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Dislocation models for interfaces

2.1 INTRODUCTION

In this chapter we shall consider the modelling of interfaces by continuously or discretely
distributed arrays of dislocations. Many models use the known properties of discrete
dislocations to deduce properties of an interface. In this way energies, elastic stress and

strain fields, diffusion coefficients, point defect source and sink efficiencies, segregation .

kinetics, roughening transitions, migration, sliding, and internal friction of interfaces
have been modelled. This extensive list of properties makes the dislocation model of prime
importance in the field of interfaces.

The history of the model spans more than half a century and its conception dates from
G. 1. Taylor’s pioneering work on crystal plasticity. Taylor (1934) calculated the elastic
displacement and stress fields of a wall of crystal lattice edge dislocations forming what
he called a ‘surface of misfit’, illustrated schematically in Fig.2.1. Today we would call
Taylor’s surface of misfit a small-angle symmetrical tilt boundary. J. M. Burgers (1939)
calculated the elastic displacement and stress fields of a small-angle symmetrical tilt
boundary and also an epitaxial heterophase interface containing a single array of crystal
lattice edge dislocations with Burgers vectors parallel to the interface, illustrated in
Fig.2.2. J. M. Burgers (1940) recognized that an asymmetric tilt boundary could be
constructed from two sets of edge dislocations (see Fig.2.3). Similarly, twist grain
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Fig. 2.1 Schematic illustration of the formation of symmetric tilt boundary of misorientation 0
in (b) by bonding together two crystals in (a) with high index free surfaces. The steps on the free
surfaces in (a) become edge dislocations in the boundary in (b). (From Read (1953)).
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Fig. 2.2 Schematic illustration of an epitaxial interface between black and white crystals with
lattice parameters a® and a”, where a° > q". The difference in lattice parameters is accommo-
dated by edge dislocations.
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Fig.2.3 A schematic illustration of an asymmetric tilt
/ boundary along the dashed line. Note that there are two
sets of edge dislocations. (From Read (1953)).
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Fig.2.4 A schematic illustration of a twist boundary seen in plan view. Sites of the two crystal
lattices are represented by dots and circles. The boundary contains two sets of screw dislocations
along the arrows which tend to localize the twist misorientation leaving relatively large patches of
almost perfect crystal between them. (From Read (1953)).

boundaries could be constructed from grids of screw dislocations, as shown in Fig. 2.4.
These early authors were primarily concerned with small-angle grain boundaries, such as
sub-grain boundaries comprising the mosaic structure formed during cold work. It was
not until 1947 that W.G. Burgers (the brother of J. M. Burgers) gave a description of
large-angle grain boundaries in terms of dislocations. This proposal was consistent with
the growing concensus that large-angle grain boundaries were not amorphous layers some
100 atoms in thickness as had been argued much earlier by Rosenhain and coworkers,
e.g. Rosenhain and Humpbhrey (1913). However, it was recognized that the description
of a large-angle boundary in terms of crystal lattice dislocations was limited in its
usefulness owing to the close separation of the dislocations.

Read and Shockley (1950) considered the energy of a small-angle grain boundary
composed of an array of crystal lattice dislocations. The classic Read-Shockley formula
for the energy-misorientation relation, o(f) = go6(4 — In0), appeared in this paper. This
formula predicts that o(f) increases with increasing 8 and possesses a sharp cusp as 6—0.
Although this formula was derived for small-angle boundaries, @ < 15°, the paper also
addressed the structures and energies of large-angle grain boundaries. Read and Shockley

recognized that their formula applied only when the dislocations in the boundary were
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uniformly spaced. But this is possible only in special cases when the spacing of the
dislocations is an integer multiple of some crystal lattice spacing. The non-uniformities
in the spacings of the dislocations, which exist in more general cases, may be thought
of as perturbations superimposed on an array of uniformly spaced dislocations. Read and
Shockley showed that the perturbations may be thought of as another array of dis-
locations with smaller (weaker) Burgers vectors. Thus, there are additional weaker cusps
in the energy-misorientation relation at periodic boundaries. These ideas are equivalent
to modern dislocation models of large-angle grain boundaries involving DSC dislocations
(see Section 1.7.2.1). 'We shall derive the Read-Shockley formula in Section 2.10.3.

To understand current dislocation models it is essential to distinguish two types of
interface. The first has no stress field in either crystal far from the interface. The stress
field associated with the interface decays exponentially over a distance comparable to a
characteristic wavelength in the interface, such as the average spacing of an array of
dislocations. This is the type of interface that is produced when two stress-free crystals
are bonded together with no constraints applied externally to the bicrystal. The second
type of interface is associated with a long-range stress field. Far from the interface
the stress tensor approaches a constant non-zero value. This type of interface occurs
naturally, for example in thin-film specimens containing interfaces between thin epitaxial
layers and thick substrates. Once the epilayer reaches a certain critical thickness it
becomes energetically favourable for the interface to relieve the long-range stress field
by the introduction of an array of dislocations at the interface. This transition is discussed
in Section 2.10.6.

In this chapter we shall be concerned mainly with interfaces that are free of long-range
stresses. For such an interface Frank (1950) and Bilby (1955) showed that the dislocation
content is determined by a purely geometrical condition. They viewed the interface as
a transformation front; as it moves it transforms one crystal lattice adjoining the interface
into the other. The transformation may be a rotation, as in the case of a grain boundary,
or a general affine transformation. In general, the transformation would open gaps or
produce overlapping material at the interface. The interface is then said to contain
incompatibilities. Dislocations are required geometrically to eliminate the incompatibili-
ties. It is only when the interface is fully compatible that it is free of stress at long range.
Once a description of the relationship between the crystal lattices has been selected,
the dislocation content of the interface is obtained in a straightforward way from the
Frank-Bilby equation, which is derived in Section 2.3. One of the difficulties with
the Frank-Bilby theory is that the relationship between the crystal lattices for a given
interface may be specified in an infinite number of ways. It follows that there is an infinite
number of Frank-Bilby descriptions of the dislocation content of an interface, all
satisfying the condition of no long-range stresses. Problems associated with this feature.
of dislocation models of interfaces and the question of whether there is a ‘best’ description
are discussed in Section 2.4.

There is an important distinction between the interfacial dislocations that were con-
sidered in Section 1.7 and the interfacial dislocations that are used in dislocation models
of interfaces. The interfacial dislocations of Section 1.7 are isolated Volterra dislocations.
Their Burgers vectors are defined without reference to any other structure. By contrast,
a dislocation model of an interface involves one or more arrays of dislocations. The
existence of an array of dislocations alters the orientational and/or deformational
relationship between the adjoining crystal lattices from that of some reference structure,
where the corresponding array of dislocations is absent. It is therefore more appropriate
for the Burgers vectors of dislocations in an array to be defined by a Burgers circuit
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construction in a reference lattice. Such a procedure enables the systematic variations of
the spacings and line directions of the dislocations in the interface to be modelled as the
orientational and/or deformational relationship between the adjoining crystal lattices
varies. As we shall see in Section 2.2 the choice of reference lattice is not unique. Provided
the closure failure of the Burgers circuit is always measured in the reference lattice the
value obtained is independent of the spacing of the dislocations in the array. On the other
hand the “local’ Burgers vector (Hirth and Lothe 1982), which is obtained by measuring
the closure failure in the interface where the dislocations are located, varies as the
dislocation spacing varies.

2.2 CLASSIFICATION OF INTERFACIAL DISLOCATIONS

In Section 1.7 we classified interfacial line defects according to bicrystal symmetry. The
classification was based on the condition that the line defect separated regions of interface
that were related by symmetry and hence energetically degenerate. An interfacial dis-
location was created by a Volterra process involving a uniform displacement across a cut
and subsequent rebonding. The Burgers vector of the dislocation was equal to the uniform
displacement across the cut. An isolated perfect dislocation in a crystal lattice may
be created by a similar Volterra process in which the displacement across the cut is
a translation vector of the crystal lattice. Similarly, the Burgers vector of a perfect
interfacial dislocation is a translation vector of the reference lattice. However, it was
noted in Section 1.7 that the classification was not complete because other interfacial
dislocations could be envisaged that did not separate energetically degenerate regions of
an interface. For example, a dislocation with a Burgers vector that is not a translation
vector of the reference lattice will not, in general, separate energetically degenerate
regions of the interface. Such dislocations are called partial interfacial dislocations,
by analogy with partial crystal lattice dislocations such as Frank and Shockley partial
dislocations in an f.c.c. lattice (Read 1953). However, we note that the analogy with
the classification of crystal lattice dislocations is not exact. Whereas partial interfacial
dislocations can separate energetically degenerate interfacial domains (e.g. see Section
1.7.2), a partial crystal lattice dislocation introduces a stacking fault, which has a
different energy from the rest of the crystal (Read 1953).

Over the past 30 years there has been a proliferation in the types of interfacial disloca-
tions which have been identified. In addition, dislocations of a given type have often
been called by different names, e.g. see Balluffi and Olson (1985). Thus, intrinsic (Hirth
and Balluffi 1973), extrinsic (Hirth and Balluffi 1973), coherency (Olson and Cohen
1979), anticoherency (Olson and Cohen 1979), twinning (Christian 1981), transformation
(Christian 1981), primary or crystal lattice interfacial dislocations (Bollmann 1970),
secondary (Bollmann 1970), tertiary (Bollmann 1970), virtual (Hirth and Balluffi 1973),
surface (Bilby 1955), misfit (Frank and van der Merwe 1949), perfect (Pond 1977), partial
(Pond 1977), Somigliana (Bonnet et al. 1985), Volterra (Pond and Vlachavas 1983), and
DSC dislocations (Bollmann 1970) have appeared in the literature. One reason for this
proliferation is the different roles that interfacial dislocations are perceived to play in
determining the stress field of an interface. Another reason is the concept of a reference
structure and the different choices of reference structure that may be adopted, as
discussed later in this section and in Section 2.4.

In recent years Olson and Cohen (1979) and Bonnet (1981a,b,c, 1982, 1985) have
developed a general approach to describe the elastic fields of interfaces in terms of
dislocations. A useful discussion of the method has been given by Dupeux (1987). The
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basic idea is to use two arrays of dislocations with Burgers vector densities of opposite
sign and different distributions. The short-range elastic field of an interface that has no
long-range stress field is modelled by two cancelling arrays of dislocations. Thus the net
dislocation content of such an interface is zero. One array may be regarded as an array
of stress-generator dislocations and the other as an array of stress-annihilator disloca-
tions. The elastic field of an interface that is associated with a long-range stress field is
modelled by an incomplete cancellation of the two arrays, or, in the simplest case, by
only one array. In such cases the net dislocation content of the interface is not zero. In
our view this approach has many advantages and we shall therefore adopt it throughout
this book.

To illustrate the use of stress generator and annihilator arrays consider the formation
of a grain boundary that is free of long-range stresses by the following imaginary four-
step process (see Fig. 2.5). We begin with a reference structure consisting of a stress- free,
single crystal, Fig. 2.5(a). The crystal is gripped and bent elastically through an angle 8
between the grips, Fig. 2.5(b). The long-range stress field that is set up by this elastic
distortion is modelled by a continuous distribution of dislocations acting as stress
generators in the distorted region. We emphasize that the bending of the crystal is elastic
and that the dislocations that are continuously distributed are not ‘real’ dislocations,
in the conventional sense, but they serve as a device to model the elastic stress field of
the bent crystal. They may be compared with the use of continuous distributions of
dislocations to model the elastic fields of loaded cracks (Hirth and Lothe 1982). The bent
crystal is in mechanical equilibrium only because the crystal halves are being clamped in
position far from the boundary plane. If the clamps were removed the bicrystal would
return to Fig.2.5(a). The long-range stress field is eliminated by introducing a second
distribution of crystal lattice dislocations acting as stress annijhilators, with exactly the
opposite Burgers vector density, see Fig. 2.5(c). These dislocations are ‘real’ dislocations.
It is emphasized that in this representation the stress field produced by the stress anni-
hilator dislocations is that produced under the constraint that no bending (rotation) of
the crystal is allowed during their introduction. Finally, the elastic energy of the system
is minimized by localizing all dislocations in the boundary plane, as shown in Fig. 2.5(d).
The details of the short-range stress field of the boundary then depend on the distribution
of the Burgers vector density that is assumed for the stress annihilators.

In Fig. 2.5 one half of the bicrystal is produced from the other by the transformation
T (see Section 1.3.2), which in this case is a rotation, where the half-crystals are rotated
by equal and opposite amounts.

Prior to the introduction of the stress annihilators (Fig.2.5(b)) the continuity of the
reference lattice is maintained across the interface, although it is elastically deformed;
in this state the interface is said to be in a state of forced elastic coherence or simply
‘coherent’.

To illustrate the same approach for a heterophase interface, that is free of long-range
stresses, we consider an analogous four step process, illustrated in Fig. 2.6. We begin with
a reference structure consisting of a single crystal of the o phase, Fig.2.6a. One half
of the reference crystal lattice is elastically transformed into the 8 phase, by the trans-
formation T, which produces a change of shape of the reference crystal as shown in
Fig. 2.6(b). Again the crystal halves are clamped in position far from the interface to
prevent the 8 half transforming back to « or the « half transforming to 8. Continuity
of the reference lattice is maintained across the interface by an elastic distortion of the
adjoining o and 8 crystals, and the interface is coherent. The interface is associated with
a long range stress field, which is modelled by the continuous distribution of stress
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Fig.2.5 The formation of a grain boundary that is free of long-range stresses by a four-step
process. Starting from a single crystal reference lattice in (a) the crystal is gripped at the left and
right sides and bent elastically to introduce the misorientation @ in (b). The long-range elastic field
is modelled by a continuous distribution of stress generator dislocations. In (c) stress annihilator
dislocations are introduced, whose Burgers vector density cancels that of the stress generator
dislocations. There is now no long-range elastic field associated with the boundary. The elastic
energy is minimized by rearranging the dislocations into the boundary plane in (d).

generators, shown in Fig. 2.6(b). The stress annihilators, which may be crystal lattice
dislocations, are introduced in the third step and cancel the longe-range field, F ig. 2.6(c).
In the final step the stress generators and annihilators rearrange their positions to
minimize the interfacial energy, Fig. 2.6(d), which need not restrict them to lying in the
chemical interface depending on the relative elastic constants of the two phases (see
Section 4.4.3).

For interfaces that are free of long-range stresses the cancellation of the Burgers vector
densities of the stress generator and annihilator arrays ensures that no macroscopic
change in the relative orientation or structures of the adjoining crystals is effected by
the two arrays. It is because of this that the method models the elastic field that would
be produced by bonding together parallel surfaces of two crystals that are already
misoriented or transformed in the desired way. We note that when the two sets of
dislocations are in balance, neither set can be uniquely identified as stress generators or
stress annihilators, since it is clear that the order in which the above set of operations
is carried out can be altered without affecting the final state of the system.

This approach may be contrasted with the more commonly used Read-Shockley
approach for grain boundaries. Dislocations in a single crystal are run into a plane, which
becomes the boundary plane. No constraints are applied externally to the crystal and one
crystal half rotates with respect to the other by @ about an axis 5. If the rotation were

e,
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Fig. 2.6 The formation of a heterophase interface that is free of long-range stresses by a four-step
process. One half of the reference single crystal lattice of the o phase in (a) is transformed elastically
in (b) into the the lattice of the 8 phase. The long-range stress field of the resulting bicrystal is
modelled by a continuous distribution of stress generator dislocations. Stress annihilator disloca-

tions are introduced in (c) with an equal and opposite Burgers vector density to cancel that of the
stress generators. The interface is now free of long-range stresses. In (d) the stress generator and
annihilator dislocations rearrange so as to minimize the elastic strain energy.

suppressed by external constraints a long-range stress field would be set up and the
dislocations would be an array of stress generators. But the coexistence of the rotation
and the dislocations in the boundary produces a bicrystal that is free of long-range
stresses. Thus, in the Read-Shockley approach the dislocation array serves two purposes:
(i) its distortion field effects a change in the orientational relationship between the crystal
lattices, and (ii) it introduces a Burgers vector density to relieve incompatibilities at the
interface that are produced by (i). Provided the change in the relationship between the
crystal lattices in (i), and the net Burgers vector density of the dislocations in (ii), are
related by the Frank-Bilby equation (see Section 2.3) the interface is free of long-range
stresses. The stress field in the bicrystal is the same as that obtained by bonding parallel
surfaces of two crystals that are already misoriented by @ about p. Thus the Read-
Shockley and Olson-Cohen-Bonnet approaches describe the same final state: in the
absence of long-range stresses the two approaches are equivalent. As discussed in Section
2.10.4, great care with the boundary conditions far from the interface has to be taken
with the use of elasticity theory in the Read-Shockley approach to ensure that the absence
of external constraints on the bicrystal is implicit in the elastic distortion field. Otherwise,
the Frank-Bilby equation is not satisfied by the distortion field and spurious long-range
stresses are found. One of the advantages of the Olson—Cohen-Bonnet approach is that
an interface is guaranteed to have no long-range stress field by using cancelling arrays
of dislocations. But more significantly, it has the added advantage that it can be readily
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applied to interfaces that do have long-range stress fields, because of particular circum-
stances in which those interfaces were produced, so that the Burgers vector densities of
the stress generator and annihilator arrays do not cancel.

An example of an interface with a long-range stress field that looks like that produced
by several closely spaced dislocation loops is a lenticular mechanical twin within a crystal,
as illustrated in Fig.2.7. In this case the longe-range field is caused by the coexistence
of a sheared volume inside an unsheared crystal. An enlarged view of the interface near
one of the dislocations is shown in Fig.2.8(d) where it is seen that the dislocation has
step character. The dislocation is a stress generator. Continuity of the reference lattice,
which in this case is the untwinned crystal lattice, is maintained everywhere and therefore
the stepped interface is coherent. No stress annihilators are present and therefore the
stress field of the stress generators is not cancelled: the interface has a long-range stress
field.

Similar, constrained, changes of shape occur when small precipitates of new phases
are formed within a material. Continuity of some reference lattice is maintained across
the interface for precipitate sizes below some critical value. The interface is coherent
and the stress fields of these inclusions may be modelled by continuously or discretely
distributed arrays of stress generators at the interface. In both the twin and the precipitate
cases, however, the long-range stress fields can be eliminated by running crystal lattice
dislocations into the interfaces. These then are the stress annihilators.

In the previous examples the choice of reference lattice was the lattice of a single crystal.
With the help of stress-generator dislocations continuity of the reference lattice across
the interface was maintained and the interface was then described as coherent. The
coherency of the interface was disrupted by the introduction of stress-annihilator crystal
lattice dislocations. But we may also have situations where it is useful to start with a
reference structure consisting of a bicrystal. By applying a suitable transformation, T,

to one of the crystals of such a reference bicrystal a new interface can be produced having

geometrical parameters which deviate only slightly from those of the original reference
interface. Provided the reference interface has a relatively low energy the deviated
interface may be expected to relax to a configuration consisting of patches of the reference
interface separated by appropriate interfacial dislocations. In this way the deviated
interface is described as the reference interface with a superimposed array of interfacial
dislocations. Such situations can also be described in terms of cancelling arrays of stress
generator and stress annihilator dislocations.

Suppose that we choose a reference interface that has a quasiperiodic structure. This
is conceivable because relatively low-energy quasiperiodic interfaces can exist, e.g.
(100)/(110) grain boundaries in Al have been observed to be of relatively low energy
(Dahmen and Westmacott 1988). Choosing a quasiperiodic reference structure is equi-
valent to choosing a periodic reference structure in the limit that the period tends to
infinity. A possible drawback of choosing a periodic reference structure with a long
period is that there may be local relaxation patterns within the period of the reference
structure which will not be described by this choice. To account for such local relaxations
it is necessary to choose the appropriate shorter period reference structure that is being
preserved by the local relaxations. Similarly, there may be local relaxations at a quasi-
periodic reference structure, which would be arranged quasiperiodically. Between these
local relaxations there is some periodic approximant to the quasiperiodic interface. To
account for them one should choose the periodic approximant that is being preserved.
This is known as the ‘near CSL model’, where the existence of a nearby periodic interfacial
structure implies the existence of a nearby CSL (and periodic DSC lattice) in one, two,
or three dimensions. However, it is conceivable that there are no local relaxations at a
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Fig. 2.7 Schematic illustration of a lenticular mechanical twin within a crystal. The twin is 5 layers
thick. Each layer is bounded by a dislocation loop and an enlarged view of the step associated with

each dislocation is shown in Fig. 2.8(d). The twin elongates by the lateral motion of the dislocations
as indicated by the arrows.
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Fig. 2.8 The formation of a step in a (111) mechanical twin boundary in an f.c.c. lattice. Starting
from a single f.c.c. lattice in (a), seen in projection along [110], where the dots and crosses refer
to lattice sites on successive (220) planes, the crystal lattice is cut along AB. The lower half
undergoes the mechanical twinning shear in (b), and it is seen that the two halves no longer fit
together along AB. In (c) a continuous distribution of stress generator dislocations (i.e. coherency
dislocations) is introduced along AB in order to make the two crystal halves commensurate. These
continuously distributed dislocations localize into a %[115] coherency dislocation associated with
a step of one (111) plane height in (d).
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quasiperiodic reference structure (though on physical grounds it would seem unlikely) and
in that case the quasiperiodic interface itself can serve as a reference structure to describe
local relaxations in deviated interfaces.

To illustrate a reference structure consisting of a bicrystal consider a short period
symmetric [001] tilt boundary between two crystals misoriented to produce the & = 5 CSL
and DSC lattice as shown in Fig. 2.9(a). The deviated boundary, obtained by a trans-
formation, T, corresponding to a small tilt rotation, A8, around [001], is shown schemat-
ically in Fig.2.9(b). By analogy with Fig.2.5 we may imagine producing the deviated
boundary by first gripping the reference bicrystal and.bending it elastically so that the
misorientation is increased by Af. The elastic stress field of the bicrystal may then be
modelled by a continuous distribution of stress generators along the boundary, as shown
in Fig. 2.9(b). The stress generators maintain the continuity of the DSC lattice across the
interface, as opposed to the crystal lattice in Fig.2.5(b). The reference lattice is thus
the DSC lattice in the present case. The long-range stress field of the bicrystal is then
eliminated by introducing a cancelling distribution of stress annihilators, as shown
in Fig.2.9(c). The Burgers vectors of the stress annihilators are DSC lattice vectors:
these stress annihilators are, therefore, often called DSC dislocations. The final state,
Fig. 2.9(c), being free of long-range stresses, is analogous to Fig. 2.5(d).

