Austria, and four years later he was appointed to a similar post
with the Ballestrem concern, where he proved himself of great value.

Herr Boerner’s success lay in his tact and his natural technical ability;
his early death is a great loss to German industry.’

He was elected a member of the Institute of Metals on March 8, 1926.

JOHN ALLEN CAPP.

American metallurgy suffered a considerable loss by the death on
January 6, 1938, after an operation, of John Allen Capp, Engineer of Materials
to the General Electric Company, Schenectady, N.Y.

Mr. Capp was born at Philadelphia in 1870, and graduated in Mechanical
Engineering at the University of Pennsylvania in 1892. After being con-
nected for a short time with the Thomson-Houston Company at Lynn, Mass.,
he went to the main plant of the General Electric Company, where he became
chief of the testing department. From its establishment in 1927 to the
time of his death, Mr. Capp was head of the works laboratory.

. Capp was a member of numerous technical societies, but he was
most closely connected with the American Society for Testing Materials,
whose President he became in 1919, and of which he was elected an Honorary
Member last year. He was prominent in the establishment of standards in
the metallurgical industry, and served on no less than eighteen of the Society’s
committees, most actively perhaps on Committee B-1—Copper and Copper
Alloy Wires for Electrical Conductors—of which he was chairman from 1909
until his death.

Innumerable friends testify to Mr. Capp’s integrity, ability, sound judgment,
and wide experience; he excelled on both the technical and the administrative
sides of his work.

He was elected a member of the Institute of Metals in 1911.
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which the grains take up all possible orientations, and have imagined
that the aggregate is strained by extending it by a small amount in
one direction, while at the same time contracting it by half the amount
in all perpendicular directions, thus keeping the volume unchanged.
The diagrams shown in Fig. 12, which are drawn to scale, show on the
left an imaginary section of a coarse-grained, round bar, on the right
the same bar with the same grains when extended to 2} times its
initial length.

I selected a number of orientations of the axis of extension in
relation to the crystal axes, and have worked out by the method
described above and with the help of Mallock’s equation-solving
machine, the particular combination of five shears which is effective at
each orientation. The points representing the axis of extension are
nearly uniformly distributed over the fundamental spherical triangle
of cubic symmetry (see Fig. 13) so as to represent random orientation
in the aggregate.

REsuLts.

The sum of the five shears necessary to give rise to an extension
of the aggregate equal (in arbitrary units) to 272 is shown in Fig. 13
(in the same units for each orientation). From this, the direct stress
P which must be applied to the aggregate in order that plastic strain
by complex slipping may proceed, has been calculated. Then
assuming, as is warranted by experiments on single crystals, that the
increase in shear stress on a crystal plane in complex slipping depends
on the sum of the shears in the same way that S depends on s in single
slipping, one can deduce the load-extension curve for an aggregate
from the S—s curve of a single crystal. The result is shown in Fig. 14.
Fortunately, Dr. Elam had measured the load-extension curve with a
polycrystalline specimen of the same material from which the single
crystals had been grown. Her observed points are marked in Fig. 14.

The rotation of the crystal axes due to the five shears in each grain
inside the aggregate was next calculated, in exactly the same way as
the rotation due to single slipping. The rotation of the specimen axis
relative to the crystal axis for an extension of 237 per cent. is shown,
in Fig. 15, for each of the caleulated orientations. This diagram is
not a stereographic one; it shows in rectangular co-ordinates the
co-latitude 6 and longitude ¢ of the specimen axis referred to crystal
axes placed with a cubic axis at the pole and a cubic plane as the
meridian ¢ = 0. Comparison with TFig. 13 shows that this diagram is
only slightly distorted when compared with a true stereographic
projection. The arrows in Fig. 15 show the extent of the rotation;
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the orientation at the beginning of the extension is represented by the
point from which the arrow springs, and the final position by the
point of the arrow. You will see that over a large part of the total
area of the triangle there are two arrows radiating from each point.
This is because at points within those areas two different combinations
of five shears correspond with exactly the same sum of the shears.
Any combination of these two sets of five shears taken in varying
proportions could equally well occur. 1 have accordingly filled in the
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the specimen axis relative to the crystal axes. The whole triangle is
divided into areas within which one or two combinations of five shears
are effective. Each operative combination of five shears is denoted
by a letter in Fig. 15. It will be seen that within the area G the axes
of all grains rotate so that a (111) axis tends to come into line with
the axis of extension of the aggregate. Moreover, the representative
points of many grains which are in the area EC will move until they

Measured by Dr. Elam.
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Ccross t‘he boundary between ¢ and EC and will then move along
ll.namb{guous paths towards the (111) axis. Grains whose representa-
tive points are in the neighbourhood of the (100) corner of the triangle
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will rotate until a cubic axis is parallel to the specimen axis. The
crystal axes of grains which are near the (101) axis will tend to rotate
towards either the (111) or the (100) axes. Thus, the aggregate will
tend to attain a state in which the crystal axes of grains have either

Fic. 15.—Rotation of Crystal Axes in Aggregate During Extension of 2:37 Per Cent.
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a (111) or a (100) axis, but no grains with a (101) axis in the direction
of extension. For compression of a crystal aggregate, exactly the
reverse rotation would occur; no grains would be expected with (111)
or (100) axes in the direction of compression, but the crystal axes of
all grains would tend to rotate until a (101) axis was in or near the
direction of compression. These preferred orientations are in fact
exactly those found by X-rays.
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AUGUST BOERNER.

August Boerner, a prominent figure in the German metallurgical and
mining industries, died suddenly on November 27, 1937.

Born at Emmerich (Rhine) in 1884, Herr Boerner studied economics at
the Handelshochschule, Cologne, before becoming secretary to William
Merton, the former director of the Metallgesellschaft, Frankfort. Subse-
quently, he was appointed to the board of the Metallbank and of the Metallur-
gische Gesellschaft, of which he was the London representative in the years
before the war. During the war, he was employed on the erection of new
factories for the introduction of special processes, and afterwards was engaged
in restoring the foreign interests of his company. In 1929, after 18 years with
the Metallgesellschaft, Herr Boerner became director of the Krupp works at
Berndorf in Austria, and four years later he was appointed to a similar post
with the Ballestrem concern, where he proved himself of great value.

Herr Boerner’s success lay in his tact and his natural technical ability;
his early death is a great loss to German industry.’

He was elected a member of the Institute of Metals on March 8, 1926.

JOHN ALLEN CAPP.

American metallurgy suffered a considerable loss by the death on
January 6, 1938, after an operation, of John Allen Capp, Engineer of Materials
to the General Electric Company, Schenectady, N.Y.

Mr. Capp was born at Philadelphia in 1870, and graduated in Mechanical
Engineering at the University of Pennsylvania in 1892. After being con-
nected for a short time with the Thomson-Houston Company at Lynn, Mass.,
he went to the main plant of the General Electric Company, where he became
chief of the testing department. From its establishment in 1927 to the
time of his death, Mr. Capp was head of the works laboratory.

. Capp was a member of numerous technical societies, but he was
most closely connected with the American Society for Testing Materials,
whose President he became in 1919, and of which he was elected an Honorary
Member last year. He was prominent in the establishment of standards in
the metallurgical industry, and served on no less than eighteen of the Society’s
committees, most actively perhaps on Committee B-1—Copper and Copper
Alloy Wires for Electrical Conductors—of which he was chairman from 1909
until his death.

Innumerable friends testify to Mr. Capp’s integrity, ability, sound judgment,
and wide experience; he excelled on both the technical and the administrative
sides of his work.

He was elected a member of the Institute of Metals in 1911.