The procedure may be readily generalized (Bonnet and Durand 1975, Balluffi et al.
1982) to include the near CSL model for a quasiperiodic interface. Two crystals which
meet this near CSL criterion are shown in Fig. 2.10, where the black and white crystal
lattices are almost commensurate. They almost form a two-dimensional CSL with a
corresponding DSC lattice that is periodic in two dimensions. Here, CSL" and CSL® are
sublattices of the two crystal lattices which are almost identical. If T® is the trans-
formation generating the CSL® sublattice from the CSI™ sublattice we may apply T® to
the white crystal lattice to generate the white’ lattice shown in Fig. 2.10(d). Then it is
seen (Figs. 2.10(b,d)) that the black sublattice CSL® and the sublattice, CSLY', of the
white’ lattice form a CSL identical to CSL®. A periodic DSC lattice is also formed
which we label the DSCP lattice. In a similar manner we may operate on the black lattice
with the inverse of T® to produce a black’ lattice which, in concert with the white
crystal lattice, produces a CSL identical to CSL" and a periodic DSC lattice which we
label the DSCY lattice (Figs 2.10(a,c)). Note that the CSLP® may be generated from the
CSLY, or the DSC" lattice may be generated from the DSC" lattice, by applying O,
We may now choose as a reference structure a specially constructed bicrystal consisting
of the white crystal and the black crystal meeting along a periodic interface. The DSC"
lattice will now serve as a common framework across the interface. Using this reference
structure we may produce the original quasiperiodic bicrystal by a procedure exactly
analogous to those used previously. First we apply the transformation T® to the black
crystal elastically to return the black crystal to its original structure. During this process
the continuity of the DSCY lattice is maintained elastically and the interface is coherent.
The bicrystal will be associated with a long-range stress field which may be modelled by
a continuous distribution of stress generator dislocations in the interface, as shown in
Fig. 2.10(e). The long-range elastic field of the interface is eliminated by introducing stress
annihilators which have Burgers vectors of the DSCY lattice (see Fig.2.10(¢)). But
because the original interface is quasiperiodic the spacing of the stress annihilators will
also be quasiperiodic.

Having related the quasiperiodic reference structure to a periodic reference structure
we may now consider the effect of an additional misorientation, T®, applied to the
black crystal of the quasiperiodic reference structure. Instead of applying only the
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Fig.2.9 The use of a bicrystal as a reference structure. (a) The reference structure, consisting of
a bicrystal containing a £ = 5 (210) symmetric tilt boundary along AB; the reference lattice is the
L = 5 DSC lattice, also shown. In (b) an additional misorientation A is introduced elastically about
the [001] tilt axis. This gives rise to a continuous distribution of stress generator dislocations, which
maintain coherency (continuity) of the DSC reference lattice. In (c) an array of discrete stress
annihilator dislocations, with Burgers vectors of the DSC lattice, has been introduced which cancels
the long-range stresses and which destroys locally the continuity of the reference lattice.

transformation T to the black crystal of the periodic reference structure, as we did
before, we now apply TPT® to it instead. In this way we see that deviations from a
quasiperiodic reference structure may always be considered as slightly different deviations
from a nearby periodic reference structure.

In all cases considered thus far we began with a reference structure and an associated
reference lattice. When the reference structure was a single crystal the reference lattice
was the corresponding crystal lattice. When the reference structure was a bicrystal the
reference lattice was the corresponding DSC lattice which served as the common frame-
work for the bicrystal. It is obvious that a single crystal may also be regarded as a bicrystal
in which the two crystal halves are the same. Similarly a single crystal lattice may be
regarded as a DSC lattice of a bicrystal in which there is no change of the crystal lattice
across the interface. In this sense a single crystal reference structure and a single crystal
reference lattice are special cases of a bicrystal reference structure and a DSC reference
lattice. It follows that the reference structure is always a bicrystal, which may happen
to be a single crystal, and that the reference lattice is always a DSC lattice, which may
happen to be a single crystal lattice.

The array of stress generator dislocations maintained the continuity of the reference
lattice across the interface, that is, they maintained the coherency of the interface. In the
language of Olson and Cohen (1979), the stress generators are coherency. dislocations.
On the other hand, the stress annihilator dislocations destroyed the continuity of the
reference lattice across the interface locally, that is, they destroyed the coherency of the
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Fig. 2.10 The near CSL model for a quasiperiodic interface. The incommensurate white and black
crystal lattices are shown in (a) and (b). The cells labelled CSL* and CSL® are nearly commen-
surate with each other. In (c) the black crystal lattice is deformed slightly to produce the black’
lattice, with the result that the CSL®’ cell is commensurate with the CSLY cell and a periodic DSC
lattice is produced, labelled DSCY. Alternatively, in (d), the white lattice is deformed slightly
so that the CSL"’ cell is commensurate with the CSL? cell and a periodic DSC lattice is pro-
duced, labelled DSCP. Choosing the reference structure to be a bicrystal comprising the white and
black’ lattices meeting along a periodic interface, the DSCV lattice becomes the reference lattice.
Allowing the black’ lattice to return to the undeformed black lattice in (¢) then introduces a
continuous distribution of stress generator dislocations, maintaining the continuity of the DSC¥
lattice, with an array of discrete stress annihilator dislocations with Burgers vectors of the DSCY
lattice. (From Balluffi ez al. (1982).)

interface locally. Olson and Cohen (1979) called the stress annihilators anticoherency
dislocations. This will serve as a useful further basis for classifying interfacial dislocations
throughout the remainder of this book. It obviates the need for introducing a number
of the dislocation types listed at the beginning of this section such as, for example, ‘virtual’
interfacial dislocations. We emphasize that the systematic use of such a method of
classification depends upon the clear identification of the assumed reference lattice.
Similarly a ‘coherent’ interface refers to the continuity of a particular reference lattice
across the interface. It is noted that in all previous examples the stress generators were
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coherency dislocations. However, this need not be the case as will be seen below in other
situations.

The above concepts and terminology also allow us to classify interfaces as coherent,
semicoherent, or incoherent. At a coherent interface the continuity of the reference
lattice, whatever that is chosen to be, is maintained, and there are no anticoherency
dislocations. In the limit of an incoherent interface the continuity of the reference lattice
is destroyed everywhere along the interface. This limit is reached when the spacing of
the anticoherency dislocations is comparable to the width of their cores. In a semicoherent
interface the spacing of the anticoherency dislocations is greater than their core width
so that significantly large regions of forced elastic coherence exist between successive
anticoherency dislocations.

In later chapters we shall see that many of the physical properties of these different
types of interfaces differ considerably. For example, in Chapter 9 we shall see that the
motion of an interface possessing some degree of coherency often causes a change in the
macroscopic shape of the bicrystal. This arises from the maintenance of continuity of
the reference lattice across the coherent regions of the interface. On the other hand, no
shape change is induced by the motion of an incoherent interface since there is no
continuity of the reference lattice to be maintained.,

The concepts of ‘intrinsic’ and ‘extrinsic’ dislocations in interfaces are related to the
concepts of stress generators and annihilators. In the absence of external constraints we
do not expect a grain boundary to be associated with a long-range stress field. This is
achieved by obtaining an exact balance between the stress annihilator and stress generator
Burgers vector densities. These dislocations constitute then the “intrinsic’ dislocation
content of the interface. As shown below in Sections 2.3 and 2.5 the Burgers vector
density of the intrinsic stress annihilator dislocations (or, alternatively, the negative of
the Burgers vector density of the stress generators) of an interface may be deduced from
the Frank-Bilby equation.

The concept of an extrinsic dislocation is often associated with a crystal lattice
dislocation that enters a grain boundary, which is initially free of long-range stress, as
discussed by Hirth and Balluffi (1973) and Dupeux (1987). The dislocation is called
extrinsic because it is not part of the intrinsic boundary structure, but is an extra
dislocation which entered the boundary from the bulk. More precisely, it is extrinsic
because its Burgers vector is not part of the Burgers vector density of the stress anni-
hilators required by the Frank-Bilby equation with the boundary misorientation fixed at
its value before the dislocation entered. It is therefore associated with a long-range stress
field. However, it becomes part of the intrinsic array once the boundary misorientation,
as measured far from the boundary plane, changes slightly. The small change in-mis-
orientation is equivalent to a small change in the Burgers vector density of the stress
generator array, the integral of which just cancels the change in Burgers vector density
of the stress annihilators due to the added dislocation. Once this happens the extrinsic
dislocation becomes an intrinsic dislocation and the long-range field associated with it
is removed. The distinction between intrinsic and extrinsic dislocations may be difficult
to establish experimentally, because it relies on a very accurate measurement of the
misorientation far from the boundary plane (see Dupeux 1987). Experimental observa-
tions of the conversion of extrinsic dislocations to intrinsic dislocations are described in
Section 12.4.

We may illustrate many of the concepts described in this section with the example of
the interfaces associated with mechanical twins in f.c.c. crystals. It is well knqwn
(Christian 1981) that such twinning takes place on (111) planes with a shear of 27 % in
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a [112] direction. Also, this is achieved by gliding interfacial dislocations, with b =
1[112], on successive (111) planes, as shown schematically in Fig.2.7. Each of these
dislocations is associated with a boundary step of height equal to one (111) spacing as
seen in Fig. 2.8(d). Consider first the nature of these dislocations. We begin by taking
the reference structure to be the single crystal (Fig. 2.8(a)) and the transformation, T,
to be the above shear. We then cut it along AB and transform the lower half by T. As
seen in Fig. 2.8(b) the two crystal halves are no longer commensurate along AB. (In the
language of deformation twinning the plane AB is not an invariant plane of the shear )
transformation.) In order to join the crystal halves together commensurately, so that the
single crystal reference lattice is continuous across the interface, and the interface is
coherent, it is necessary to introduce a distribution of stress generators (coherency
dislocations) along AB, as in Fig. 2.8(c). The interface is now associated with a long-range
stress field. Because the coherent interface has a particularly low energy when it lies
on the (111) plane the coherency dislocations localize as shown in Fig.2.8(d). The
localized step seen in Fig.2.8(d) is thus associated with a discrete 1{112] coherency
dislocation. If a train of such dislocations were present, as in Fig. 2.7 and 2.11(a), the
longe-range stress field of the interface could be cancelled by introducing crystal lattice
dislocations (which would be classified as stress annihilator or anticoherency dislocations)
of total Burgers vector —4[112] for every three coherency dislocations. These could be
1[{101] and +[011] crystal lattice dislocations, for example, as shown schematically in
Fig. 2.11(a).

If these dislocations group together so that for every three coherency dislocations there
are two anticoherency dislocations, line defects of the type shown in Fig. 2.11(b) will be
formed. These line defects have no net Burgers vector content and, hence, are pure steps
of height three (111) spacings. However, the reference lattice, i.e. the crystal lattice, is
discontinuous at the pure step owing to its anticoherency dislocation content, and the
interface is, therefore, semicoherent. If a large number of such steps accumulate, a giant !
step will be formed which would then more appropriately be regarded as a vertical
segment of a symmetric tilt boundary running parallel to (112) with the intrinsic stress
generator and stress annihilator content shown in Fig. 2.11(c).

Let us now consider the same boundary but with the £ = 3 DSC lattice as the reference
lattice, rather than either crystal lattice. The boundary belongs to the & = 3 coincidence
system because it may be created by a rotation of cos ™'} about the [110] axis. Both the
CSL and DSC lattice are shown in Fig.2.12(a). The dislocation shown previously in
Fig. 2.8(d) can now be introduced by a Volterra cut and displacement procedure in the
DSC lattice to produce the configuration shown in Fig. 2.12(b) which is exactly the same
physical object as that shown in Fig.2.8(d). The dislocation shown in Fig. 2.12(b) has
destroyed locally the continuity of the reference DSC lattice across the interface.
Therefore, in the framework of the DSC lattice the dislocation is of the anticoherency
type, although it is still a stress generator. Furthermore, the interface must now be
regarded as semicoherent.

Consider next the configuration shown in Fig.2.11 where stress annihilator lattice
dislocations have been added in order to eliminate the long-range stresses produced by
the stress generators. These dislocations will also disrupt the continuity of the reference
lattice (i.e. the DSC lattice) and, hence, they must be classified as anticoherency, stress
annihilator dislocations. But, if we gather these dislocations up to form a step of the type
shown in Fig. 2.11(b), we obtain the step configuration shown in Fig. 2.12(c). The atomic
configuration at the step in Fig. 2.12(c) is the same as that shown in Fig. 2.11(b) but it
is shown in the framework of the DSC lattice as the reference lattice, rather than the




Classification of interfacial dislocations 85

Twin
- = A
M L
(a) Matrix A

Matrix

©

Fig.2.11 (a) An interface between a deformation twin and matrix in an f.c.c. lattice, inclined to
the (111) invariant plane, in which the stress fields of the stress generator (or coherency) dislocations
associated with the steps in the interface are cancelled by crystal lattice (or anticoherency) disloca-
tions. (b) A pure step of 3 (111) planes height in the matrix-twin interface formed by grouping
together 3 coherency dislocations and two cancelling crystal lattice anticoherency dislocations.
(c) A segment of the (112) symmetric tilt boundary formed by running together pure steps of the
type shown in (b). With respect to the matrix (or twin) reference crystal lattice the (1 12) boundary
is classified as incoherent.

crystal lattice as reference. Again, the total Burgers vector content of the step is zero,
and furthermore the anticoherency effects of the stress generators and stress annihilators
just cancel so that the continuity of the DSC lattice at the step is maintained. Therefore,
with the DSC lattice as the reference lattice, both the step and the interface are coherent.
Again, an accumulation of a large number of such steps would form a symmetric tilt
boundary segment parallel to (1 12) as shown in Fig. 2.12(d). The boundary in Fig. 2.12(d)
is the same physical object as that shown in Fig. 2.11(c). However, in the DSC reference
lattice framework of Fig. 2.12(d) we must regard it as a coherent interface devoid of any
net dislocation content. It could be generated from the reference bicrystal (Fig. 2.12(a))
by simply rotating the boundary plane from (111) to (112) by a process of shuffling atoms
within the framework of the CSL without the introduction of any dislocations. Even more
simply, it could be adopted as a reference structure itself, that is, a coherent bicrystal
in the & = 3 DSC lattice with its interface parallel to (112).

Our example of a (111) twin boundary demonstrates that the same physical dislocation
may be classified as either coherency or anticoherency, depending on the choice of
reference lattice. It is therefore necessary to specify the choice of reference lattice when
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Fig. 2.12 (a) The (111) interface between matrix and twin in an f.c.c. lattice showing the & = 3
DSC lattice and two cells of the & =3 CSL. (b) The same $[112] stress generator dislocation as
seen in Fig. 2.8(d), and the step vectors s® and s¥. This dislocation destroys the continuity of the
T = 3 DSC reference lattice, and it is now therefore classified as anticoherency. (c) The same pure
step as seen in Fig. 2.11(b), but now in the framework of the T = 3 DSC reference lattice: note
the continuity of the DSC lattice. (d) The same (112) boundary as shown in Fig. 2.11(c) showing
the continuity of the L =3 DSC lattice across the interface. With respect to the L =3 DSC
reference lattice the (112) boundary is coherent.

classifying dislocations as coherency or anticoherency, in the same way as it is when
classifying interfaces as coherent, semicoherent, or incoherent.

23 THE FRANK-BILBY EQUATION

Frank (1950) and Bilby (1955) addressed the following question: given an affine trans-
formation relating two lattices, what is the Burgers vector density that is required to make
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the two lattices fit together compatibly at the interface? In general, when one lattice is
acted on by the transformation, overlapping regions and/or gaps are produced at the
interface, as already seen in Figs 2.5 and 2.6. In other words, the interface is not, in
general, an invariant plane of the transformation. To remove the incompatibilities
* between the lattices, dislocations are required in the interface. We may take these to be
stress annihilators for reasons that are described below. Once the incompatibilities are
removed the bicrystal is free of stress far from the interface. Frank-Bilby theory provides
the net Burgers vector, B, of the stress annihilators crossing a vector p lying in the
interface. Since the total Burgers vector content of the stress generators is just the negative
of that of the stress annihilators, we may also recover B for the stress generators. The
resolution of B into Burgers vectors of individual dislocations is not unique geometrically
and may be without physical significance if | B| is large. In any event the interface may
always be described as a ‘surface dislocation’, which is a single entity that is characterized
by a second rank tensor. There are two methods of deriving the main result: one using
a Burgers circuit construction and the other is based on the theory of continuous
distributions of dislocations. Both methods are instructive in that they illustrate different
aspects of the theory, and we shall develop them both. Our treatment follows Christian
(1981).

Consider two lattices which meet along a flat interface, with normal #. Let the lattices
on the positive and negative sides of the normal 7 be coloured black and white. In
general the lattices are not identical and there is a misorientation between them. The two
lattices are considered to be generated from a reference lattice by affine transformations
S® and S™. In accordance with the discussion of Section 2.2 the two lattices may be
black and white crystal lattices or DSC® and DSCY lattices (see Fig. 2.10), depending
on whether we are working with a single crystal or bicrystal reference structure. The
corresponding reference lattice would then be either the lattice of the white crystal or the
DSC¥ lattice. In cases where the two lattices may be related by a pure rotation, as in
the case of grain boundaries in cubic materials, the reference lattice could be the same
lattice at a median orientation, i.e. a median lattice. In the language of the crystallo-
graphic theory of martensite, S® and S¥ are the lattice deformations. They are repre-
sented by 3 X 3 matrices, and for a grain boundary in a cubic material they are usually
rotation matrices. When SP® acts on the components of a vector of the reference lattice
it transforms the components into those of a vector in the black lattice, and similarly
for S¥. Let the reference and black and white lattices share a common origin at O, see
Fig. 2.13. Here we are disregarding any relative displacement of the black and white
lattices, since it does not affect the result. Let OP = p be a large vector in the boundary,
and consider a right-handed Burgers circuit PA,OA,P, as shown in Fig.2.13. The
vector p must be large compared with any substructure within the interface, e.g. vicinal
steps or twins emanating from the interface into the adjoining crystals. The corresponding
path Q,B,0B,Q, in the reference lattice is obtained by applying the inverse transforma-
tions S®~! and S¥~! to the parts PA;O and OA,P of the circuit respectively. The
closure failure in the reference lattice, using the FS/RH convention, is Q,Q, = 0Q, —
0Q, = (S*~! — 8™~ )p. This is the net Burgers vector of stress annihilators crossing the
interfacial vector p: :

B=(S""1'—-8" Yy, .1

Equation (2.1) was first derived by Frank (1950) for grain boundaries and i was
generalized to heterophase boundaries by Bilby (1955). It is known as the Frank-Bilby
equation. Note that the Burgers vector B is expressed in the coordinate system of the
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Fig. 2.13 The derivation of the Frank-Bilby equation. (@) A closed right-handed circuit PA,OA,P
enclosing the interface vector p is mapped in (b) onto a reference lattice where it becomes the path
Q,B,0B,Q, with closure failure Q, Q. (From Christian (1981).)

reference lattice. For example, if the black lattice is selected as the reference lattice,
eqn (2.1) becomes

B=(E-S""Yp, 2.2)

where E is the identity matrix. We shall derive the more popular ‘Frank formula’ for grain
boundaries from eqn (2.1) in Section 2.5.

If the net dislocation content B did not exist in the interface, the vectors S*~!p and
§*~!p would be brought into parallel alignment in the interface, along p, only by
straining the black and white lattices elastically. The interface would then be in a state
of forced elastic coherence, and it would be associated with a long-range stress field. This
state is modelled, as previously, by a uniform and continuous distribution of stress
generator dislocations at the interface. The Burgers vector density of this array is the
negative of B, i.e. —(S°~'— 8"~ Iyp. This is the reason why we identify the disloca-
tions, whose Burgers vector density is predicted by the Frank-Bilby equation, as stress
annihilators. The notion of compatibility is defined more precisely in the second deriva-
tion of the Frank-Bilby equation which we move on to now. :

We begin with the concept of the continuously dislocated state of a lattice. Consider
an element of a lattice containing several dislocation lines. The dislocations are discrete
objects but we obtain a convenient mathematical description by imagining that the
number of dislocation lines of each type tends to infinity while the Burgers vectors of
each tends to zero in such a way that the product remains constant. The continuous
dislocation distribution that we obtain is characterized by a tensor oy;(r), which defines
the net Burgers vector in the x; direction at r of dislocations threading through a surface
element of unit area perpendicular to the x; axis. Let C be a closed curve bounding an
area A and let S be any cap ending on C. Conservation of Burgers vector requires that
the resultant Burgers vector of dislocations threading through A must equal the resultant
Burgers vector of dislocations threading through S. Thus the resultant Burgers vector
threading through A is given by -
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b;={|ayds, | )
S

and b, is independent of the choice of S. Summation over j = 1,2,3 is implied by the
repeated suffix convention in eqn (2.3) and elsewhere in this chapter, except where
explicitly stated. When we have a continuous distribution of dislocations there is no
longer ‘good lattice’ in which to make a Burgers circuit in order to define the resultant
Burgers vector. Bilby ef al. (1955) showed how this difficulty may be overcome by making
use of a local correspondence between the real lattice and a reference lattice. As we have
already discussed in Section 1.7 the same difficulty arises in defining the Burgers vectors
of interfacial dislocations in densely spaced arrays.

At any point of the real lattice choose three independent basis vectors, af, which
correspond to a set of basis vectors, af, of the reference lattice. The local vectors a¢ may

be regarded as being generated from the reference vectors a; at each point of the lattice -

by a local deformation:
a§ = Djaf. 2.9

The components Dy; vary from point to point in the lattice. Clearly it is necessary that
throughout the dislocated lattice we consistently relate the same crystallographic vectors
a;j to the reference vectors a!. The vectors a; define local variations in the lattice,
although to an observer moving in the real lattice the local af vectors are everywhere
parallel, and any two parallel vectors, defined by reference to the local lattice, have the
same 4§ components.

Let &; be a set of fixed orthonormal vectors. With respect to a Cartesian frame aligned
along the €; a displacement in the real lattice from X; to x; + dx; can be written as the
vector dx;¢;. If C is a small closed circuit in the real lattice we have

[ ax2 =0 @.5)
(&

Let the vectors d; be obtained from the vectors € by the local deformation D, i.c.
d; = D;é;. Then eqn (2.5) becomes

j dx,D;'d; = 0. (2.6)
C

We now require the closure failure of the corresponding circuit in the reference lattice.
Each vector d, of the real lattice, is replaced by its corresponding vector, €., in the
reference lattice, and the closure failure giving the net Burgers vector of the distribution
encircled by C is the vector sum of the reference lattice displacements, i.e.

b=-[axDj's,. @.7)

c

The minus sign is inserted in eqn (2.7) to be consistent with the FS/RH convention (Hirth
and Lothe 1982). In order to compare directly with eqn (2.3) we use Stokes’ theorem to
transform the line integral in eqn (2.7) into a surface integral over any cap S having C
as its limit. Stokes’ theorem may be stated as follows:
9f
[ frax = | Jeuat as, | 2.8)

Cc S J
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“where f; is a differentiable vector function, &g is the permutation tensor of eqn (1.12),
and dS; denotes the ith component of the unit normal to the surface multiplied by the
element of area dS. Applying Stokes’ theorem to eqn (2.7), by identifying f; with Dj; 1 ’éj,
we obtain

b= —He,.,,,,,?ﬂ'—f—lajds,-
S

ax,

oD}
= —\ \e;mn——8dS;. 2.9)

[fom 2 a5
Comparing eqns (2.3) and (2.9) we see that
aD;; v
Ol,j = —ajmn ax" . ‘ (2.10)
m

This equation shows us how to evaluate the dislocation tensor at each point in the
continuously dislocated lattice even though there is no good material to construct an
ordinary Burgers circuit. Imagine the reference lattice is cut into small volume elements,
each of which is then given the local deformation Dj;. If the separate elements can be
glued back together contiguously, without any holes or overlapping regions, so at to form
a continuous lattice in ordinary space, the deformations are said to be compatible, and
a continuous deformation field exists. Small lattice vectors about a point in the real lattice
may be written as dy;d;, where dy, is a system of local coordinates based on the vectors
d;. Since d; = D;é;, the relation between the local and reference coordinates may be
obtained from dy,d; = dy;D;;é; = dx;¢;, implying that

dx, = D;dy;, dy; = Dj;' dx;. 2.11)
In order for the deformation field D;; to be compatible it is necessary and sufficient that
the values of y; at any point Q may be found from their values at any other point P by

integrating dy; = D,;‘ dx; along any path from P to Q. For the integral to be independent
of the path from P to Q it is necessary and sufficient that

aD;' _aDg'
3xk - ax" ’

(2.12)

We see from eqn (2.10) that this corresponds to zero dislocation density. Thus the
condition for compatibilility is the absence of dislocations. Conversely, when the local
deformations of the separate volume elements are not compatible, dislocations are
required to fit these elements together.

Now suppose that we have a continuous distribution of dislocations specified by the
tensor «; and concentrate all the dislocations into a shell of thickness ¢ so that oy
vanishes outside the shell. Let ¢ tend to zero and o; tend to infinity in such a way
that the product fo; remains finite and tends to B;. B; is called the surface dislocation
tensor. This limiting process means that the deformation field D is constant outside the
shell and equal to (Db),-j and (D"); above and below the shell. The deformation field
changes from (D), to (D¥); through the shell. Consider a Burgers circuit that is inter-
sected by the shell as shown in Fig. 2.14. The Burgers vector of the circuit can be written
as b; = — . (dy; — dx;) since this is just the negative of the difference in the circuits in
the real and reference lattices. Using eqn (2.11) this may be rewritten as

bi=— | (6,— D) ay, 2.13)
C
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Fig. 2.14 The circuit C enclosing the shaded area S which intersects a shell of thickness ¢ con-
taining, and parallel to, the final interface. Across the shell the deformation tensor changes from
D® above to DY below.

where the the circuit C is carried out in the real lattice, as in Fig. 2.14. Using Stokes’
theorem this line integral may be converted into a surface integral:

b= jsj,(,,%:’ds,, 2.14)

S

where the surface S is any surface bounded by the circuit C. Choosing the shaded area
in Fig. 2.14 as the surface S and noting that, for small ¢,

al)ni (Db)ni - (Dw)ni
= n
ayk t

k» (2.15)

we find that

Db ni D¥ ni
b = j jg,k"( ) t( ) nds; (2.16)
) |

and therefore
By = lim, , o(tay;) = €4, ((D°),; — (D*) ). (2.17)

It is important to note that D® and D" gave the relations between the basis vectors
of the black and white lattices and the reference lattice, whereas S® and S transformed
the components of a reference lattice vector into those of a vector in the black and white
lattices. Therefore S*~! = (D®) and S¥~! = (D¥) (see Section 1.3.2) and eqn (2.17)
may be rewritten as follows:

Bi; =8jkn((sb_l)in — (S" Nu)ny. (2.18)

Now consider the resultant Burgers vector of dislocations which cross a small area of

the shell defined by the vector p and the vector thickness #7. The normal to this area
has components dS; = tg;,,p,n, and substituting this in eqn (2.16) we obtain

(Db)n' - (Dw)m'
: ¢ nktgjabpanb

b= Ejkn

= jknb‘jab((Db)ni - (Dw)ni)Pa”b”k

= (ka0 =~ 0kp0na) ((D®) i — (DY) ) Dartyny

= ((D®),; — (D¥),.)p,

= ((8°7 )i ~ (8”7 )in)Pas (2.19)
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where we have used p-f = 0, which follows when ¢ — 0. Thus we have rederived the
Frank-Bibly equation, eqn (2.1). The derivation shows explicitly that the Burgers vector
density given by eqn (2.1) is such as to make the black and white lattices compatible in
the interface.

From eqns (2.16) and (2.17) we see that the surface dislocation tensor 8;; gives the ith
component of the resultant Burgers vector of dislocation lines cutting unit length in the
surface perpendicular to the jth direction. The interface may be thought of as a single
entity called a surface dislocation, characterized by the tensor B;. The tensor ; is the
analogue for a surface dislocation of the Burgers vector for a line dislocation. Moreover,
whereas a line dislocation may be defined as a line discontinuity separating areas in
the slip plane where the amount of slip is different, a surface dislocation is a surface
discontinuity separating volumes of material where the lattice deformation is different.
This concept, which was introduced by Bilby (1955), is central to the crystallographic
theory of martensitic transformations and deformation twinning developed by Bullough
and Bilby (1956).

2.4 COMMENTS ON THE FRANK-BILBY EQUATION AND THE
DISLOCATION CONTENT OF AN INTERFACE

The Frank-Bilby equation is the cornerstone of many attempts to account for the line
defects that are observed in the electron microscope at grain boundaries and especially
at heterophase boundaries. In this section we shall discuss some complicating aspects of
the theory in more detail.

The first point to note is that it is a continuum theory. The nature of the adjoining
black and white crystal or DSC lattices is taken into account only in the choices of unit
cells that are assumed to be related to some unit cell of the reference lattice. These choices
establish S? and S¥, and together with the interface normal they determine the surface
dislocation tensor in eqn(2.18). The point group and translational symmetries of the
adjoining crystals are not built into the theory, and the surface dislocation tensor is not
invariant with respect to these symmetry operations. For example, if S? is replaced by
where UPS®, where U" is a point group operation of the black lattice, or a unimodular
matrix which effects a change in the unit cell of the black lattice to be related to the
reference lattice, the surface dislocation tensor changes in general. Yet the dichromatic
pattern is completely unaffected by this replacement (see Section 1.5.4), and therefore
the atomic structure of the interface is unaffected also.

The reason why the theory is not invariant with respect to different choices of U®
(or UY) is clear from an examination of the Burgers circuit construction in Fig. 2.13.
Each U® produces a different circuit Q,;B;O in the reference lattice, and hence a
different closure failure Q,Q,. The fact that the infinite lattices generated with and
without U® are equivalent, in type and orientation, is not reflected automatically by the
theory. As an example, consider a ‘grain boundary’ obtained by a 120° rotation about
a [111] axis in a cubic lattice. Since the [111] axis has three-fold symmetry this large-angle
boundary is nothing more than a perfect single crystal, yet it would be described by a
high-density of crystal lattice dislocations. on the ‘boundary plane’. The origin of the
ambiguity in the dislocation description of an interface can be traced back to eqn (2.4)
which defines the local deformation Dj;. This is the device that Bilby etal. (1955)
introduced to define a Burgers vector in a continuously dislocated lattice. In eqn 2.4)
D; may be replaced by U,-;‘ij where U is a unimodular matrix that describes local point
symmetry operations of the dislocated crystal, or effects different choices of unit cell
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vectors ¢;. To a local observer in the dislocated crystal U is a constant matrix, but to
an external observer U is a function of position. The dislocation tensor «;; in eqn (2.10)
is thus also affected by different choices of U.

There is an infinite number of unimodular matrices and therefore there is an infinite
number of dislocation descriptions of a particular interface. However, all dislocation
descriptions of a particular interface are descriptions of a unique physical object with
a particular atomic structure and energy in its fully relaxed state, and in an exact theory,
involving full atomic relaxation, all these descriptions would yield identical atomic
structures, energies, and elastic fields!

The classic example of this unsatisfactory aspect of dislocation models of interfaces
is the symmetrical tilt grain boundary. The relationship between the crystal lattices may
be described as (i) a rotation about an axis in the boundary plane as in the usual tilt
boundary description, (ii) a simple shear on the boundary plane, as in a deformation twin,
or (iii) as a 180° rotation about the boundary normal, corresponding to a 180° twist
boundary. This is illustrated in Fig.2.15. There is an infinity of other descriptions.
According to (i) the resultant crystal lattice dislocation content of the boundary consists
of a single array of edge dislocations, with Burgers vectors normal to the boundary plane.
Since the crystal lattices are fully compatible with each other on the shear plane, i.e. the
boundary plane, there is no resultant dislocation content in the boundary for the second
description. In the third description the boundary would be described by a dense network
of screw dislocations forming a 180° twist boundary. Again, the same atomic structure
would be produced after full relaxation of the boundary, for all these boundary models,
that is, the final boundary structure would be independent of the route taken to generate
it geometrically.

As a specific example, consider again the (111) ¥ =3 twin boundary illustrated
previously in Figs 2.8 and 2.11. There we assumed that the transformation, T, relating
the crystal lattices was a shear parallel to (111). Hence the section of boundary along
AB in Fig. 2.11(b) was devoid of any dislocation content. On the other hand, the segment
parallel to (112) along CD in Fig. 2.11(c) possessed the crystal lattice dislocation con-
tent shown. If instead we now assume that the transformation, T, relating the crystal
lattices is a rotation of cos™'4 = 70.5° around [110], and follow the procedure shown
in Fig. 2.5, we obtain the crystal lattice dislocation structures shown along AB and CD
in Figs 2.16(a,b) for these two boundary segments. Very different dislocation structures
are therefore obtained for these identical physical objects.

We are therefore faced with the rather unsatisfactory question of whether any of the
possible dislocation descriptions is in some sense preferable to all the others. It is tempting
to adopt as the ‘best’ description the one which corresponds to the smallest dislocation
content, since this would presumably be the simplest. But, according to this criterion,
the best description of a symmetrical tilt boundary would correspond to zero dislocation
content regardless of the tilt angle. However, at small tilt angles experimental observa-
tions reveal an array of discrete line singularities which can be identified as crystal lattice
edge dislocations corresponding to description (i) above. The presence of these line
singularities cannot be accounted for by description (ii), and their origin would have to
be attributed to some form of local relaxation in the boundary, which does not relieve
any incompatibility. We emphasize that both descriptions apply to the same physical
object consisting of atoms arranged in a particular configuration.

Cases where there is justification for choosing a particular S and S¥ occur when
migration of the interface leads to a change of shape of the bicrystal as a result of the
conservative motion of interfacial dislocations, as discussed in Chapter 9 (see Table 9.2).
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(a)

Tilt axis

Twistaxis (] 6,,~180°

Fig. 2.15 Diagram showing that a symmetric tilt boundary may be regarded as either (a) a tilt
boundary of misorientation 8,;, or (b) a deformation twin boundary created by a simple shear on
the boundary plane, or (c) a 180° twist boundary.

Fig.2.16 (a) The (111) twin boundary shown in Fig. 2.11(b) and 2.12(a) regarded as a symmietric
tilt boundary of misorientation =70.5°. The (112) boundary shown in Figs 2.11(c) and 2.12(d) is
now regarded as a symmetric tilt boundary of misorientation =70.5°. Note the differences in the
dislocation descriptions for the same interfaces.

In that case S? and S" describe how planes and directions of one lattice are transformed
(at least locally) at the interface into planes and directions of the other lattice. This is
the case in martensitic transformations and deformation twinning, where there is a local
correspondence between unit cells of either crystal that is determined by local atomic
movements as the interface migrates. It is also the case in the glissile motion of a small-
angle tilt grain boundary as discussed in Section 9.2.1.1. The success of the crystallo-
graphic theory of martensite (Bullough and Bilby 1956) is to determine S° and S¥, the
macroscopic shape change, the Burgers vector content of the interface, and the interface
plane self-consistently (see Section 9.2.1.3).
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We have described one source of ambiguity in the dislocation description of an interface
arising from the infinity of descriptions of S® and S¥ for a given choice of reference
lattice. Another source of ambiguity is the choice of reference structure. An example has
already been given in Section 2.2 where a comparison was made of the dislocation descrip-
tions that are derived for a grain boundary using either a single crystal or a bicrystal as the
reference structure. Useful reference structures are often interfaces in which one or two
directions are nearly commensurate in both crystal lattices enabling near-CSLs to be
generated. In many cases, especially for heterophase interfaces, a variety of possible choices
of a near-CSL exists (Balluffi et al. 1982). However, the appropriate choice of reference
structure is the one for which the experimentally observed dislocations in the interface have
Burgers vectors of the corresponding reference lattice. But since Frank-Bilby theory does
not address atomic relaxation processes it cannot predict the appropriate choice.

Finally, we emphasize that the Burgers vector content B, eqn (2.1), is the sum of the
Burgers vectors of all dislocations crossing a vector p lying in the interface. Consistent
with the continuum nature of the theory the vector B is not discretized into Burgers
vectors of crystal lattice dislocations or DSC dislocations. Such a discretization is
dedendent on the relaxation processes within the interface which are beyond Frank-Bilby
theory. Some further aspects of this problem are discussed in Section 2.8. Any such
discretization is of little practical interest if the density of dislocations is so large that
their cores overlap. In this situation it may be more useful to think of the whole interface
as a surface dislocation characterized by a surface dislocation tensor, eqn(2.18).

2.5 FRANK’S FORMULA

For a grain boundary, where the two adjoining lattices are related by a rotation, S® and
S"Y in the Frank-Bilby equation may be replaced by rotation matrices R? and R™:

= (R*>"' = RY !)p. (2.20)
Usmg the rotation formula, eqn (1. 9), where RP corresponds to a rotation of 8° about
p° and RY to a rotation of 6% about p¥, we obtain

B =p(cos8® — cos9%) — sinf¥(p x p%) + sin6°(p x p°)
+ (1 —cos8®) (p°-p)p° — (1 —cos6™) (p%-p)p". (2.21)
Frank showed that this formula is simplified considerably if the reference lattice is
taken to be the median lattice. The black and white lattices are obtained from the median
lattice by equal and opposite rotations of 6/2 about a common axis p. Setting p p°
p” =p and 8" = — 0° = 6/2 in eqn (2.21) we obtain
B = 2sin(0/2)(p x p), (2.22)
which is known as Frank’s formula. The modulus of |B| varies, in general, as p varies
in orientation in the boundary plane. If v is the angle between p and p then
|B| = 2sin(6/2)|p| siny, (2.23)
where
siny = {sin?psin?¢ + cos’p)?, (2.24)

and ¢ is the angle between the rotation axis  and the boundary normal i and p is the
angle between the projection of 5 onto the boundary plane and p (see Fig.2.17). The
maximum value of |B|, |B|nu, is thus obtained when sinp = + 1:




Boundary plane

Fig.2.17 The terms used in eqns (2.23) and (2.24).

| B| ax = 28in (6/2) \p|. (2.25)
The minimum value, |B|mn, is obtained when sinp = 0:
| B in = 25in(6/2) |p| cos o. (2.26)

From eqn (2.25) we see that | B| max increases monotonically with misorientation 6. For
a pure tilt boundary |B| varies between zero for p along the tilt axis and | Bl max for p
perpendicular to the tilt axis. For a pure twist boundary |B| is equal to |B]qax for all
orientations of p.

2.6 THE O-LATTICE

The O-lattice (Bollmann 1970) is a further construction which has been widely used in

analysing the dislocation structure of interfaces. Although the O-lattice was developed

independently of the Frank-Bilby theory it turns out that they are very closely related.

Indeed, the equation that defines the O-lattice may be regarded as a quantized form of

the Frank-Bilby equation, in which the vectors B and p are discrete rather than

continuous. The principle underlying the O-lattice is the belief that optimal structures are
produced in interfaces in regions centred on points where the two lattices adjoining the
interface ‘match’. The definition of ‘matching’ that has been developed in the context of
the O-lattice will be given shortly. We have already defined the CSL (Section 1.5.4) as
the one-, two-, or three-dimensional lattice of common lattice sites which may be
produced by two interpenetrating crystal lattices at particular relative orientations. If the
two lattices adjoining the interface produce a CSL then the lattice points of the CSL in
the interface are one example of points where the two adjoining lattices are said to ‘match’
each other. However, a CSL exists only in rather special circumstances, €.g. at certain
misorientations between identical lattices, the values of which depend on the lattice
symmetry, or when there are equal lattice parameters in the case of differing crystal
lattices. If we take two arbitrary crystal lattices, with an arbitrary orientation between
them, the chances are there will be no CSL.. However, Bollmann (1970) showed that other
more general points of lattice matching may be defined. If it is imagined that the two
adjoining lattices interpenetrate, there are points in space which occupy equivalent
positions in the unit cells of the two lattices. More precisely, if for any cell of one lattice
the internal coordinates of a point, expressed as fractions of the cells edges, are identical
with the fractional coordinates of the same point measured relative to a cell of the other
lattice, the point is a point of ‘lattice matching’ and it is called an O-point. The set of
all O-points constitutes the O-lattice which, as seen below, may be a point, line or planar
lattice. Also, as seen below, such a lattice will always exist regardless of the misorientation
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between the two interpenetrating lattices. The O-lattice may therefore be thought of as
a generalization of the concept of the CSL. In the particular case where a CSL exists,
the CSL is a sublattice of the O-lattice.

Consider the case where we are working in the framework of a single crystal reference
system, and the two lattices adjoining the interface are black and white crystal lattices,
not necessarily of the same type. To find the O-lattice we imagine that the two crystal
lattices are interpenetrating. The sites of the white lattice are denoted by the infinite
set of vectors {R™]. We take the white lattice as the reference lattice and consider an
arbitrary point with coordinates r* expressed in the frame of the white lattice. The
coordinates of this point are transformed into the coordinates with respect to the black
lattice by the transformation r® = §®r™. Thus, if " and r® have the same internal cell
coordinates then the point is an O-point. But if that is true then r® and #¥ + R" have
the same internal cell coordinates. Thus the general condition for an O-point is the
following:

b w w
r’=r"+ R .
L UNK\H 2.
e, pwnite @
where m
r® =8brv. (2.27)

Then r® is an O-point, R°. Equation (2.27) is illustrated in Fig. 2.18. Eliminating r¥
from Eqn. (2.27) we obtain an explicit equation for the O-points:

(E —S*-1)R® = R¥ (2.28)
or
R° = (E - S*"!)~IR", (2.29)

Equation (2.29) is the defining equation of the O-lattice. By substituting for RY
the three base vectors of the (reference) white lattice in turn, the columns of the
matrix (E — S®~ ")~ !define the corresponding base vectors of the O-lattice. The matrix
(E — S*~") may be of rank 3,2 or 1. When it is of rank 3 the solutions R° represent
a lattice of points in three dimensions. This is the case when all three eigenvalues
of S® are not unity, as occurs at most heterophase boundaries, where there is not a

White

crystal \

r":S brw

=r¥+R¥ rb/
=R° /
/

L Fig. 2.18 The derivation of the O-lattice
equation, eqns (2.27)-(2.29).
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coincidental relationship between the lattice parameters of the two crystal lattices. When
the matrix is of rank 2 the O-lattice becomes a lattice of lines, called O-lines. The lines
are parallel to the eigenvector of S® corresponding to the eigenvalue equal to unity. For
example, if the black and white lattices are identical, apart from a rotation R® = S°,
where R represents a rotation of 6° about #°, then the O-lines are parallel to p ®, Thus,
for grain boundaries the O-lattice may always be described as a lattice of O-lines by
choosing to describe the relationship between the lattices as a rotation. In a plane normal
to p° the rotation matrix may be represented by a 2 X 2 matrix, which is of rank 2:

cosf —sinf
RY = 2.30
[sin 8 cos 0] ( )

(E-—Rb”)”==[ : %Cf%i]. 2.31)

1 1
-3 cot;() 0

and

It follows from eqns(2.29) and (2.31) that the basis vectors of the O-lattice vary
continuously with the misorientation 6. Since CSL sites are coincidences of lattice sites
with internal cell coordinates (0,0,0) it follows that CSL sites are also O-points but not
all O-points are CSL sites. At irrational orientations where there is no CSL the O-lattice
continues to exist. If one of the eigenvalues of S® is equal to unity the transformation
S® is described as an invariant line strain for obvious reasons. If S® is an invariant
plane strain there are two eigenvalues of SP that are equal to unity and then the matrix
(E — S® 1) becomes of rank 1. The O-lattice then becomes a lattice of parallel planes,
called O-planes. A general invariant plane strain S°® is represented by

(Sb)ij = §; + ein;, (2.32)

where e is a constant vector and # is normal to the invariant plane. Thus, if p is any
vector lying in the invariant plane then (Sb),-j p; = p; confirming that p is invariant under
the transformation. The inverse of S® is represented by

en;

T 2.33
1+ e.n; ( )

(b1, =8, —

as may be confirmed directly by forming (8® ~"); (S");x = 8;. Then (E — S°~ 1) becomes

8. (SP-1), = M 2.34
i ( )lj 1 + eknka ( ) |
which is a matrix of rank 1, as can be seen by writing out its determinant, A: si
111
A =eeennmn |11 11, (2.35)
111

Another, and equally important, interpretation of the O-lattice is that it is the lattice
of possible origins for the relation r? = S*r¥. To show this consider a shift of origin to
the O-lattice point R°. The relation r® = S*r¥ becomes

I‘b —R° =Sbl'w — R°
— Sb(rw _ Sb—lRo)
= 8°(r* + R¥ — R°), (2.36)

: i
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where we have used eqn (2.29). This is of the original form r* = S** but corresponding
points of the two crystals are changed. Thus point »® was derived from point r¥ before
the shift of origin but is now derived from the point r¥ + R™, measured from the first
origin.

So far we have not attributed any physical significance to the O-points other than to
say that they are points of generalized crystal lattice coincidence. It is evident from
eqn (2:29) that the O-lattice depends on the choice of the description S® of the relation-
ship between the crystal lattices. For a given pair of crystal lattices, at a particular relative
orientation, alternative specifications of S° correspond to choosing alternative unit cells
from either lattice. Mathematically, this is achieved by pre- and post-multiplying S® by
unimodular matrices. It is, therefore, not surprising that the O-lattice changes with
different selections of S® because the cells, with respect to which the internal cell
coordinates are measured, change when an alternative S® is selected. Only the coincident
crystal lattice sites, when they exist, are invariant with respect to alternative specifications
of S°.

In order to make further progress it is necessary to introduce a physical assumption.
We create an interface by defining a cut plane through the O-lattice and discarding black
crystal lattice sites on one side of the cut and white crystal lattice sites on the other. It
is then assumed that if an O-element (point, line, or plane) exists in the interface then
it is a region of ‘good fit’ meaning that it is energetically favourable. The O-points are
described as points of geometric registry between the crystal lattices. There is no rigorous
justification for these assertions, or even a clear idea of what they mean in terms of atomic
arrangements, but some intuitive reasoning may be offered.

If we take the trivial case where the black and white crystal lattices are identical with
no misorientation forming a single (grey) crystal lattice then the ‘interfacial energy’
associated with any plane in the lattice is obviously zero. The O-lattice for this trivial
case is a continuum extending throughout the crystal lattice since every point has the
same internal cell coordinates in the ‘black and white lattices’. As soon as we introduce
a misorientation between the crystal lattices, or we deform one crystal lattice, the
continuum of O-points is destroyed and we have an O-lattice. At small misorientations
or deformations the O-lattice is coarse and it becomes finer as the misorientation or the
lattice deformation increase in magnitude. This seems paradoxical, because it suggests
that we discontinuously change from a state of perfect matching (the single crystal) to
a state of widely spaced regions of matching (small misorientations or deformations) to
a state of improved matching at higher misorientations or deformations. The resolution
to the paradox is that we have ignored relaxation within the interface. At small mis-
orientations or deformations we can reasonably expect to see discrete lattice dislocations
in the interface. Since the O-points are assumed to be associated with regions of good
fit within the interface we expect to see one O-point between each successive pair of
dislocations. Therefore the average spacing of dislocations along a particular direction
within the interface should correspond to the O-lattice spacing in that direction. T hus,
if we assume that the relaxation within the interface introduces localized dislocations then
at small misorientations or deformations there are large regions of relatively good fit
separated by small regions of bad fit at the dislocation cores. Although the spacing
of the O-points is large at small misorientations or deformations it is assumed that the
energy of the interface derives mainly from the relatively small regions of misfit between
the O-points. If we assume this argument may be extrapolated to higher angles or
deformations we conclude that the energy of the interface increases as the average spacing
of the dislocations decreases, which is equivalent to the O-lattice spacing. We see that
it is not essential to understand precisely what is meant by saying that an O-point
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represents a point of geometric registry or good fit, because all that it implies is that
between the O-points there is an accumulating disregistry which, it is assumed, is con-
centrated into dislocations approximately midway between them. Put another way, it is
the dislocation content of the interface that is physically significant and the O-lattice is
merely a geometrical construction to obtain it.

Following Christian (1981), we shall now make the relationship between the O-lattice
and the Frank-Bilby equation for the dislocation content of an interface explict. We
separate the different O-elements (points, lines, or planes) by Wigner-Seitz cell walls. On
constructing the interface by sectioning the O-lattice, as described above, the intersections
of the Wigner-Seitz cell walls are identified with line discontinuities within the interface
which are called ‘mathematical dislocations’. Each O-lattice point may be considered as the
origin for the relation r® = SP," within its own cell. When a cell wall is crossed the rela-
tion between corresponding lattice points changes by the vector R® which is the difference
vector between two reference lattice points. We saw ineqn (2.29) that (E — SP~hHR° = R".
By identifying R° with p, and B with — RY, this is identical to the Frank-Bilby equation,
eqn (2.1), where 8¥ =E. The only difference between eqn (2.29) and the Frank-Bilby
equation is that the continuous variables p and B are quantized in the O-lattice equation
equation because the discreteness of the black and white crystal lattices has been taken into
account in the O-lattice treatment but not in the Frank-Bilby treatment. Bollmann calls the
discrete dislocations that are defined by eqn (2.29) primary dislocations. They are distin-
guished by having Burgers vectors that are lattice vectors of either crystal.

The physical assumption that the dislocation content of the interface is minimized is
equivalent to maximizing the spacing of O-elements within the interface. This suggests
a criterion for selecting a description of the relationship S° from among the infinity
of possible description of S’ which maximizes the size of the one-, two-, or three- j
dimensional unit cell of the O-lattice. We have already remarked (Section 2.4), however,
that this criterion is unsatisfactory when it is applied to symmetrical tilt boundaries. In ,
that case the simple shear description gives an O-plane lattice with the boundary plane |
coinciding with one of the O-planes. As before, there are no dislocations required by such ¢
a description of the interface, and therefore at small angles of misorientation, where line
defects possessing dislocation character are seen experimentally, the criterion does not
lead to the most useful description.

Unlike the mathematical dislocations, whose positions are defined by the O-lattice cell
walls, the physical dislocations are not, in general, uniformly spaced along the interface.
The physical spacings are determined by the discreteness of the crystal lattice. For
example, if the average spacing of the dislocations is 24 a this will be the spacing of the !
mathematical dislocations but the physical dislocations will be spaced alternately by 2a |
and 3a. !

Consider next the case where we are using a bicrystal reference structure and the
two relevant lattices are the DSC” and DSCP lattices. These two DSC lattices form an
O-lattice, which is sometimes called an O2-lattice, given by

(E — D*~ )R = RS 2.37)

Here we take the DSCY lattice as the reference lattice, and D® is the transformation
which generates the DSCP? lattice from the DSC" lattice. The dislocations between i
successive O-elements of the O2-lattice have Burgers vectors of the DSCY lattice and
they are called secondary dislocations. The Wigner-Seitz construction may be applied in
the same way to the O2-lattice to determine the patches of good DSC lattice matching,
i.e. the patches where continuity of the DSC lattice across the interface is maintained.
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There have been numerous applications of the O-lattice theory to interpreting observed
line defect contrast at grain and interphase boundaries in the electron microscope. Both
primary and secondary dislocation arrays have been identified and characterized, and it
is remarkable how successful the theory has been considering its simplicity and the rather
unsatisfactory physical assumptions it contains.

One weak point of the theory is of course the physical assumption that determines the
choice of the description of S°. Precisely the same problem arose in the Frank-Bilby
theory, and there we concluded that the only rigorous way to decide the most appropriate
description was to observe the motion of atoms as the interface migrated. In the O-lattice
case the most appropriate description of S° (or D®) has another interpretation. It is the
description which most accurately describes the pattern of local relaxation responsible for
the network of dislocations with Burgers vectors R* (or R”5C"). Thus, at a small-angle
grain boundary we would choose the disorientation description for 8® because this most
simply describes the local changes in misorientation that occur between successive
dislocations in the interface. As Bollmann has pointed out the O-lattice is effectively a
first approximation at describing the relaxation pattern within the interface. If a different
S® is selected then a different relaxation pattern will be derived. The trick is to guess the
description of S® (or D®) which most closely approximates the local relaxations within
the interface. This is not always straightforward as demonstrated by the experimental
observations of Goodhew et al. (1976). Those authors found that the dislocation structure
of small-angle (1-5°) (110) twist boundaries in gold could be explained by an O-lattice
construction only if the transformation relating the two crystal lattices varied with
position in the boundary plane: in some regions it was a simple rotation whereas in others
it was a rotation plus a translation. This simply amounts to saying that the actual dis-
location structure is dictated by minimization of the boundary energy, and since the
O-lattice construction is geometrical in nature it may or may not predict the correct
structure. .

2.7 THE GEOMETRY OF DISCRETE DISLOCATION ARRAYS IN
INTERFACES

2.7.1 The general interface

In this section we assume that a description of the relationship between the lattices which
adjoin the interface has been selected, and that the interface is free of stresses at long
range. The Burgers vector density of stress annihilator dislocations in the interface is
assumed to be represented by i independent sets of discrete dislocations, the jth set
with Burgers vector b;, line vector /E\ i, and spacing d;. The question weAaddress is the
following: given the set of Burgers vectors b; what are the line directions ¢ ' and spacings
d;? This problem was first considered by Frank (1950), Read (1953), and Hirth and
Lothe (1982), who considered grain boundaries, and more recently the heterophase
interface problem was addressed by Sargent and Purdy (1975) and Knowles (1982). We
shall follow the approach of Knowles (1982) for heterophase interfaces. Our analysis
includes grain boundaries as the special case where the relationship between the crystal
lattices is often a pure rotation.
Our starting point is the Frank-Bilby equation, eqn (2.1):

K B=(s""'-s""")p, @1
Recall that S® and S are the affine transformations that generate the black and white
crystal lattices from some reference lattice, and B is the sum of the Burgers vector of
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stress annihilator dislocations crossing the interfacial vector p. Since B is expressed in
the reference lattice we assume that the discrete Burgers vectors of the dislocations, into
which B is assumed to decompose, are lattice vectors of the reference lattice. That is,
we assume that B may be written as
1
B(p) = -Z, ¢/(p)b;, (2.38)
j=

where the sum is taken over the / sets of discrete dislocations that are assumed to exist
in the interface, and the vectors b; are assumed to be lattice vectors of the reference
lattice, although they are not necessarily primitive vectors. However, it is quite possible
for the dislocations to dissociate into partial dislocations forming complex networks
in the interface involving stacking faults. Such an eventuality cannot be predicted by this
geometrical theory which can treat only the average Burgers vector content crossing a
macroscopic vector p in the interface and its decomposition into assumed discrete Burgers
vectors. To account for this eventuality we must consider local interactions among the
i predicted sets of dislocations, and this will be discussed briefly in Section 2.8. '
Let W = S*~! — §¥~! and consider the decomposition of B described by eqn (2.38).
Let 7 be the interface normal, pointing from the white crystg\l into the black. Let IV; be
a vector lying in the interface, normal to the sense vector £; of the dislocations with

Burgers vector b;, and of length equal to the reciprocal of the spacing d;:
N, =2XE (2.39)

g

The number of dislocations intersected by a vector p is N;-p, and a dislocation cut Py
p is counted as a positive contribution to B if p X #i has a positive component along ;.
It follows that c;(p) in eqn (2.38) is equal to N;-p, and therefore

I
B=), (N;-p)b;=Wp. (2.40)
ji=1

Our task is to find the line directions :E\  and spacings d; given W and the Burgers vectors
b,
-
The first point to observe is that if there are more than three sets of dislocations in
eqn (2.40), i.e. i > 3, then the / Burgers vectors by, b,, by, ... b; are linearly dependent.
In that case there is no unique solution. In the general case three independent Burgers
vectors are required to satisfy eqn(2.40), and if there are less than three then only
certain special types of interface may be described. In this section we consider the

general case of i = 3 and solve eqn (2.40) for the N, j = 1,2, 3. In general we cannot

assume that |W| # 0, since W may be of rank 2 or 1. Writing out enq (2.40) in full
we have

(N,-p)b, + (N,-p)b, + (N;-p)b; = Wp (2.4
and multiplying both sides by b, X b; we obtain
(Ny-p) (B,"b, X by) = Wp- (b, x by). (2.42)

In particular if p is parallel to §1 we have N, -p = 0 and therefore
WE,-bf=0 (2.43)

where b} is a reciprocal Burgers vector defined by

|
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pr— b2 X By
'" b b, x by
Similar formulae hold for £, and £, and b} and b}. Now WE, -b¥ = £, ‘W'b}, where

W' s the transpose of W, and therefore £, is perpendicular to both W'bt and 7. There-
fore &, is parallel to (W'b}) x 7 and

_axE  Ax (Wb} x )
T d d| (W'd}) xa]

(2.44)

N

(2.45)

Multiplying both sides of eqn (2.41) by b}, for any interfacial vector p, we obtain

(N,p) = Wp-b} (2.46)
and substituting eqn (2.45) into eqn (2.46) we find that
dy=1/|(W'd}) x 7| (2.47)
and
Ny=W'b}— (7-W'b})n (2.48)
with

- ((W'b}) x n)
T (wWeD x Al

Equations (2.47)-(2.49) represent the solution to the task we set ourselves. Equation
(2.48) states that &V, is the projection of W'} onto the interface plane. These formulae
hold regardless of the rank of W. But in the particular case where the rank of W is equal
to three the inverse of W exists and eqn (2.41) may be rewritten as follows:

(N -P)W™ b, + (N, ‘PYW™'b, + (N;-p)W'b, = p. (2.50)

The vectors W"‘bj, are recognized as O-lattice vectors (see eqn (2.29)) and the lattice
formed from them is a point O-lattice. Setting a = W~'b,, a = W'b,, aj = Wb,
as the basis vectors of the O-lattice, eqn (2.50) becomes

(2.49)

(Ny-p)ag + (N, p)ag + (N, ‘p)as = p. (2.51)
Setting p parallel to §1 » 50 that N, -p = 0, and multiplying by a$ x a$ we obtain
£ - (a3 xa3) =0. (2.52)

Thus £, is perpendicular to a$’ = (a§ x a3)/(af-a3 x a$) and #:
A ai’ x #
= =T 2.53
£ m (2.53)

Substituting this expression for E, into eqn (2.39) and using (¥, *p) = p-a¢’, which
follows from eqn(2.51) by multiplying both sides by af , we deduce that

N, =a} — (a"-R)A (2.54)
and
d=1/|a$" x . (2.55)

Equation (2.54) states that N, is the projection of a$" onto the interface plane. Equa-
tions (2.53), (2.54), and (2.55) are equivalent to eqns (2.49), (2.48), and (2.47) if
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Wibr=a?, (2.56)

for |W| # 0, and similar relations hold for a2 and a3 We shall prove that thlS relation
holds by showing that it is consistent with af - a® =1 and a$-a$ =a3- a¢" = 0. Using
the definition aj we obtain:

a3 af = (W'by)- (W'b}),
which in component form becomes
@) (@) = ij—'l(bl)jwki(br)k- (2.57)
Performing the sum on i, and using Wy, I’V,-,‘-l = &, we obtain
a®-aS =b, bf=1. (2.58)
Similarly, a$-a$ becomes
a3-a; = (W'b) (W'd}),

which in component form reads

(a(z))i(a‘l)')i = VVij_'l(bZ)jWki(bT)k- (2.59)
Performing the sum on i again we deduce that
ad-a$’ = b, b} =0. (2.60)

Similarly a‘;’-a‘," may also be shown to be zero. This proves that eqn (2.56) is correct.

If we now add a fourth set of dislocations, with specified Burgers vector by, line sense
£,, and spacmg dy, we find that the N; change, where i = 1,2,3, by —(b," bHN,. As
before, N, = 1 X 24/d4 A fourth set of dislocations may be produced by local interac-
tions between the first three sets of dislocations.

To summarize, eqns (2.47) and (2.49) give the spacings and line directions of the three
independent sets of dislocations in an interface with normal #i for an arbitrary choice of
the matrix W. In the particular case where the rank of W equals 3 these equations are
equivalent to eqns (2.55) and (2.53), which are expressed in terms of reciprocal lattice
vectors of the corresponding point O-lattice.

2.7.2 Application to a grain boundary with arbitrary geometrical parameters

Consider a grain boundary requiring three independent sets of dislocations to describe
the stress annihilator dislocation content. We have already seen that if the adjoining
lattices are related by a rotation, and if the median lattice is selected as the reference
lattice, the Burgers vector content has a particularly simple form:

B=2(p x p)sin(6/2). (2.22)

Here the black and white lattices are created from a median lattice by equal and opposite
rotations of 6/2 about the axis 5. At small angles one would generally choose the median
lattice to be a crystal lattice with an orientation half way between the two crystal lattices.
In that case the Burgers vectors b; are lattice vectors of the crystal lattice and the discrete
dislocations are primary dislocations. The angle 6 is interpreted as the total boundary
misorientation. At large angles one could choose another large-angle boundary as the
reference structure, and regard the black and white crystal lattices as being generated by
equal and opposite rotations from their orientations in this reference structure. In that
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case the dislocations are of the secondary type, and the Burgers vectors are lattice vectors
of the DSC lattice of the reference boundary. The angle 6 is interpreted as the mis-
orientation from the large-angle boundary reference structure. Thus,

3
25in(6/2) (p x $) = ), (Ni-p)by, (2.61)
i=1
and after multiplying both sides with respect to b we deduce
2sin (8/2)b} (p x p) = N;-p. (2.62)
In particular, setting p = § ; we find that é\j is perpendicular to p x b}. Therefore,

s (Pxb) xn

= b X2 XA 2.63
P= TG x 6D x 7] (2.63)

and
N; = 2(p x b¥—[#-(p x b)]A)sin(6/2), (2.64)
! (2.65)

i yes (0/2)[(6 x B x A]"

Equations (2.63) and (2.65) give the line directions and spacings of the three sets of
dislocations with Burgers vectors b,, b,, and b, required to represent the Burgers vector
content of a grain boundary with arbitrary geometrical parameters. Note that all vectors
are expressed in the coordinate frame of the median lattice.

2.7.3 Grain boundaries containing one and two sets of dislocations

We have seen that in general we need three non-coplanar Burgers vectors of discrete
dislocations to account for the Burgers vector content of a grain boundary with arbitrary
geometrical parameters. In this section we ask what kinds of boundaries may be formed
from just one or two independent sets of dislocations and still satisfy Frank’s formula.

If there is only one set of dislocations, with Burgers vector b, then Frank’s formula
becomes

2(p x p) sin (6/2) = (N-p)b. (2.66)

Therefore b is perpendicular to p and p regardless of the orientation of p within the
_boundary plane. Thus, b must be perpendicular to the boundary plane, and p must lie
in the boundary plane. Thus the boundary is a tilt boundary. It is emphasized that these

vectors are expressed in the median lattice. If the normal to the boundary plane, A, is
a mirror plane of the median lattice the boundary is of the symmetric tilt type, otherwise
it is an asymmetric tilt boundary. Setting p parallel to § we further deduce that ’E\ Xxp=0
and therefore the dislocation lines are parallel to the rotation axis. The spacing, d, of

the dislocation lines is given by
‘ d = |b|/2sin(6/2) (2.67)

If there are two independent sets of dislocations there are just two types of boundary

that may be formed, and we shall consider them in turn. Both types of boundary satisfy
Frank’s formula:

2(p x p) sin (0/2) = (N,p)b, + (N,-p)b,. (2.68)
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Multiplying both sides by b, X b, we deduce
pp x (b X b)) =0. (2.69)

The first way of satisfying this equation is for X (b; X b,) to be perpendicular to p.
Since this has to be true for any p lying in the boundary plane it can be satisfied only
if p x (b, X b,) is parallel to the boundary normal. Thus p and (b, X b,) lie in the
boundary plane and the boundary is a tilt boundary. Setting p parallel to  in eqn (2.68)
we find

(N,-p)b; + (N, p)b, = 0. (2.70)

Since b, and b, are not parallel, by assumption, it follows that N, -p and N,‘p are zero
and hence 51 and 52 are parallel to p. The asymmetric tilt boundary to which this case
corresponds is sketched schematlcally in Fig. 2.3. To find the spacings, d, and d,, of the
dislocations we set E, 52 =pand p =p X 1 in eqn(2.68):

~ b b
—2sin(0/2)f = 31 + = Z | (2.71)
Therefore,
d_ _ (blel\)'(bl sz). 2.72)
d, (b, x 1) (b, X by)
Substituting this into eqn (2.71) and multiplying both sides by # we obtain
d = (by-7)(b; x 7)) (b, x by) — (by" A) (b, x #)- (b, X b,)
e 2sin (6/2) (b, x 7)- (b, X by)
and
d, = (b,-7) (b, x 7)) (b, X by) — (b,-71) (b, X 1) (b X b,) . 2.73)

2sin (6/2) (b, x 7i)- (b, X b,)

The second type of boundary that satisfies eqn (2.69) is that where p is parallel to
b, X b,. Setting p = by X b,/|b, X b,| in eqn (2.68) we obtain
2sin (6/2)

b, % b | [(p-8,)b, — (p-b;)b,] = (N1-p)by + (N;-p)b;. (2.74)

Since this must hold for any vector p in the boundary it follows that

2 sin (6/2)
N, —— = (p-b,),
1 P = |b1 bz‘ (p )
and
2sin (6/2)
Nyp=————(pb). (2.75)

|b; X by |
Setting p parallel to §1 and /5\2 in turn we deduce that ,% i °by = §2 -b, = 0. Thus,

b, X n
|b, x 7|’

§1=
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and

o b, x 1
=— 2.76
52 lblxﬁl ( )

Therefore N, becomes

b, - (ﬁ'bz)ﬁ

N, =
' b, x Rd,

whereas

by — (ri-b,)n

N, = — :
? |, X 7i|d,

2.77)
Substituting p = N, and p = N, in turn into eqn (2.75) and using eqn (2.77) for N, and
N, we find that

d = Ibl X bZI
'™ 25in (0/2) | b, x 1]

and

d — |bl><b2|
27 2sin (6/2)|b, x A] "

(2.78)

Thus,

l’z-(ﬁ'bz)’/i :
N, = 2" 2779 in (6/2
'S B x gy 2n (02)

and

b, - (ﬁ'bl)ﬁ

N, = —
? |by X by |

2sin (6/2). (2.79)

__When 7 is parallel to b, X b, we have a pure twist boundar_z/[because p is then parallel
to by X b,. Then, et il St neis

N, = lTl%b—ZlZSin (6/2)
and T
N, = — ———bl—2 sin (6/2). (2.80)
|6, X b,| _

Therefore, we see that the vectors N; and N, for boundaries of arbitrary 7 in eqn (2.79)
are the projections onto that boundary of the NV, and IV, for the pure twist boundary.
Hence, it may be shown (Frank 1950, Hirth and Lothe 1982) that the dislocation grid
for a boundary of arbitrary # is just the projection onto it of the dislocation grid of the
pure twist boundary. The dislocation structures of all boundaries of this type therefore
consist simply of two families of intersecting dislocations.
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2.7.4 Epitaxial interfaces

An epitaxial interface is formed when one material (the epilayer) is grown on a thick
substrate. If the epilayer has a thickness below some critical value it is energetically
favourable for the epilayer to be elastically strained so that a commensurate interface is
developed between the epilayer and the substrate. At larger thicknesses a transition occurs
in which stress annihilator dislocations are introduced into the interface to relieve the long
range stress field in the epilayer. The transition is discussed in Section 2.10.6. In this
section we shall confine our attention to the kinds of misfit that may be relieved by the
existence of one or two independent sets of stress annihilator dislocations in the interface.
We follow the procedure described by Sargent and Purdy (1975), although some of
our conclusions are quite different. The purpose is to present an analysis for epitaxial
interfaces that is analogous to the analysis of Section 2.7.3 of the types of grain
boundaries that may be formed from one or two independent sets of dislocations.
Since the misfit strain is confined largely to the thin epilayer we assume that the
reference lattice is the crystal lattice of the substrate. The Frank-Bilby equation is then

B=(S"'—E)p (2.81)

where S transforms the components of a vector expressed in the substrate crystal lattice
into those of a vector expressed in the crystal lattice of the epilayer. Since the interface
is epitaxial we assume that S satisfies Sfi = . This simply ensures that the interface
normal is the same direction in both the substrate and deposit lattices.

Let there be only one set of crystal lattice dislocations in the interface with Burgers
vector b and line sense /E\, expressed in the substrate lattice. Consider the form of the
transformation S that can satisfy the Frank-Bilby equation, eqn (2.1), given this one set
of dislocations. We have

(N-p)b=(S"' —E)p (2.82)

and setting p =’£\ we deduce that S_"E\ = :E\ If §= [1,0,0l, N= [0,1,0], and 7 =
[0,0, 1] then S™' has the form

1 S3' 0
S'=10 s3' 0} (2.83)
0 Sup' 1
Setting p = N in eqn (2.82) we deduce that N2b = (S~' — E)N and therefore Sp;' =
b./d, S5\ = by/d + 1, 83! = by/d.

For pure edge dislocations with b7 = 0 then b, =0, b, = b, b; = 0,and S~ ! describes
a tetragonal distortion:

1 o0 0
S'=|0 (b/d+1) 0] (2.84)
0 0 1

For pure edge dislocations with - N = 0 then b, =0,b, =0,b, = b, and S~ describes
a simple shear normal to the interface plane:

1 0 0O

S*'=10 1 o} (2.85)
0 b/d 1
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For pure screw dislocations b, = b, b, = 0,b; = 0, and S~ ! describes a simple shear in
the interface plane:

1 b/d O
S'=]0 1 ol (2.86)
0 0 1

Consider now the form of the transformation S that is possible when fwo independent
sets of dislocations are present in the mterface Let the Burgers vectors of the two sets
be b, and b, and let the line senses be £ ; and £2 The Frank-Bilby equation becomes:

(N;-p)b, + (Ny'p)b, = (S"!'— E)p. (2.87)
Setting p equal to E, and f in turn we deduce that
(N,-£,)b, = (S7' - E), (2.88)
and
(N -E)b, = (87! - E)E, (2.89)

Setting gl = [1,0,0], N, = [0,1/d,, 0}, 7 =[0,0, 1], fz [fznzzza 01, N, =1/d,[Ny,
Ny, 01, by = [byy, byy, by3] and b, = [byy, by, by3] and substituting these vectors into
eqns (2.88) and (2.89) we find that

— Epby/dy + 1 by/dy +Eyby/d, O
S—l = —Ezzbzz/d2 blZ/dl +£21b22/d2 +1 0 . (2°90)
—Epnby/d, bis/dy + Enby/dy 1

If the two sets of dislocations are pure edge dislocations with Burgers vectors in the plane
of the interface, then S~! has the form:

(sin%0)b,/d, + 1 —(sinfcos6)b,/d, 0
S™'=| — (sinfcosB)b,/d, 1+ b,/d,+ (cos*8)b,/d, 0|, (2.91)
0 0 1

where b, = |b, |, b, = |b,]|, and £, =[cos0, sin 6, 0]. When the angle 6 between the dis-
location lines is 90°, S™! reduces to a diagonal matrix describing two orthogonal tensile
strains, of magnitudes b,/d, and b,/d,, in the plane of the interface. For 6 between 0
and 90°, S~! is no longer diagonal but it is symmetric. When it is diagonalized it is
found to represent two orthogonal pr1nc1pal strains in the plane of the interface of
magnitude (x + (x? — 4(b, b,/d,d,) sin 20)7)/2 where x = b,/d, + b,/d,. However, the
directions of these tensile strains no longer coincide with the Burgers vectors b, and b,.

Instead, the two angles between the principal strain axes and b, are given by

x 4b,b,sin %0 |?
tane = tan — e P Lt iy 2.9
ane =tanf — 53y sin (26) ( N [ d,dyx° @.92)

If the two sets of dislocations are pure screw dislocations then S™' has the form:

1 —sinfcosOb,/d, b,/d;+ cos?0b,/d, 0
S~ = —sin20 b,/d, 1 +sinfcosfby/d, O} (2.93)
0 0 1
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As before 'E\z = [cos @, sin#,0]. S™' describes a shear transformation in the interface
plane, although it is neither pure nor simple in general. The principal strains are
++b,b,/d;d, sind and the angles between the principal directions and b, are given by

i
[23] sin @ ]
% 2.94
by icos()=|: b a &0
d, d,

2.8 LOCAL DISLOCATION INTERACTIONS

The analysis of the stress annihilator dislocation content of an interface presented thus
far takes no account of interactions between the dislocations. The dislocations were all
straight, even when they crossed each other, and the spacihg of parallel dislocations was
constant. We have already remarked that the spacing of parallel dislocations is quantized
by the crystal lattice, so that we expect variations in the spacing such that the average
spacing is the same as that predicted by the theory. When dislocation lines cross they
interact and may form new networks. It is obvious that the decomposition of the net
Burgers vector content B into Burgers vectors of discrete dislocations is not unique, and
the correct description is the one corresponding to the lowest boundary energy.

The local interactions that arise from dislocations crossing each other depend on their
self-energies and interaction energies and thus they depend on the crystal structure and
the character of the interface. This has been considered in detail by Amelinckx and
Dekeyser (1959) for small-angle grain boundaries in cubic crystals and by Amelinckx
(1979). Here we confine ourselves to a few general remarks and refer the reader to
Amelinckx and Dekeyser (1959) and Amelinckx (1979) for a more specific treatment.
Provided the final dislocation network in the interface still satisfies the Frank-Bilby
equation the interface will remain free of long-range stresses.

One possible way of satisfying this condition is for an array of parallel dislocations
with Burgers vector b, line direction §, and N = (i X 2)/d, to split into two arrays of
Burgers vector b, line directions £, and £,, and N, = (7 X £)/d, and N, = (A X £,)/
d,), such that N = N, + N,. This follows from (N -p)b = (N;*p)b + (N, p)b for any
interfacial vector p, and hence the Frank-Bilby equation is unaffected.

Another way of not affecting the Frank-Bilby equation is by repeating local changes
regularly throughout the network, such that the average directions of the dislocations are
not altered. These local rearrangements do not change the number of dislocations cut
by a large vector p in the interface and thus the Frank-Bilby equation remains satisfied.
An example is shown in Fig. 2.19 where a lozenge-shaped network has interacted locally
to produce a hexagonal network. The interaction can be visualized as occurring in two
steps. In the first, each straight dislocation in the sets 1 and 2 in Fig. 2.19(a) is trans-
formed into a zig-zag configuration conforming to the geometry in Fig.2.19(b). In the
second, segments of dislocations 1 and 2 which overlap react to form segments of new
dislocations of type 3 according to the Burgers vector reaction bV +p?P =p%. If a
reaction does not occur the network has a lozenge-shaped mesh, as shown in Fig. 2.19(b).
In general, twist grain boundaries are expected to contain hexagonal networks of dis-
locations except when the lines are within a few degrees of being orthogonal. Whether
or not reactions take place is determined by a balance of elastic energies that is considered
‘in detail by Hirth and Lothe (1982).

tan g =
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Fig. 2.19 Local interactions in a lozenge —shaped network of two types of dislocation in (a) to
produce a hexagonal network of three types of dislocation in (b). (From Hirth and Lothe (1982).)

2.9 TWO EXAMPLES

In this section we shall illustrate the application of the theory of dislocation arrays at
interfaces to two heterophase interfaces. In the first example we consider interfaces,
produced by diffusion bonding at 1200 °C, between single crystals or polycrystals of Pt
and a (001) substrate of NiO, following Shieu and Sass (1990). The interesting feature
about some of these interfaces is that there is a misorientation of the f.c.c. crystal axes
in addition to the misfit arising from the difference in lattice parameters a™* and a™°.
In the second example we consider Al-Al;Ni interfaces in a directionally soldified
eutectic alloy, following Knowles and Goodhew (19834, b). Those authors determined the
line directions of three sets of stress annihilator dislocations within interfaces bounding
the AL;Ni rods and then used the theory in a rather novel way to deduce the trans-
formation relating the Al and AL;Ni phases and the Burgers vectors of the dislocations.

2.9.1 Pt-NiO interfaces

Shieu and Sass (1990) observed three types of orientation relation between single crystals
of Pt, or polycrystalline films of Pt, and a single crystal (001) substrate of NiO. Here
we shall confine our attention to the perfect epitaxial orientation ((001)™* on (001N
and [110]™" parallel to [110]°) and the ‘twist misfit’ interface in which the [1 10J"* and
[110]N° axes are misoriented by an angle §. When § = 0 we recover the perfect epitaxial
orientation. For the perfect epitaxial orientation a square network of dislocations was
observed with line directions along [110] and [110] and a spacing of 5.2 #:0.5 nm. At the
twist misfit interfaces square arrays of dislocations were also observed but the spacings
of the dislocations decreased as # increased and the line directions changed rapidly
from (110). For example, for § = 1.5° the measured spacing of the dislocations was
3.8 + 0.5nm and the line directions were approximately 25° away from (110). An
example of the dislocation structure observed in a misoriented interface is shown in
Fig. 2.20. Our task is to explain the observed spacings and line directions of the dis-
locations as a function of 6. Our analysis is similar to that of Shieu and Sass (1990) except
that we take the Pt crystal lattice, rather than the NiO lattice, as our reference lattice
and we use the Frank-Bilby theory rather than the O-lattice formulation. Our reason for
choosing the Pt crystal as the reference is that we believe that the dislocations could lie
slightly on the Pt side because NiO is elastically harder. Of course, whether we use the
Frank-Bilby theory or the O-lattice theory makes no difference to the predicted line
directions and spacings.
We define the misfit parameter « as follows:
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Fig. 2.20 Dark-field electron micrograph of a NiO-Pt interface with a misorientation comprising
~3.2° about the axis normal to the interface and =1° about the {110] axis of NiO in the plane
of the interface. A network of two sets of dislocations is seen as shown in the schematic diagram.
From Shieu and Sass (1990).

aNlO . aPt

aPl

o= (2.95)
The appropriate values of a™'° and @™ are those at the temperature at which the inter-
faces were formed, i.e. 1200°C. Using the value of the lattice parameter for Pt at
20 °C (0.392 39 nm) and the linear thermal expansion coefficient for Pt (9 X 107-6°C™
we obtain aF* = 0.396 56 nm at 1200 °C. The lattice parameter of NiO at 275°C is
0.419 46 nm, but the linear thermal expansion coefficient is not available. If we assume
the thermal expansion coefficient is the same as that of MgO (i.e. 12.8 X 10-%°C™hH
we obtain a™M© = 0.424 43 nm at 1200 °C. Therefore at 1200°C the misfit parameter
a = 0.0703. In view of the uncertainty about the NiO lattice parameter at 1200 °C it is
unreasonable to specify « so precisely and we shall assume o = 0.07. If the {1 101N axis
is misoriented from the [110]"* axis by 6 then the transformation S relating the NiO
lattice to the Pt lattice is

cos@® —sinf O

S=(1+a)|sing cos§ O, (2.96)
0 0 0
and therefore
1+ o —cosd —sinf 0
W=8"'-E= sin 6 1 +a—cos O] (2.97)
1 + «

0 0 o
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We assume that the Burgers vectors of the observed dislocations are b, = 1[110] and
b, = +[110] lattice vectors of the Pt crystal. The Frank-Bilby equation becomes:

(Nip)by + (N,p)b, = Wp, (2.98)

and multiplying both sidg\s of this equation with b, and setting p = E, we deduce that
W'b, -£, = 0. Therefore £ is perpendicular to W'b, and [001], i.e.

_ {1+ o —cosf —sing), ~ (1 + o — cos 6 + sinf), 0]
V2(1 + a —cos 0)* + 2(sin 9)?2 .

The angle 4, between El and b, indicates the edge vs. screw character of the dislocations:

£

(2.99

(1 +a—cosb)
sin ¢

tany, = (2.100)

We observe that when 6 = 0, i.e. at the exact epitaxial interface, the dislocations are of
pure edge type, and that the angle 1, decreases rapidly from 90 ° at small values of 4.
For 6 = 1.5° we obtain 4 = 70°. Similar results are obtained for £, and 7,:

_ [(=1-a+coso—sing), — (1 + o — cos 6 — sinf), 0]

£
V2(1 + « — cos0)% + 2(sin6)>

, (2.101)

and 75, = n,, so that the dislocations remain orthogonal regardless of §. Thus, we have
shown that the network of 7 (110) dislocations remains orthogonal as the twist angle is
varied and that the network is rotated, initially very rapidly, as the twist angle is increased.
The estimation that the network rotates by 20 ° when 6 = 1.5 ° compares very well with
the experimentally observed rotation of 25° in view of the extreme sensitivity of 7, to
both o and 4.

The dislocation spacing d, is readily found from

b,

L -wax§, (2.102)
d
which is obtained by setting p = N, in eqn (2.98). From this we deduce that
d = (1 + a)a™
| =
V2(1 + o + cos8)? + 2(sin6)?
N0 4Pt

= : : - (2.103)
2[(aPl)2 + (aN10)2 _ ZaPtaNlo cos 0) ]z

When 6 =1.5° we obtain dy =4.0nm, which compares very well with the experi-

mentally observed spacing of 3.8 + 0.5nm. At § = 0 we obtain 4.3 nm, which is some-

what smaller than the experimentally observed spacing of 5.2 % 0.5 nm.

2.9.2 Al-ALNi eutectic interfaces

Knowles and Goodhew (1983a,b) studied the dislocation structures of interfaces between
ALNi fibres in an Al matrix by transmission electron microscopy. The specimen was
produced by directional solidification. AL Ni has a complicated orthorhombic structure
and the Al matrix has an f.c.c. structure. The [010] axis of the fibres was parallel to the
[110] axis of the matrix and the (111) plane in the matrix was parallel to the (102) plane
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in the fibres. There was pronounced faceting of the fibres and three predominant interface
planes, which were high index in both fibre and matrix, were observed. It was found that
three sets of dislocations appeared in the interfaces, with spacings and directions that
varied with the interface normal #. Tt was not possible to determine the Burgers vectors
of the dislocations experimentally but it was possible to find three vectors ry, ra, and r;
such that for each interface normal the three sets of observed line directions and spacings
satisfied

£, parallel to r; X 7

and

1

= TR (2.104)

The significance of this is realized by comparing these equations with eqns (2.47) and
(2.49): r; is to be identified with Wb which is a basis vector of the reciprocal lattice
of the O-lattice (see eqn (2.56)). The three r; were found to be:

r, = 0.131[cos 63.1 °,c0s 31.6 °, cos 74.7°]
r, = 0.625[cos 138.7 °, cos 130.8 °, cos 84.8°]
ry, = 0.151{cos 44.7 °, cos 53.4°, cos 68.0°] (2.105)

in units of nm ™!, using an axis system parallel to the crystal axes in the Al matrix. The
problem now is to determine the transformation matrix W and the set of three b; which
satisfy the three equations

r,=W'b}. (2.106)

The transformation matrix W in these equations describes the deviation in the actual
relationship between the crystal lattices from some bicrystal reference structure. The
Burgers vectors b; are defined with respect to a corresponding reference lattice. There
are two related questions to be answered: what is the appropriate reference structure that
defines W and what are the appropriate Burgers vectors? In principle there is an infinite
number of possible reference structures but in practice there are restrictions that may be
placed on the solutions in order for them to make physical sense. Knowles and Goodhew
(1983b) made the common assumption of the near CSL model for their selection of
possible reference structures as described in Section 2.2. According to this model we must
seek CSLY and CSL® cells (Fig. 2.10(a)) in the matrix and fibre lattices that are almost
coincident at the observed orientation relationship between the matrix and fibre lattices.
The strain that is required to make them coincident is then the source of the misfit in
the interface that gives rise to the observed dislocations, as was the case in Fig. 2.10(b).
It seems reasonable to demand that there is at least one near CSL period between
successive dislocations. If this were not the case then it would not make sense to describe
the dislocations as localizing the misfit from the near CSL reference structure and,
therefore, the reason for the existence of the dislocations would disappear. The Burgers
vectors are vectors of the reference DSC lattice and it is possible that they are non-
primitive vectors, although we would not expect them to be much larger than primitive
DSC lattice vectors for reasons of energetics. This restriction was used by Knowles
and Goodhew (1983b), together with the restriction described earlier for the choice of
reference state, to eliminate many possible solutions of eqn (2.106).

Eight possible choices of reference structure were considered by Knowles and Goodhew
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(1983b) and all of them involved non-primitive DSC lattice vectors for the b;. The most
successful choice of reference state was judged by comparing the predicted and observed
spacings of dislocations on the three interface facets. The Burgers vectors of the inter-
facial dislocations were thus found to be b, =1[121], b, = 1[112], and b; = [010] with
respect to the matrix coordinate system. However, it was necessary to use the lattice
parameters of Al and AL;Ni at an elevated temperature in order to obtain satisfactory
agreement. It was assumed that the thermal expansion of AlL;Ni was negligible in
comparison with that of Al and the room temperature lattice parameters of Al,Ni were
used. The near coincident unit cell was of a relatively small volume, i.e. 12.5(a™)} and
4abc where a™ is the lattice parameter in the matrix and a,b,c are the lattice parameters
in the fibre.

The analysis of Knowles and Goodhew raises the general question of whether the matrix
W can be specified uniquely if we know the Burgers vectors, line directions, and spacings
of all dislocations in a particular interface. The answer is no because B = Wp may always
be replaced by B = Wlp, where I is an invariant plane strain (see eqn (2.32)), which, by
definition, leaves all interface vectors p invariant. Knowles and Goodhew overcame this
difficulty by analysing the line directions and spacings of dislocations in non-parallel
interfaces.

2.10 ELASTIC FIELDS OF INTERFACES
2.10.1 Imtroduction

In Section 2.2 we discussed two formulations-of the dislocation content of a flat inter-
face that is free of long-range stresses. In Bonnet’s formulation the elastic field is
modelled by cancelling arrays of stress generator and annihilator dislocations. There
is no net dislocation content of the interface. In the Read-Shockley formulation there
is a net dislocation content of the interface, which alters the relationship between the
crystal lattices from that of some reference structure. We have maintained that the two
approaches are equivalent provided there is no stress field far from the interface. In this
section we consider the elastic field of such an interface. Each crystal is approximated
by an elastic continuum and continuity of displacements and tractions are assumed to
be maintained at the interface. The dislocations in the interface are regarded mathemat-
ically as source functions which generate the stress field of the interface. In linear elastic
theory the field of the interface is given by a linear superposition of the elastic fields of
all the dislocations in the interface.

There is no inconsistency in applying the Read-Shockley formulation (see Section 2.2)
to the elastic field of a grain boundary. In the absence of externally applied constraints
to the bicrystal the distortion field of the dislocations reduces to a pure rotation far from
the boundary plane and the strain tensor tends to zero. Since the stress is proportional
to the strain it follows that the stress field of the dislocation array should also tend to
zero far from the boundary plane. We expect this remark to apply irrespective of whether
the elastic constants of the two crystals are the same, or whether isotropic or anisotropic
elasticity is assumed. The only condition is that the relationship between the crystal
lattices is a pure rotation. In this section we examine whether our expectation is satisfied
when linear elasticity is used to model the elastic fields of dislocation arrays in the
Read-Shockley formulation. Because we are restricting ourselves to linear elasticity the
misorientation must be small. We shall see that our expectation is always satisfied, but
in some cases care has to be taken with the boundary conditions far from the interface.
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In particular, simply summing the elastic fields of dislocations accommodating a mis-
orientation between crystals of the same structure in anisotropic elasticity, or between
crystals with different structures in isotropic or anisotropic elasticity, does not give zero
long-range stresses unless care is taken to ensure that no tractions are applied externally
to the bicrystal.

The same cannot be said of applying the Read-Shockley formulation to a heterophase
interface. The distortion field of the dislocations effects a change in crystal structure,
which is not merely a rotation. Since the strain tensor is finite far from the interface it
follows that there is a long-range stress field associated with the dislocations. The absence
of a long-range stress field in reality can be modelled correctly with interfacial dislocations
by using Bonnet’s formulation. For example, at an epitaxial interface the uniform state
of stress in a thin epilayer (i.e. below the critical thickness) can be modelled by a uniform,
continuous distribution of dislocations at the interface. These dislocations are stress
generators. Their long-range field is cancelled at large thicknesses by the introduction of
discrete stress annihilator dislocations. Thus, both arrays are necessary to describe the
stress field of the interface in the absence of long-range stresses.

- 2.10.2 Stress and distortion fields of grain poundaries in isotropic elasticity

In Section 2.7.2 we saw how a general grain boundary may be modelled by three sets
of parallel dislocations, with line directions and spacings given by eqns (2.63) and (2.65).
In Section 2.7.3 we discussed the types of grain boundary that may be modelled with
just one or two independent sets of dislocations. In this section we obtain expressions
for the linear isotropic elastic stress fields of these arrays of dislocations. We assume
that the dislocation lines are straight. Local dislocation interactions may violate this
assumption and it is then necessary to sum the stress fields of dislocation segments.
Although Frank’s formula prescribes the net Burgers vector density required to produce
a particular relative rotation, it is perhaps not obvious that the sum of the elastic
distortions produced by an array of dislocations, with the required net Burgers vector
density, effects the required rotation. We demonstrate that this is satisfied in the approx-
imation that 2 sin (8/2) = 0, i.e. in the small-angle regime. Moreover, we demonstrate that
long-range stresses when they exist, are consistent with the presence of long-range strains
and Hooke’s law. The existence of long-range strains implies a change of crystal structure
across the interface. To model correctly the absence of long-range stresses at such an
interface requires cancelling arrays of stress generator and annihilator dislocations.

Following Hirth and Lothe (1982) we consider an array of straight dislocations parallel
to the z-axis, and let the boundary normal be along the x-axis, as shown in Fig. 2.21.
Let the Burgers vector have components by, by, b,). We may obtain the stress field of
this array of dislocations by considering the stress fields of three components separately
and summing them, as shown schematically in Fig.2.21.

The first array has b = (b,,0,0) and is shown in Fig.2.21(a). This is the array
expected in a symmetric tilt boundary. For an isolated edge dislocation at the origin with
Burgers vector (b,,0,0) the displacement, (&, 4y, 0), and stress field, 7, at the point

(x,y,2) are
_ by |y xy -
T o {tan @ NP yz)] @197

b [(1=2y) kz—yz
"y—‘ﬂm‘“w””+4u-v><x2+y2>] - @m
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Fig.2.21 Schematic illustration of the manner in which the linear elastic stress field of an array
of dislocations along z with Burgers vector by, by, b,) is broken down into component arrays with
Burgers vector (a) (b, 0, 0), (b) (0, by, 0) and (c) (0,0, b,).

pb,  y(3x* + y?)

T T (- y) (P xR (2109
Ty =5 (;;b: . ﬁi—yyz;z @.111)
Ta=v(Tm+1,) = — W(’Ib:”v) = iyz) @.112)
T =Ty =0 2.113)

Here v is Poisson’s ratio. Using eqn (2.109) we deduce that the st‘ress 7y, due to the array
of dislocations shown in Fig. 2.21(a) is given by

rem e S (X (Y= n) (Y —n)
X 2x(1-»)D ,~ ., (X*+ (Y- n)?)?

(2.114)

where X = x/D, Y = y/D, and D is the dislocation spacing. Performing the sum we
obtain:

Tox = —T7,8in(27Y) (cosh (27X) — cos(2xY) + 2xXsinh(27X)) (2.115)

where

— pby
~2D(1 — »)(cosh(27X) — cos2xY)?" (2.116)

The other stress components are similarly found using eqns (2.110) and (2.111):
Tyy = —Tosin(27Y) (cosh(27X) — cos(27Y) — 22X sinh (27X)) (2.117)
Ty = 727X (cosh(27X)cos (2xrY) —1). (2.118)

At large distances form the boundary, where x > D/2m, the stresses decay exponen-
tially. For example, 7,, behaves as follows:

To
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il

o = — pbysin (2my/D) D) exp(~2mx/D). @.119)
(1 —»)D

Thus, there are no long-range stresses. Indeed, at x = 2D the the stresses have decayed
to approximately 1 per cent of the stress from a single dislocation, in agreement with
St Venant’s principle. In the boundary plane, where x = 0, the ratio of the stress, 7y,
at (0, ) to the stress due to a single dislocation at the origin is equal to (wy/D) cot (wy/D).
Thus at separations of up to D/2x from a given dislocation in the array, more than 90
per cent of the stress 7, of the array is attributable to the given dislocation.

The second array, Fig.2.21(b), has b = (0, b,,0). The stress fields of this array are
given by

Tey = To sin (27Y) (cosh (27X) — cos(27Y) — 27X sinh (27X)) (2.120)
T = —To 27X (cosh (27 X)cos (27Y) -1) 2.121)
Ty = Tol2 sinh (27X) (cosh(27X) — cos(2wY)) — 27X (cosh (2w X)cos (27 Y) -1)]
(2.122)
As x = +oo it is seen that 7, and 7 tend to zero exponentially, but
Ty Hﬁét%sgn(x), (2.123)
where sgn(x) =1if x>0 and sgn(x) = —1 if x< 0. Therefore, there is a long-range

stress field, 7,,, associated with this array of dislocations. This simply means that for
a grain boundary to satisfy Frank’s formula there must be no net Burgers vector parallel
to the boundary plane associated with edge dislocations. For example, for the asymmetric
tilt boundary, which can be modelled by two independent arrays of edge dislocations,
the components of the Burgers vector densities parallel to the boundary plane cancel, as
seen in eqn (2.71). An array of dislocations of the type shown in Fig. 2.21(b) can appear
in an epitaxial interface. In that case the stress field far from the interface is cancelled
by the stress field of the stress generator array.

The final array, shown in Fig. 2.21(c), is associated with the following stress fields:

: ub, sin(27Y)
- — 2.124
Txz 2D cosh (27X) — cos(27Y) 2124)
ub, sinh (27X)
== . 2.125
" = 3D cosh(27X) — cos(27Y) ( )
As x — +oo it is seen that 7,, decays to zero exponentially but
¥4
b

T~ 1‘2-5‘ sgn(x). (2.126)

To derive these formulae we have used the stress field of a single screw dislocation with
Burgers vector (0,0,b.):

pb, Yy
T = — Zf el (2.127)
_ kb, X (2.128)

T, = — ——
727 on xt 4y

Ty =T = Ty = Tz = 0. (2.129)
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The displacement field for the isolated screw dislocation is:

u, = —:—;tan*'(x/y); U, =u,=0. (2.130)

Equation (2.126) shows that a single array of screw dislocations in a grain boundary
is associated with a long-range shear stress 7,.- In a pure twist boundary this is cancelled
by another array of screw dislocations along y. The combined effect of the two arrays
of screw dislocations is to produce a rotation about the boundary normal x, and all stress
components decay exponentially at large separations from the boundary plane.

The distortion tensor w is defined by the nine derivatives of the displacements
Uy, Uy, Uy

Uy x

W=y, uyy Uy, |-

uz,y uZ 4

U

X,y u

X,Z

(2.131)

Uy x

where u, , = du,/dy, etc. The strain tensor components are symmetric combinations of
the distortion tensor, e.g.

Exx = Uyy

&y = (1, + uy’x)/Z} (2.132)

whereas the antisymmetric components of u define the rotation vector, @, at a point:

0, = (u,, — u,,)/2
0, = (uy, — u,,)/2 2.133)
0, = (uy, —u,,)/2

Consider the long-range distortion field of the array of edge dislocations shown in
Fig. 2.21(a). Using eqns (2.107) and (2.108) for the displacement fields u, and u, we
obtain the distortion tensor far from the interface as follows:

010
u, =b,sgn (x)/2D| —1 ¢ o|. (2.134)
000

Thus the long-range distortion is a relative rotation of the two grains about the z-axis
of b,/D. This is consistent with Frank’s formula because 2sin (§/2) = @ = b,/D in the
small-angle limit where linear elastic theory is valid. It is also consistent with the absence
of any strains and hence any stresses far from the interface.

The long-range distortion field of the dislocation array shown in Fig. 2.21(b) is given
by:

f 00
u, = b,sgn (x)/2D| 0 1 0 (2.135)
000

where
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f=—v/(1—7») (2.136)

This represents a relative tetragonal distortion of b,/D along the y-axis, and a Poisson
contraction of fb,/D along x. Hooke’s law for an isotropic medium may be stated as
follows: '

T = 2REx T NE )
T,y = 2UEyy + N
Ty = 21E, + N L

(2.137)
Ty = 2UExy
Tyy = 21Ey;
Ty = 2HE4- J
where
N=2wu/ (1 — 2v) (2.138) -
and |
e=¢Eyt+ &yt &y (2.139)

When the long-range disortions, eqn (2.135), are substituted into Hooke’s law, using
eqn (2.132), we recover the long-range stress 7y, given by eqn (2.123), and all other
stress components are zero.

The long-range distortion field of the array shown in Fig. 2.21(c) is given by:

000
u, = b,sgn (x)/2D| 0 0 1. (2.140)
000

The presence of a long-range shear distortion is consistent with the long-range stress 7.,
given by eqn(2.126). '

Any grain boundary composed of sets of straight dislocations can be analysed using
the equations we have given for the stress and distortion fields for the three com-
ponents of the Burgers vector. Although a given set of dislocations may be associated
with a long-range stress field the combination of all sets must be free of long-range
stresses if the boundary satisfies Frank’s formula.

2.10.3 Grain boundary energies

Read and Shockley (1950) used dislocation theory to analyse grain boundary energies in
the isotropic elastic approximation. In this section we shall derive their celebrated formula
for small-angle grain boundaries.

Consider a small-angle symmetric tilt boundary, which is composed of a wall of edge
dislocations of spacing D. We saw in the previous section that the stress field of each
dislocation extends a distance of roughly D. Thus, the energy per unit length of each
dislocation is approximately given by
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pb®

47 (1 — »)

The core radius of the dislocation is r, and E, is the energy per unit length of the
dislocation core. Expressing r, as ab, where « is a constant of the order of unity for a
crystal lattice dislocation, and using 6 = b/D, the energy per unit area of the boundary
becomes

E,= In(D/r,) + E,. (2.141)

0= 0,0(A—1Inb) (2.142)
where
___ b
%= et =) (2.143)
4n(1 - »)E,
A=IL_¥J—Mm (2.144)
ub

The parameter ¢, involves only the elastic constants while the parameter 4 involves
unknown quantities about the dislocation cores, namely the core energy and radius.

Although this derivation is rather intuitive it contains the essential physics. We shall
follow a derivation presented by Read (1953) which can be readily extended to show that
the same form of ¢ can be expected even when the boundary contains several arrays of
dislocations. Consider the symmetric tilt boundary again. The bicrystal is divided into
parallel strips centred on each dislocation as shown in Fig. 2.22. Let the energy associated
with each strip be Eg;,. This energy can be divided into an elastic strain energy, E,, and
a core energy, E_:

Estrip = Es + Ec-' (2145)

L™

e o

Fig. 2.22 The calculation of grain boun-

dary energy. The array of dislocations, with

spacing D, is divided into strips of width D.
r The elastic strain energy is divided into a
contribution, E;, in a cylindrical region of
radius r around the dislocation line, and
the energy, E;,, in the volume of the strip
outside this region. The core energy, E_,
is confined to the cylindrical region of
radius r,.

>
"
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The strain energy E, is further divided into the elastic strain energy, E, in a cylindrical
region around the dislocation line and the energy in the volume of the strip outside this
region, E, (see Fig. 2.22). The radius of the cylindrical region is r = cD, where the
constant ¢ < 1 must be large enough to ensure ¢D > r, and small enough for the stress
field inside the cylinder to be approximately equal to that of the enclosed dislocation
alone.

Suppose the boundary misorientation decreases by d, leading to increases in D and.
r given by:

—d6/6 = dD/D = dr/r. (2.146)

We now consider the changes in the three contributions to the energy of the strip, dE,,
dE,, and dE;;,. Provided the dislocation spacing D is large enough we can reasonably
expect the change in the dislocation core energy, dE., to be zero. Consider dE,.
The volume of the strip increases but the elastic energy density decreases because
the dislocations are further apart. We now show that these two effects cancel so that
dE,, = 0. The elastic energy density varies as the square of the elastic strain. The
elastic strain in this region varies as b/D. Thus the elastic strain energy in this region
is proportional to 1/D2%. On the other hand, the area of a cylindrical element of
area varies as D?. Thus, the elastic strain energy E,, is invariant when D changes:
dE,, = 0.

Consider dE;; . The stress in this region depends only on the included dislocation and
therefore the elastic energy density does not change. But the area of the region increases
from that of a cylinder of radius ¢D to a cylinder of radius c(D + dD). The elastic stress
field in the increased area is that of the included dislocation. The self-energy of a
dislocation is equal to the work done on the slip plane in a virtual process in which the
dislocation is created by introducing a relative displacement equal to b across a cut on
the slip plane. The work is done against the shear stress acting on the slip plane and in
the slip direction. The increase in the radius of the cylinder by dr = cdD increases the
area of the slip plane by dr per unit length of dislocation. During the virtual process the
stress at any point rises from its initial value of zero to its final value of 7,b/r, so that
the work done on the part of the slip plane dr is 17,b%dr/r of creating the dislocation.
7, is uniquely determined by the elastic constants of the material and this expression for
the stress is valid provided r > b and it remains valid even in anisotropic elasticity.
Therefore,

dEgy, = dE; = 1r.brdr/r = — $7,b*d6/8. (2.147)
Integration of this expression results in the following:

E, = 17,0 (A — Inb). (2.148)

trip
A is an integration constant. The energy per unit area of the boundary is Egp/D, Of
o=17,b0(A - Ing), (2.149)

which is identical to eqn (2.142).

If the boundary contains more than one array of dislocations we have to take account
of the interactions between the arrays. But the above analysis shows that the interaction
energy can contribute only to the elastic strain energy terms E; for each array. The
above argument may thus be repeated for each array separately, and the interaction
energy absorbed into the constants of integration. The result is that o has the form of
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{x
)
6=0,0(A-In0)
Fig.2.23 A sketch of the energy, o, of a small—angle
i . grain boundary as a function of the misorientation, 6,
0 15° 9 according to eqn(2.142).

eqn (2.142) for each array and therefore the resultant boundary energy still has the form
of eqn (2.142). We conclude, therefore, that the predicted variation of ¢ with @ has the
same form for all small-angle grain boundaries. This form is sketched in Fig.2.23. It is
seen that as # — 0 the boundary energy shows a cusp.

The derivation assumes that the dislocations are uniformly spaced, but this is possible
only when the dislocation spacing corresponds to some crystal repeat distance. Thus,
uniformly spaced dislocations occur only at particular misorientations. For intermediate
angles the irregularities in the dislocation spacings introduce additional terms in the
energy. For a small deviation 0 from the nearest rational angle 8 = 1/m (for rotations
about (001) axes in cubic crystals), the extra energy is of order

— 0,60

In 66. (2.150)

As 80 — 0 the slope of the o versus # curve becomes infinite and the rational angles
@ = 1/m correspond to cusps in the true o versus § curve. Thus we obtain the o versus
6 curve that is sketched in Fig. 2.24. The broken line represents eqn (2.142), and at each
rational orientation there is small cusp corresponding to the term described by (2.150).
The ‘strength’ of these minor cusps is proportional to 1/m, and thus we expect deeper
cusps at boundaries with smaller dislocation spacings. However, as the dislocation
spacing decreases the whole theory becomes doubtful.

The energy term (2.150) may be interpreted as the energy arising from an additional
array of dislocations with Burgers vector b/m, superimposed on an array of uniformly
spaced dislocations with Burgers vector b. In this picture the non-uniformities in the
spacings of the dislocations near @ = 1/m are modelled by new dislocations with Burgers
vector b/m superimposed on the boundary of orientation § = 1/m. We recognize the new
dislocations as secondary dislocations of the 6 = 1/m reference state. Thus, secondary
dislocations are equivalent to non-uniformities in the spacings of primary dislocations.
Tertiary dislocations are equivalent to non-uniformities in the spacings -of secondary
dislocations, and so on. We call the cusps caused by primary and secondary dislocations
primary and secondary cusps.

The agreement between the predicted o versus 8 curve, eqn (2. 142), for primary cusps,
i.e. small-angle grain boundaries, and experimental results is very good, as seen in
Fig. 5.20. The agreement is in some cases too good since it extends to quite large angles
where the linear elastic theory must break down. The existence of secondary cusps at
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Fig. 2.24 A sketch of the energy, o, of a small—angle grain boundary as a function of the
misorientation, 6, according to the Read-Shockley analysis. Primary cusps occur at those orien-
tations where dislocations are uniformly spaced, where the energy is given by the Read-Shockley
formula, eqn (2.142), shown by the dashed line. Further, secondary, cusps exist on the primary
cusps and so on. ’

rational grain boundary orientations has been much more controversial, and was reviewed
by Sutton and Balluffi (1987). These cusps are often very shallow and may disappear
altogether at finite temperatures. Entropic contributions to the boundary free energy are
ignored in the Read-Shockley analysis. T heir chief effect is to delocalize secondary
dislocation cores and thereby weaken the elastic fields of the dislocations. We shall return
to this subject in Section 2.13.3.

An interesting empirical observation has been made by Wolf (1989) concerning a
Read-Shockley type formula for large-angle grain boundaries. Wolf carried out computer
simulations of relaxed grain boundary energies at 0K for several series of boundaries.
In each series the mean boundary plane was constant and either the tilt or the twist angle
was varied systematically. Thus, in each series only one of the five macroscopic degrees
of freedom was varied. Certain features of the o versus 0 curves were found to be common
to all the curves: there were no major cusps except at the endpoints of the a(6) curve,
and o(f) was found to be a smooth function of 6, with vanishing slope in the middle of
the misorientation range betwéen the cusps at either end (see Fig. 2.25). Wolf found that
the Read-Shockley formula with 6 replaced by sin6 could be fitted to all the calculated
o versus @ curves very well throughout the entire misorientation range:

a(8) = o,sin8(A —In (sin6)). (2.151)

The parameters g, and A were varied to give the best fit to the calculated values of
o(0). However, it was also necessary to take account of crystal symmetry, if the rotation
axis were a symmetry axis, by suitable scaling of 6, and also to adjust the endpoints
of the fitted o(f) curve if they corresponded to grain boundaries rather than the perfect
crystal.

There does not appear to be any theoretical justification that can be given for
eqn (2.151). Frank’s formula indicates that at large angles 6 should be replaced by
2 sin (6/2) and not sin 8, but then o(6) would not have the required property of vanishing
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Fig. 2.25 Computed energies, o, of (001) twist grain boundaries in Cu and Au using Lennard-
Jones and embedded atom potentials respectively. The misorientation, 6, has been multiplied by
2. (From Wolf (1989).)
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L D Fig.2.26 Schematic illustration of a symmetric tilt boundary comprising an
n array of edge dislocations with Burgers vector b = (b,,0,0), and spacing D,
between two phases « and 8.

slope at 6 = 90°. The usefulness of eqn (2.151) is that it suggests that large-angle grain
boundary energies may be determined from the energies of small-angle boundaries by an
empirical extrapolation. Further discussion of grain boundary energies in the framework
of the structural unit model is given in Section4.3.1.8.

2.10.4 Stress fields of heterophase interfaces in isotropic elasticity

Consider an array of edge dislocations forming a flat, symmetric tilt boundary between
two phases « and 3, as shown in Fig. 2.26. The array of dislocations produces an elastic
field which we shall consider in this section in the isotropic elastic approximation. This
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field is in addition to any other strain field that existed in the bicrystal prior to the
introduction of the dislocation array. As far as the Frank-Bilby equation is concerned
the interface is effectively a grain boundary because the dislocations accommodate a
misorientation between the two crystals. Indeed, the application of Frank’s formula to
the array of edge dislocations is exactly the same as for a symmetric tilt grain boundary.
The misorientation between the crystals should be independent of their elastic constants
because it depends only on the magnitude, b,, of the Burgers vector of the dislocations
and on their spacing, D. Thus, the misorientation produced by the dislocation array is
given by 8, = 2sin (6,/2) = b,/D. This is the misorientation we expect to obtain from
the elastic field of the dislocation array, and it is perhaps not obvious how this result
is independent of the elastic constants.

In order for the elastic distortion field of the dislocation array to satisfy Frank’s
formula it is necessary that there are no net surface tractions far from the interface.
Otherwise the net surface tractions will have to be balanced by externally applied forces
to maintain equilibrium. Such applied loads will lead to distortions, in addition to those
prescribed by Frank’s formula. It is perhaps surprising that this rather obvious condition
has sometimes been overlooked and consequently a great deal of confusion has resulted.
For example, Chou and Lin (1975) found that simply summing the stress fields of the
dislocations comprising the array produced finite stresses infinitely far from the interface.
They concluded (erroneously) that such tilt walls could not be mechanically stable in
heterophase interfaces. Hirth efal. (1979) showed that their result was consistent with
Frank’s formula being violated by the elastic field and showed how an elastic field
consistent with Frank’s formula could be obtained. It follows that symmetric tilt walls
of dislocations are indeed mechanically stable in heterophase interfaces. We shall follow
the analysis of Hirth et al. (1979).

We begin with the formulae derived by Nakahara etal. (1972) for the displace-
ment field of a single edge dislocation with Burgers vector b,,0,0] in an o/ inter-
face. These formulae are the heterophase analogues of eqns (2.107) and (2.108). They
are:

o« BK®b,  xy N b.(1 + K*® — K%)

us = o 4 5 tan~! (y/x) (2.152)
uy = (B4 I::a = Dby (a2 4 52) + 2 I;If:ub" f; ; ;Z (2.153)
where
K = pyB [P + P}t (2.154)
and
K =3 — 4 (2.155)

Here Poisson’s ratio has been denoted by ». The corresponding formulae in the B phase
are obtained by interchanging the o and 8 superscripts. Using these formulae we can .
calculate the rotations far from the interface of the o and 8 phases about the tilt axis,
z. We obtain the following rotation of the o phase relative to the 8 phase:

9, = % [1 + 5 (uf — p) (KPS e - K""/u‘i}} : (2.156)
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I

4 4,00 (b%0,0)  Fig.2.27 A dislocation with Burgers vector

0.770) (b, 0, 0) between two phases o and 8 is equiva-
lent to a dislocation with Burgers vector (b3,
0,0) and a line force (0,5, 0) in an infinite
medium of the a phase.

It is clear that Frank’s formula is not satisfied unless p? = p*. Using eqns(2.152)-
(2.153) it can be shown that the long-range stresses 7,, and 7, arising from the array of
edge dislocations are zero in both phases. However, the long-range stress 7,, tends to the
following value at long range:

b,
h=Th=3 [u"K"‘ﬁ - u"K”"‘]- (2.157)

The key to understanding the origin of this long-range stress field is a result due to
Dundurs and Sendeckyj (1965). They noted the existence of net tractions in each half-
crystal associated with an interfacial dislocation. The tractions are equal in magnitude
and opposite in sign in the two half crystals, giving no net force on the dislocation. This
means that in each half-space the field of an interfacial dislocation may be represented
by that of an infinite medium dislocation (i.e. as though the other half-space had the
same elastic constants) that is coincident with a line of force, as shown schematically
in Fig. 2.27. More precisely, the elastic field in the « phase of an isolated interfacial
dislocation with Burgers vector (b,,0,0) is equivalent to that of an infinite medium
dislocation with Burgers vector (b%,0,0) and an infinite medium line force (0, /7, 0)
given by

b =b,[1 — K* + K] (2.158)
£ =2b,[pPKP — poK*). (2.159)

In the B phase the Burgers vector (b2, 0, 0) and line force (0, f ﬁ , 0) describing the elastic
field are given by

b? =b,[1 — K*® + K5] (2.160)
S5 = =15 (2.161)
In the a-phase the displacements arising from the line of force, given by eqn (2.159), are
- as follows:
fy xy

a - 2.162
“x 2op(k* + 1) x2 + y? ( )

—/y 2 X =y
u «*In(x? + y?) + . (2.163)

y=47ry,°‘(x“+l) : x* + y?
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When these displacements are added to those of the infinite medium dislocation, given
by eqns (2.107)-(2.108) with Burgers vector given by eqn (2.158), we obtain the displace-
ments of the interfacial dislocation given by eqns (2.152)-(2.153). Thus, we have proved
the equivalence of the field of an interfacial dislocation to the field of an infinite medium
dislocation and an infinite medium line of force.

It has already been shown in eqns (2.114)-(2.119) that an array of infinite medium
dislocations, forming a symmetric tilt boundary, has no long-range stress field. Therefore
the source of the long-range stress field found in eqn (2.157) must be the lines of force
at the interface. The net tractions on a cut normal to the x-axis are readily evaluated using
eqns (2.162)-(2.163) and found to be —1f% in the o phase (x > 0) and 3f5 in the 8
phase (x < 0). These tractions are independent of the position of the cut plane along x
in each phase. The shear stress, 75, they generate is equal to —3f/D which is exactly
equal to the long range shear stress of the array of interfacial dislocations given in.
eqn (2.157).

In a finite bicrystal mechanical equilibrium requires that the long-range shear stress
73, is balanced by externally applied forces. In other words the bicrystal is not in
equilibrium unless forces are applied to it externally. This is to be expected because
Frank’s formula is not satisfied, as seen in eqn (2.156). With no constraints applied to
the surface of a finite bicrystal the long-range shear stress 75, is cancelled by an image
stress —75,. The image stress produces uniform simple shears, parallel to the interface,
of —7%,/p* and ——T;‘;y/u", in the o and B phases respectively. These simple shears
introduce a change of orientation of the « phase relative to the 8 phase equal to:

1 1 b K KPe

Adding this to 8, in eqn (2.156) we see that elimination of the long-range shear stress
field results in Frank’s formula being satisfied. In this final relaxed state the elastic field
of the dislocation array in the « phase may be thought of as a superposition of three
fields: (i) the field of an array of infinite medium dislocations with effective Burgers
vector (b2, 0,0), (ii) the field of an array of infinite medium line forces with forces per
unit length (0, f5, 0), (iii) a uniform simple shear parallel to the interface of —75,/u” to
cancel the long-range shear stress generated by the array of line forces. The field in the
B phase is the same except that quantities associated with the o phase are replaced by
those associated with the 8 phase. It is interesting to note that the effective Burgers vectors
b2 and b? depend on the elastic constants of the two phases. Therefore the rotations
of the two phases are not equal in magnitude, in contrast to the grain boundary case,
although their relative rotation is the same as in the grain boundary case.

To summarize, the elastic field of the heterophase interface does satisfy Frank’s
formula when the adjoining crystals are free of net surface tractions. This is physically
sensible because we can always imagine that the a/f interface is created by bonding
together the surfaces of two stress free o and 8 phases with a relative misorientation
of § = b,/D. Then, according to St Venant’s principle the stress field of the interface
should decay over a distance comparable to D from the interface. The relaxation of the
long-range stresses does not introduce any further incompatibilities into the interface.
This may be seen in two ways. First, the average effective Burgers vector, (by + b8)/2,
is equal to b,. Secondly, the long-range shear stresses are relieved by uniform simple
shear strains parallel to the interface, leaving the interface invariant. These two statements
hold also in the anisotropic elastic case.

Finally, we note that the difficulty we encountered with long-range tractions far
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from the interface does not arise if cancelling arrays of stress generator and annihilator
dislocations are used to model the elastic field of the interface.

2.10.5 Dislocation arrays at interfaces in anisotropic elasticity

Although the analysis is more involved it can be shown (Hirth etal. 1979) that the
conclusions of the previous section apply in the anisotropic elastic case as well. The
anisotropic elastic field of an interface dislocation in an infinite bicrystal may be repre-
sented by a sum of two fields in each half-space. The first is that of a dislocation with
an effective Burgers vector in an infinite medium of the half-space. There are no net
surface tractions on any plane associated with an infinite medium dislocation. The second
is a line of force coinciding with the dislocation. Barnett and Lothe (1974) generalized
the result of Dundurs and Sendeckyj (1965) to give an expression for the line force in
anisotropic elasticity. There are net surface tractions acting on planes parallel to the
interface due to these lines of force at the interface. Furthermore, Frank’s formula is not
satisfied by the interface so long as the net surface tractions are not relaxed. In a finite
bicrystal with no surface constraints the surface tractions of the dislocation array are
cancelled by image stresses. The strains associated with these image stresses leave the
interface invariant and do not, therefore, introduce any further incompatibilities into the
interface. In the final relaxed state of the finite unconstrained bicrystal Frank’s formula
is satisfied and there are no net tractions acting any plane parallel to the interface.

Alternatively, and arguably more conveniently, the anisotropic elastic field can always
be modelled by cancelling arrays of stress generator and annihilator dislocations. The net
tractions produced by the two arrays cancel automatically and the condition of no stresses
far from the interface is guaranteed.

2.10.6 Isotropic elastic analysis of epitaxial interfaces

Frank and van der Merwe (1949) presented an elastic stress analysis of an epilayer grown
on a flat substrate with a slightly different lattice parameter. Their one-dimensional
analysis was extended to two dimensions by Jesser and Kuhlmann-Wilsdorf (1967). The
essence of the analysis is to demonstrate that once the thickness of the epilayer exceeds
a certain critical value it becomes energetically favourable to introduce crystal lattice
stress annihilator dislocations at the interface, and thereby relieve the elastic strain energy.

For simplicity we consider cubic lattices for the substrate and epilayer, with lattice
parameters a° and a°. The interface is assumed to be on a (001) plane in each crystal.
The ‘misfit’ is defined as

f=(a*~a*)/a* (2.165)

and represents the elastic strain in the [100] and [010] directions in the interface if the
two lattices are in perfect registry. In this elastically strained state the interface contains
an array of coherency dislocations and is fully coherent, as in Fig. 2.6b. This condition
is sometimes described as ‘commensurate’ or a ‘state of forced elastic coherence’. The
epilayer has a free surface and the surface tractions must be zero. Since the epilayer is
much thinner than the substrate we assume that the strain is all taken up in the epilayer.
The epilayer is thus in a state of biaxial stress, which in isotropic elasticity is given by

(1+»)
(1-v)

o=2p f (2.166)
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where p and » are the shear modulus and Poisson ratio in the epilayer. The biaxial stress
state may therefore be modelled by two uniform, continuous distributions of stress
generator, coherency dislocations with Burgers vector densities equal to [f00] and [0f0].
The elastic strain energy of the epilayer, per unit area, is

E,=2u (L:—JCVL)) £, (2.167)
where £ is the film thickness. Since this increases linearly with A there must be a critical
thickness at which it becomes energetically favourable to introduce anticoherency stress
annihilator dislocations. To find this critical thickness we first calculate the energy of the
interface when a fraction of the misfit is relieved by stress annihilator dislocations. We
assume the stress annihilator dislocations form a square array, with Burgers vector b and
spacing D. The remaining elastic strain ¢ is given by

e =f-b/D. ' (2.168)
The energy of the dislocation array, per unit area, is
ub? eh

E,=2X ———=In|— 2.169

d 4w (1 —v)D n{r‘,] ( )

where r, is the core radius of the stress annihilator dislocations, and the factor of 2
arises from the existence of two orthogonal sets of edge dislocations. By putting z inside
the logarithm of eqn(2.169) we have assumed that the film thickness is less than the
spacing of the stress annihilators. The total energy, per unit area, of the film is obtained
by adding E; to E, with & in place of f in eqn (2.167):

(1+7) ub(f —¢)

h
e%h 4—————————-—h1[f—]. (2.170)

E=2 (1-») 27(1 — ») r,

For a given film thickness the total energy is minimized for a value of ¢ = g,, given by

b eh
=——In|—|. 2.
b 8w (1 + v)hln[ro} 2.171)

If g, is larger than f then all the misfit is accommodated elastically with no stress
annihilators at the interface. If &, is less than f then some of the misfit is relaxed by
stress annihilators, the spacing of which is given by

D=b/(f-¢). (2.172)

The critical film thickness, A, at which it is energetically favourable for the first stress
annihilator to be introduced is obtained by setting &, equal to I

b eh,
hc = mln \:—r;—] . (2173)

This is an implicit relation for k.. We note that it depends on the value assumed for the
core radius, r,, and the Burgers vector, b, of the stress annihilators. There is thus some
uncertainty about the value of k.. But perhaps the most important limitation of this
analysis is that it has ignored the question of where the dislocations come from. Matthews
and Blakeslee (1974) pointed out that in order to introduce dislocations there has to be
a mechanism for doing so. Thus, the Frank-van der Merwe criterion is a necessary but
not sufficient condition for stress annihilators to be introduced. For all these reasons
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comparison of eqn(2.173) with experimental measurements is problematic. Observed
values of k. are generally larger than those of eqn (2.173), partly because of the insen-
sitivity of the experimental techniques employed and partly for kinetic reasons.

Matthews and Blakeslee (1974) developed a somewhat different criterion for the
introduction of stress annihilator dislocations at the interface. They suggested that the
dislocations are generated by the glide of existing dislocations which ‘thread’ through
the substrate and epilayer. Other mechanisms have been proposed in recent years: see
Hirsch (1991) for a review. In order to move a threading dislocation the force on it has
to be sufficient to overcome the line tension of the interfacial dislocations. This criterion
again leads to a critical epilayer thickness at which stress annihilators appear, and Willis
etal. (1990) have shown that, at equilibrium, it is identical to the critical thickness
predicted by Frank and van der Merwe. Willis efal. argue that apparent differences
between the two treatments are due entirely to the use of different approximations to the
energy of a single dislocation. Furthermore, Jain et al. (1992) criticize both the
Frank-van der Merwe and Matthews-Blakeslee analyses because they consider 4. to be
determined by the stress at which a single stress annihilator dislocation is introduced into
the coherent interface. Jain et al. argue instead that if an array of stress annihilator
dislocations is introduced at the transition from the coherent to the semicoherent states
not only is a lower energy equilibrium state achieved but also the criterion for h. is
altered qualitatively. In practice, however, the new criterion does not predict a value of
h. which is very different from the values predicted by the Frank-van der Merwe and
Matthew-Blakeslee analyses. The validity of the criticism from a theoretical point of view
depends on whether stress annihilator dislocations enter the coherent interface one at a
time or in unison in the form of an array. This is very difficult to establish experimentally.,
But as theory of the equilibrium state of the interface the treatment by Jain et al,
is a significant improvement on the earlier models.

2.10.7 Stress fields of precipitates and non-planar interfaces

Eshelby (1957) considered the elastic fields of ellipsoidal precipitates. He noted that the
elastic field could be modelled by thinking of the interface surrounding the precipitate
as a Somigliana dislocation (see Section 1.7). Although this observation was made in 1957
it is only in recent years that it has been exploited. Bonnet et al. (1985) have given elastic
solutions for Somigliana dislocations that are particularly useful in modelling the elastic
fields of faceted precipitates. As noted by those authors it allows morphologies of
precipitates other than ellipsoidal to be treated with relative ease, including precipitates
with corners such as cubes. For example, for the cubic morphology the elastic field is
calculated by summing the separate contributions of the six faces of the cube, each of
which is treated as a Somigliana dislocation defined by a square cut. If the relaxation
at each face of the cube gives rise to a rigid body translation of the matrix with respect
to the precipitate then there will be Volterra dislocations at the twelve edges of the cube
to account for the changes in translation vector between adjoining facets. The elastic
fields of these dislocations can then be added to those of the Somigliana dislocations to
get the total elastic field of the precipitate. As Bonnet (1988) has demonstrated the elastic
fields of quite complex, non-planar heterophase interfaces may be modelled by using
appropriate distributions of Somigliana and Volterra dislocations. However, such an
analysis is dependent on detailed information from high-resolution electron microscopy.
of the strain at the interface (see Bonnet (1988)). Specifically, the distribution of dis-
locations and their degree of localization is essential to formulate the elastic problem.
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2.11 DEGREE OF LOCALIZATION OF THE CORES OF
INTERFACIAL DISLOCATIONS

2.11.1 Introduction

Until now we have assumed that discrete dislocations in an interface are line defects with
Burgers vector densities that are localized within the plane of the interface. But any
dislocation has a tendency to delocalize the distribution of its Burgers vector density in
order to reduce the energy of its elastic strain field. On the other hand this spreading
of the dislocation core will generally disrupt the structure of the surrounding material
and so tend to raise the energy of the system. A dislocation will therefore delocalize to
the point where these two opposing tendencies are in balance. In addition, the analyses
of the elastic fields of interfacial dislocations discussed in Section 2.10 were based on the
assumption of a linear elastic continuum for both the interface and the adjoining crystals.
In this approximation the stress and strain become singular at the core of each dislocation.
But in reality these singularities are relieved by relaxations within the core because at
smaller length scales the discrete atomic structure of the medium cannot be ignored, and
the approximation of linear elasticity breaks down. Important questions to raise at this
point are therefore the following: (i) to what extent are the cores of interfacial dislocations
localized? and (i) how are their stress—strain fields affected by the degree of localization?

If a perfect interfacial dislocation has a Burgers vector that is a non-primitive lattice
vector of the reference lattice it may be able to reduce its elastic energy by dissociating
into two, or more, interfacial dislocations with smaller (primitive) Burgers vectors. This
phenomenon is described in Sections 9.2.2.2 and 12.4.3.1. Of course it may be regarded
as a form of core delocalization. However, we are not concerned with this phenomenon
here: instead, we are concerned with the degree of localization of an interfacial dislocation
which is unable to dissociate into discrete dislocations with finite Burgers vectors of the
reference crystal or DSC lattices.

For such a dislocation embedded in an interface it is easily seen that the Burgers vector
density parallel to the interface may delocalize preferentially in the plane of the interface,
if the interface has a relatively low resistance to a change in the translational disposition,
parallel to the interface, of the two adjoining crystals. In such a case this portion of the
Burgers vector density will have a tendency to spread out in the interface, thereby shearing
the interface locally. The resistance of the interface to this disruptive shearing process,
averaged over the whole interfacial area, is measured by the slope of the y-surface, which
is the surface representing the ground state energy of the interface as a function of an
imposed, rigid-body translation, ¢, parallel to the interface (Vitek 1968). As discussed in
Section 4.3.1.1, when the interface has a periodic structure the y-surface is a periodic
function with the periodicity of the c.n.i.d. (defined in Section 1.5.7). Therefore, the
v-surface of a periodic interface has maxima and minima in general, and the interface
will then encounter some resistance to a change in its translational state from the ground
state configuration. It follows that the cores of dislocations lying in such an interface
are localized in directions parallel to the interface to some extent at least. The degree of
localization depends on the slope of the y-surface.

As the c.n.i.d. decreases in size the y-surface tends to become flatter, as shown in
Section 4.3.1.1. In the limit when the area of the c.n.i.d. is reduced to zero, as happens
in the case of a quasiperiodic interface, the y-surface becomes flat. In that case there
is no resistance on average to changes in the translational state of the interface, in the
ground state. Therefore, in the ground state, a dislocation inserted into such an interface
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will tend to undergo complete delocalization of its Burgers vector density parallel to the
interface plane. In that case, the stress and strain fields due to the component of the
Burgers vector density parallel to the interface will vanish. However, it is emphasized that
the y-surface measures the average resistance to a change of the rigid-body translation
of one crystal relative to the other parallel to the interface. The Jocal resistance may vary
considerably from one region of the interface to another, such that the average resistance
is zero. Therefore there may be an activation barrier for the core delocalization to take
place, with the result that localized dislocation cores may persist until sufficient thermal
activation has been supplied. A discussion of such delocalization processes at elevated
temperatures is given in section 12.4.3.2.

The degree of localization of the Burgers vector density normal to the boundary plane
is determined by the cohesive forces acting across the interface plane. Provided the inter-
face is stable with respect to cleavage, as is generally the case, there will always be a force
tending to localize this Burgers vector density irrespective of the form of the y-surface.

On the basis of the above, we expect wide variations in the degree to which the cores
of interfacial dislocations are delocalized in the ground state. For widely spaced crystal
lattice dislocations in small-angle grain boundaries the situation should be similar to that
for isolated lattice dislocations. However, as the spacing is reduced, the situation will
change as discussed below in Section 2.11.2. For dislocations in large-angle boundaries
large variations will occur, depending on the presence, or absence, of periodicity and the
form of the y-surface, and kinetic factors which control the extent to which the interface
attains the ground state. These variations will be associated with corresponding variations
in the surrounding stress and strain fields.

We have already argued that the localization of the Burgers vector density parallel to
the interface may decrease as the temperature is raised at a quasiperiodic interface. Even
at a periodic interface the degree of core localization may vary with temperature because
the y-surface is expected to vary with temperature. At a finite temperature it is the free
energy of the interface, rather than the internal energy, which determines the y-surface.
As discussed in Section 3.9 the vibrational entropy of the boundary leads, effectively,
to a softening of the interatomic forces acting in the material. In addition the enhanced
anharmonicity of the atomic environment of a grain boundary in metals, compared with
the bulk, leads to an increased thermal expansion which further weakens the cohesive
forces across the boundary plane (see Section 4.3.1.10). In that case the ground state of
the interface may change with temperature from one which supports localized Burgers
vector densities parallel to the interface to one that does not. However, experimental
evidence, cited in Section 2.12.2, indicates that for at least a range of grain boundaries
in Al, the change in the y-surface with temperature is not sufficient to lead to significant
delocalization.

In the following sections we describe the results of a number of calculations of the
detailed core structure of interfacial dislocations at 0 K. They range from results obtained
by analytical methods using simple lattice theories (Section 2.11.2) to those obtained by
computer simulation using interatomic force models (Section 2.11.3).

2.11.2 Lattice theories of dislocation arrays

2.11.2.1 Introduction

In this section we describe analytic models in which the dislocation core region is treated
discretely using simple assumed force laws. These indude the Peierls-Nabarro (Peierls
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(a)

Fig.2.28 To illustrate the Peierls-Nabarro model for an edge dislocation. In (a) we see two semi-
infinite crystals, modelled as elastic continua, separated by an inelastic siab of width d. A
dislocation with Burgers vector b, equal to the spacing of the lattice planes in (a), is introduced
into the inelastic slab in (b).

1940; Nabarro 1947; Hirth and Lothe 1982) and van der Merwe (1950) models. These
more realistic models remove the elastic singularity at the core and provide information
about the degree of localization of the core. In addition, they yield expressions for the
surrounding stress and strain fields which differ somewhat from those obtained using the
elastic continuum approximation.

The idea underlying the Peierls-Nabarro and van der Merwe models is that the core
is allowed to spread within an inelastic slab, as sketched in Fig.2.28 for an edge dis-
location. The inelastic slab is bonded to elastic continua on either side of it. Far from
the dislocation core the two faces of the slab are displaced relative to one another by
the Burgers vector of the dislocation. The object of the model is to determine how rapidly
this relative displacement is accumulated through the core. A force law is defined within
the inelastic slab which reflects the crystal lattice periodicity and is matched to the elastic
constants at small strains. By constructing a force law with this periodicity we are
restricting the models to small-angle interfaces containing crystal lattice dislocations. If
we wanted to develop analogous models or secondary dislocation arrays at large-angle
grain boundaries we would have to construct force laws with appropriate periodicities.
In that case it is much less obvious what elastic constants should be fitted in the boundary
core region. A balance of forces is established at the boundaries of the inelastic and elastic
regions. The inelastic region tries to localize the core as much as possible while the elastic
strain field energy in the adjacent continua favours an infinitely wide core. At the force
balance the core has a finite width and the elastic singularity is removed.

Van der Merwe (1950) considered models for epitaxial interfaces and grain boundaries
of the twist and symmetric tilt types. Bullough and Tewary (1979) presented a Peierls-
Nabarro-type model of a symmetric tilt boundary. In this section we introduce the
~ principles of such models by briefly describing the Peierls—Nabarro model for an isolated
edge dislocation. We then discuss a symmetric tilt boundary treated by a Peierls-Nabarro
model and then by a van der Merwe model. There seems little point in a thorough
exposition of these models since their deficiencies are well known. In particular the close
proximity of the elastic continua to the dislocation cores and the uncertainty in the
inelastic force laws make these models of qualitative interest only.
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2.11.2.2  Peierls-Nabarro model Jor an isolated edge dislocation

An edge dislocation is introduced into the crystal by the following imaginary process,
which is illustrated in Fig. 2.28. First, the crystal is cleaved along the slip plane,
Fig. 2.28(a). One lattice plane, spacing b, is removed from the upper half-crystal,
Fig. 2.28(b). The lattice planes are no longer in registry across the cleavage plane. The
disregistry of the bottom half-plane with respect to the top one is ¢(x) = b/2 (x > 0) and
¢(x) = —b/2 (x < 0), Fig. 2.28(b). The two half crystals are rebonded and displacements
u(x, y) are introduced by relaxation. The displacements are assumed to be antisymmetric
about the plane y = 0: u(x, —¢) = —u(x, ). The disregistry is now :

e(x) =2u(x, —¢) + b/2 (x> O)}

2.1
e(x) =2u(x, —¢) ~b/2 (x<0) @174)

with the boundary conditions U(®, —g) = —u(~oo0, —¢g) = —b/4. These boundary con-
ditions ensure that the disregistry is zero far from the core. For brevity we shall write
u(x) for u(x, —¢), so that u(x) refers to the displacement of the bottom surface. The two
surfaces above and below y = 0 in Fig. 2.28(b) are now assumed to interact by an inelastic
force law. In a local disregistry approximation the force law is given by the negative of
the gradient of the y-surface. That is, the restoring force at x, where the disregistry is
¢(x), is given by the negative of the slope of the y-surface at a constant disregistry equal
to ¢(x). The approximation consists of ignoring additional terms arising from the
coexistence of a continuous set of disregistries in the dislocation core.

The restoring force has the periodicity of the crystal lattice, which is equal to b in the
direction of the Burgers vector. Thus the simplest form of the restoring force is

2
Ty = Asin [—Z—“’J 2.175)

where A is a constant. Substituting eqn (2.174) for ¢(x) we obtain
4
Ty = — Asin [%”] . 2.176)

We may think of this as the first term of an infinite Fourier series representation of Tay -
The constant A4 is determined, as in the Frenkel model of the theoretical shear strength,
by requiring that Hooke’s law is satisfied, for small displacements #. Hence in the
isotropic elastic approximation we have

pe 2mp
where d is the interplanar spacing. It is noted that the shear is inhomogeneous here since
it is applied only across one pair of lattice planes. Thus, the equalities in eqn (2.177) are
not exact, but approximate, since they apply only in the case of a homogeneous shear
&, In this approximation we obtain

uwb | |47u
= — L7 gn| 2T} 17
Txy 2nd Sll’l[ b J (2 8)

We now consider the dislocation to be represented by a continuous distribution of dis-
locations along x, with a Burgers vector density p(x). The meaning of p(x) is that p(x)dx
is the Burgers vector lying between x and x + dx. From eqn (2.174) we have
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du
p(X) = —Za, (2179)
and
- -] du
b= o(x)dx= —2§_ma—xdx. (2.180)

The shear stress prodhced on the plane y = 0 by this continuous distribution of
dislocations at (x, 0) is given by

Txy(x’ O) =

dxl
(2.181)

where [P denotes the principal value of the integral. Combining eqns (2.178) and (2.181)
we obtain the following integral equation for the displacements wu(x):

b e o) a e (du/dw),
—Zr(l—v)lps—m(x—x’) —w(l—v)lps—m G—x')

© (du/dx), -, b(1 —v») 4ru
j_m x) ¥~ 24 5 (2.182)
for which the solution is
b _,[x
u(x) = — Etan 7 (2.183)
where
| d
= m (2.184)

Equation (2.183) satisfies the boundary conditions that u(o) = —u(—o) = —b/4. In
addition u({) = —b/8 = fu(oc). We may define 2{ as the width of the dislocation since
in the region —{ < x < { the disregistry is greater than one half of its maximum value.

The Burgers vector density has the form of a Lorentzian:

p(x) =2 (2.185)

T axt+ e
Using this Burgers vector density and the standard expressions for the stress field of
an isolated edge dislocation. (eqns (2.109)-(2.113)) expressions may be derived for the
Peierls-Nabarro edge dislocation by integration. It is found that the stress field of the
dislocation is no longer singular, the singularity being removed by the finite width of
the dislocation core.

2.11.2.3 Peierls-Nabarro model for a symmetrical tilt boundary

Consider a symmetrical tilt boundary as sketched in Fig. 2.29. The Peierls-Nabarro model
for this boundary was considered by Bullough (1955) (see Bullough and Tewary 1979).
The model consists of a vertical stack of infinite elastic plates, each of thickness D and
separated by inelastic slabs of thickness d. The dislocations are assumed to delocalize
within the inelastic slabs. The aim is to derive the variation of the dislocation core widths
with the boundary misorientation. The problem reduces to the equilibrium of a single
elastic plate, with its centre at the origin, whose surfaces are subjected to the displace-
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Yy
D ® > X
v
d Fig.2.29 Peierls-Nabarro model of a sym-
1 metric tilt boundary. The dislocation spacing
BO‘;"d‘”y is D and the thickness of each inelastic slab is
plane d. (From Bullough and Tewary (1979).)

ments 1(x) and —u(x). The same restoring force law, eqn (2.178) is assumed to act across
each inelastic slab. The elastic shear stress is obtained from eqn (2.118) by setting ¥ = 0:
® x(t — x)/D du

~wsinh?[w (¢ — x)/D] ?i?dt' (2.186)

Ty(x, D/2) = — D(lu— ) S

At equilibrium this stress balances the stress from eqn (2.178):

. dmu(x) 2xd/b (= x(t —x)/D du
in=" = = 5= 5) e Smn2 a7 ~ /D] & (2.187)

Note that when D — oo this equation reverts to eqn (2.182) for an isolated edge dislo-
cation. Although an exact solution to eqn (2.187) has proved elusive an approximate
solution, that is quite adequate for misorientations up to about 5°, has been given by
Bullough. Bullough’s solution is the following:

u(x) = 2—l;tan‘l {%} (2.188)
where ¢ and & are defined by
D=6§6—-2
tan (7e/8) = br/28(1 — »). (2.189)
The dislocation core width is obtained from eqn (2.189) as follows:
26 = 2sinh! [sin ("—eﬂ : (2.190)
T 6
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It follows from eqn (2.190) that the core width decreases as the dislocation spacing D
decreases, i.e. as the tilt angle increases. This is the main result of the model. One of
the consequences is that it predicts that the stress required to move the boundary by
dislocation glide increases as the misorientation increases.

2.11.2.4 The van der Merwe model for a symmetrical tilt boundary

Once the boundary misorientation exceeds a few degrees there is no longer sufficient good
material between the dislocation cores for the Peierls—Nabarro model to be applicable.
The van der Merwe model (van der Merwe 1950) may be used to model the boundary
when the non-Hookean relaxations are confined largely to the boundary plane. Thus the
model consists of two elastic half-spaces separated by an inelastic slab of thickness d in
the boundary plane (see Fig. 2.30). The object of the model is to study the core relaxation
in the boundary plane as a function of the tilt angle. A key difference between this model
and the Peierls-Nabarro model is that the restoring force acting between the elastic slabs
is tensile. It is again approximated by a sinusoidal force, although in reality it is not a
periodic function of the relative separation of the elastic half-spaces. We shall not discuss
the model in detail here but state its main results. Figure 2.30 shows the periodic
displacement relaxations for the symmetrical tilt boundary. It is seen that each dislocation
has a wider core on the compressive side of the dislocation than on the tensile side, as
would be expected from the anharmonicity of atomic interactions. The displacement field
u(y) is given by

u(y) =b/4 + i%tan" [AsinY/(1 — Acos Y)] (2.191)

where
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A=V1+p52-8
Y = 2xy/D

2.192)
_wb(1-2») (1 - 21!)0

ﬁ—ZD(l——V)=2(I—V) ‘

As the boundary misorientation increases and the dislocation cores approach each other
the compressive, field of one dislocation becomes closer to the tensile field of the dis-
location above it. The width of the dislocation cores in the boundary plane therefore
increases as the boundary misorientation increases.

2.11.3 Atomistic models using computer simulation and interatomic forces

Numerous calculations of the atomic core structures of interfacial dislocations (especially
secondary dislocations) have been made using computer simulation techniques and
interatomic force laws. We cite here a few examples that illustrate some of the points
that were made in Section 2.11.2.1. The cores of secondary edge dislocations with b
normal to the boundary plane are found to be highly localized (see Section 4.3.1.8). This
result may be expected because of the large cohesive forces acting across the boundary.
The cores of some relaxed secondary edge dislocations with b parallel to the interface
have already been shown in Fig. 1.20 and 1.21. These cores are seen to be localized as
indicated by the pattern of distortion of the DSC lattices, which is easily detected. The
localization of these cores is expected because the c.n.i.d.s for these interfaces are quite
large and therefore significant variations of the interfacial energy can occur as a function
of the relative translation of the adjoining crystals parallel to the interface. On the other
hand, Bristowe (1986) has found considerable variation of the degree of localization of
a number of secondary screw dislocations in [001] twist boundaries in f.c.c. metals repre-
sented by different interatomic force models. Some results are shown in Fig. 2.31, where
the calculated width of an isolated secondary screw dislocation in a £ = 5 boundary is
shown using four different interatomic force laws. It was found that the degree of
delocalization tended to increase for a force law which gave a y-surface with a smaller
slope, as expected. Similarly, it was found that the degree of delocalization tended to
increase as the size of the c.n.i.d. decreased, which is also expected because the range
of values of o decreases as the c.n.i.d. decreases in size.

2.12 EXPERIMENTAL OBSERVATIONS OF ARRAYS OF
INTERFACIAL DISLOCATIONS

2.12.1 Mainly room-temperature observations

There have been many observations, by transmission electron microscopy, of arrays of
dislocations at homophase and heterophase interfaces at room temperature. In Section
2.9 we discussed the application of the Frank-Bilby analysis to two experimental
observations of dislocation arrays at heterophase interfaces. Despite the large number of
experimental studies there have been only a few instances in which the Burgers vectors
of the dislocations have been positively identified from the image contrast. As pointed
out by Forwood and Clarebrough (1985) the conditions under which the usual g:b=0
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Fig.2.31 Relaxed structures of an isolated screw dislocation in a £ = 5(001) twist boundary
computed at 0K with 4 different potentials for f.c.c. metals. The horizontal lines show the (310)
planes in the plane of the boundary. The width of the dislocation increases from the top of the
series to the bottom. (From Bristowe (1986).)

criteria for determining the Burgers vector of a dislocation are more restrictive for
interfacial dislocations than they are for a dislocation in the bulk crystal. Frequently the
Burgers vectors have been inferred from the measured misorientation from an assumed
reference state and the spacings of the dislocations, e.g. Schober and Balluffi (1970),
Bollmann et al. (1972), Clark and Smith (1978), Knowles and Goodhew (1983a), and
Babcock and Balluffi (1987). In this section we shall not present a catalogue of all such
observations, which would fill a book in itself. Instead we focus on those observations
which have a direct bearing on the theory that we have described in this chapter.

Schober and Balluffi (1970) and Tan etal. (1975) observed square grids of line
contrast in certain (001) twist grain boundaries in gold (see Fig. 2.32), by transmission
electron microscopy. The grain boundaries were manufactured by bonding together two
(001) films of gold at selected misorientations. Misorientations close to 0, 2tan~!]
2tan-'4, 2tan-'g, 2tan-!; were studied, corresponding to boundaries vicinal to £=1,
25, 13, 17, and 5 respectively. The lines of contrast were assumed to correspond to
dislocations with Burgers vectors of the appropriate DSC lattices. The observed average
dislocations spacings were found to satisfy Frank’s formuia:

d = |b|/2sin (A6/2) (2.193)

where A@ is the measured misorientation from the nearby exact coincidence site lattice
orientation. This is illustrated in Fig. 2.33. As the spacing of the dislocations decreased,
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Fig. 2.32 Electron micrograph of a manufactured (001) twist grain boundary in gold with a
misorientation vicinal to L = 5, showing a square array of a/10(310) DSC screw dislocations. (From
Schober and Balluffi (1970).)

and as the magnitude of the Burgers vectors decreased, the line contrast faded and the
dislocations became increasingly difficult to detect. Thus, in Fig.2.33 it is seen (black
dots only) that the arrays of screw dislocations were detectable only within 9° of the
6 = 0° orientation, 2° of the L = 5 orientation, and about 0.6° of the L = 13and L = 17
orientations. However, no dislocations were seen in the vicinity of the £ = 25 orientation.
This raised the questions of whether the dislocations were present near the L = 25
orientations and at greater deviations from the exact coincidence orientations, or whether
they were simply indetectable. From the viewpoint of Frank-Bilby theory the dislocations
are always present for purely geometrical reasons. Physically, the question concerns the
localization of the Burgers vector density into discrete dislocations and whether forces
to bring about this localization exist in the boundary plane. It was also not clear from
these experiments whether the line contrast was indeed due to dislocations or Moiré
fringes. As discussed by Babcock and Balluffi (1987), if Moiré fringes were present they
could have the same directions and spacings as the reported dislocation networks.
Babcock and Balluffi (1987) clarified these questions by repeating the experiments for
manufactured (001) twist boundaries in gold and silver. In addition to repeating the earlier




142 Dislocation models for interfaces

p3 | X25 Zz13 zi7 X5 z29

T T T T T T T

30 E

5
5]

T —
r{
v

Dislocation spacing (nm)

-— -
—O
Qv

h
DR
e
v v
o —Ream.
.
»igm
i

_.x-—’,‘a(’u:x—""—*——’_"‘

. SO
I | oo ; DA A —" ! ] 1
0 15 0 30 45

Fig. 2.33 Observed dislocation spacings in manufactured (001) twist grain boundaries in gold as
a function of the twist angle. The lines show the spacings expected by Frank’s formula, eqn (2.193),

for DSC dislocations of the £1, 5, 13, 17, 25, and 29 orientations. (From Babcock and Balluffi
(1987).)

observations of arrays of line contrast near L = 1, 5, 13, and 17, they also observed arrays
of line contrast near £ = 25 and T = 29 (see Fig.2.33). They showed, by a series of
tests, that in each case the line contrast was indeed due to dislocations and not Moiré
fringes. The fact that dislocations were found in boundaries vicinal to X =25 reflects the
increased resolition of the more modern instruments and the improvements in specimen
preparation.

Similar observations of arrays of screw dislocations in twist boundaries in NiO and
MgO have been made by Liou and Peterson (1981) .and Sun and Balluffi (1982). One
of the interesting features about these observations is that there is some evidence that
the Burgers vectors of the dislocations are not always primitive DSC vectors. Obviously
it is not a requirement of the Frank-Bilby theory that the Burgers vectors of discrete
dislocations, which make up the Burgers vector content of the boundary, are primitive
DSC vectors.

The contrast from dislocation arrays depends on the Burgers vectors of the disloca-
tions, the spacing of the dislocations, the foil thickness, and the angle at which the array
is viewed. It also depends on the resolution of the microscope and the magnification at
which it is operated. Under certain conditions arrays of coarsely spaced dislocations are
detected. But if the imaging conditions are changed, for the same specimen, additional,
finer spaced networks of dislocations may be detected. This was first demonstrated by
Cosandey and Bauer (1981) and it was studied systematically by Kvam and Balluffi (1987)
who examined a large number of manufactured symmetric [001] tilt boundaries in gold.
Dislocation-like strain contrast was detected effectively throughout the 90° misorientation
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Fig.2.34 Electron micrograph of a boundary vicinaltoa =13 (320) symmetric [001] tilt boundary
in gold seen almost edge on, showing two patterns of strain contrast. The fine scale contrast is due
to ; [110] crystal lattice dislocations, while the coarser scale contrast (arrowed) is due to & [320]
DSC dislocations. (From Kvam and Balluffi (1987).)

range. This indicates that at all misorientations there are forces acting in the boundary
plane tending to localize the Burgers vector density of the Frank-Bilby equation into
discrete dislocations.

In Fig. 2.34 we show a boundary with a misorientation of 21 .7°, which is less than 1°
from that of the £ = 13 (320) symmetric tilt boundary. The boundary is viewed at a highly
oblique angle and therefore it appears very narrow. The strain contrast associated with
it appears on two length scales. The fine contrast is due to +1110] edge dislocations and
their measured spacing is 0.77 nm, as compared with the predicted spacing from Frank’s
formula of 0.75nm. The strain contrast of this array decays very rapidly into the
adjoining crystals, as expected from the elastic field analysis of Section 2.10. The coarser
scale contrast, arrowed in Fig. 2.34, is associated with an array of {;[320] dislocations,
which are DSC dislocations of the £ = 13 coincidence site lattice. Their measured spacing
is 7nm, as compared with the predicted spacing of 7.1 nm. In Fig. 2.35 we show a plot
of the observed dislocation spacings in symmetric [001] tilt boundaries as a function of
the tilt angle. Taken together with Fig. 2.34 this provides strong experimental confirma-
tion of the Frank-Bilby analysis of the Burgers vector content of interfaces and of the
localization of the Burgers vector density into discrete dislocations. The localization is
a result of relaxation processes within the interface, whose origin is beyond the scope of
the Frank-Bilby theory.

For grain boundaries between h.c.p. crystals the selection of a suitable reference
structure is even more complex. In general, CSLs are very rare in h.c.p. crystal lattices
where (c/a)? is not a rational fraction. In that case the near CSL model is applied in
which the actual value of (c/a)? is approximated by a rational approximant (Chen and
King 1988, Antonopoulos etal. 1990, Shin and King 1991). Thus the selection of a
reference structure entails first the choice of a rational approximant to (c/a)’ to produce
a ‘constrained’ CSL. Secondly with a chosen rational approximant to (c/a)? there is an
infinity of possible constrained CSLs to choose from, just as there is for cubic crystals.
Stress annihilator dislocations are required to accommodate the deviation of the actual
value of (¢/a)’ from the chosen rational approximant as well as the misorientation of
the boundary from the orientation relation for the constrained CSL. The selection of the
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Fig.2.35 A plot of the observed dislocation spacings (shown as points) in {001] symmetric tilt
boundaries in gold as a function of tilt angle, 6. The solid line shows the spacings expected by
Frank’s formula for crystal lattice dislocations, and the dashed lines show the expected spacings
of DSC dislocations. (From Kvam and Balluffi (1987).)

rational approximant to (c/a)* and the constrained CSL for that rational approximant
is again made (Shin and King 1991) on the grounds that the predicted secondary dis-
location configuration is consistent with the strain contrast in the electron microscope,
at the operating level of spatial resolution.

An interesting example of this approach was presented by Shin and King (1991) who
analysed the linear strain contrast features in grain boundaries in zinc at temperatures
between 140 and 300K. In zinc the (c/a) ratio varies markedly with temperature.
Therefore the most appropriate choice of reference structure may change from one
rational approximant to another as (c/a)* changes with temperature. Correspondingly
the predicted secondary dislocation configuration may change discontinuously. Since this
would involve a discontinuous change in the reference periodic boundary structure and
the Burgers vectors of the secondary dislocations it amounts to a first-order phase
transformation of the boundary structure. Possible indications of a reversible trans-
formation of this kind at grain boundaries in zinc were presented by Shin and King and
are shown in Fig. 2.36. In Fig. 2.36(a) we see a room-temperature observation of a grain
boundary in which the misorientation is 86.2° [2.0, —0.983, —1.017, 0.0] and the observed
dislocation configuration is consistent with that predicted by choosinga X = 15 reference
structure. Figure 2.36(b) shows the same boundary after cooling to 77 K. The dislocation
configuration is heavily disrupted, which Shin and King interpret as evidence that the
dislocation structure is transforming to that of another reference structure. But because
the temperature is so low the transformation cannot be completed in the time available
in the experiment. Estimates of the elastic strain field energy of the boundary indicate
that the lower energy dislocation configuration does indeed change to that ofal =32
reference structure at the lower temperature. The disruption to the dislocation array of
Fig. 2.36(b) is reversed upon returning to room temperature, and the structure shown
in Fig. 2.36(a) is again obtained. This example illustrates once again the difficulty in
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Fig.2.36 Electron micrographs of a grain boun-
dary in zinc with a misorientation of 86.2° [2.0,
—0.983, —1.017, 0.0] imaged (a) at room tempera-
ture and (b) at 77 K. Note the disruption of the
dislocation configuration in (b). (From Shin and
King (1991).)

selecting a suitable reference structure to account for observed contrast features in the
electron microscope at interfaces. .

Positive identification of Burgers vectors of dislocations detected in boundaries vicinal
to ¥'=3,9,27 and 81 coincidence site lattices has been made by Clarebrough and Forwood
(1980a,b), and Forwood and Clarebrough (1985, 1986) using the image matching tech-
nique of Head ef al. (1973). Transmission electron microscope images of a dislocation
were compared with calculated images computed for different Burgers vectors. Boun-
daries within 0.1° of the exact coincidence orientations were selected from a Cu + 6 at
% Si alloy. In all cases the Burgers vectors of the dislocations were identified as DSC
vectors, and in most cases, though not all, the vectors were the smallest possible DSC
vectors in their respective lattices.

It is not always the case that the Burgers vectors of dislocations accommodating a
misorientation from a coincidence boundary are DSC vectors. It is sometimes possible
for a DSC dislocation to dissociate into partial dislocations separating regions of a
boundary with different structures. If the regions are related by symmetry then they are
energetically degenerate (see Section 1.7.2.3). Periodic arrays of such partial dislocations
have been identified in a boundary vicinal to £ =5 in germanium (Bacmann ef /. 1981 and in
boundaries vicinal to £ =9 and X =27 boundaries in a copper silicon alloy by Forwood and
Clarebrough (1982, 1983). Forwood and Clarebrough (1986) showed that the partial
dislocations could also separate grain boundary structures that are not related by
symmetry. Two of the three independent arrays of dislocations, in a £ = 3 (241)/(5 10 8)
cos ™! (—=2/3)/[210] asymmetric tilt boundary facet, were dissociated into partial DSC
dislocations that separated non-equivalent regions of the boundary plane. They estimated
that the difference in energy of the two regions was 2.5mJm 2.
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Fig. 2.37 Dark-field electron micrographs of localized grain boundary dislocation arrays in various
boundaries in aluminium at room temperature (left) and at the highest temperature of observation
(right). (a) and (b) & = 13 (510) symmetric tilt boundary showing grain boundary DSC edge disloca-
tions with b = %(510). (¢) and (d) £ = 17 (410) symmetric tilt boundary showing grain boundary
DSC edge dislocations with b = +(410). (e) and (f) incommensurate (100) twist boundary with
@ = 45° showing dislocations with b = 1¢001). (g) and (h) incommensurate symmetric [001] tilt
boundary with § = 45° showing dislocations with b = + (100). (From Hsieh and Balluffi (1989).)

2.12.2 High-temperature observations

Experiments designed to reveal any extensive delocalization of the cores of primitive
secondary interfacial dislocations at elevated temperatures have been performed by Hsieh
and Balluffi (1989). The experiments consist of following the change in the strain contrast
of dislocation arrays as the specimen is heated in the electron microscope. The results
for aluminium indicate that sufficient localization of the dislocation strain field to give
line contrast features in the electron microscope exists up to 96 per cent of the melting
point of the material. These authors manufactured bicrystals close to (310), (410), and
(510) symmetric tilt orientations and also a 8 = 45° (100) tilt boundary and a { 100} twist
boundary with 8 =45°. The first three boundaries vicinal to misorientations at which there
is two-dimensional periodicity in the boundary plane. There is no periodicity in the
boundary plane of the 45° twist boundary. The 45° (100) tilt boundary is periodic

only along the tilt axis. In all cases dislocation arrays were seen in these boundaries at
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temperatures up to 0.96 of the melting point. This must mean that the cores remained
localized to a sufficient extent that the elastic strain field associated with them produced
the contrast in the microscope. This is shown in Fig. 2.37.
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