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SOME STATISTICS ASSOCIATED WITH THE RANDOM
DISORIENTATION OF CUBES

By J. K. MACKENZIE axp M. J. THOMSON

Division of Tribophysics, Commonwealth Scientific Industrial Research
Organization, University of Melbourne, Australio

ABSTRACT. A Monte Carlo method is used to estimate the frequency functions of various angles in
a random aggregate of cubic crystals. Estimates are made of the frequency function for the angle of
disorientation, i.e. the least angle of rotation required to rotate a crystal into the same orientation as
& neighbouring crystal, and for the angles Min (100), Min (110), Min (112), Min (123> and
Min [<110), (112}, (1238>], where Min ¢100) is defined as the least of the nine acute angles between
<100 .directions in neighbouring crystals and similar definitions apply for the other angles.

1. INTRODUCTION

This paper is concerned with the estimation, by means of random sampling, of some prob-
ability distributions which arise from a class of problems in three-dimensional geometrical
probability. The results obtained are of interest to metallurgists in particular and perhaps
to crystallographers in general. They are presented here in the hope that some statistician
may be sufficiently interested to try to obtain the exact distributions in a more or less
explicit form.

Before stating the specific problems it is desirable in the interests of the general reader
to describe the standard crystallographic notation for directions and planes. A particular
direction can be specified by the components u, v, w of a vector (in this direction) relative
to an orthonormal basis and the symbol [uvw], in square brackets, is used to denote this
direction. Thus, [100] is the direction of the x-axis. A cube with its centre at the origin and
edges parallel to the base vectors (axes) is invariant under the 48 symmetry operations of the
cubic group consisting of 24 proper rotations and 24 improper rotations which are proper
rotations together with an inversion or reflexion. Starting with a given direction [uvw],
47 other equivalent directions (24 lines in all) can be derived by the use of the symmetry
operations and are called variants of [uvw]. These are simply derived from the given direc-
tion by permuting the indices u, v, w in sign and in order in all possible ways. This set of
48 equivalent directions is denoted by {uww), in carets, and not all the 48 directions need
be distinct, e.g. the set (100) consists of the set of 6 directions [100], [100], [010], [010],
[001], [00T], the bar over an index being used instead of a minus sign. Similarly, if 4, k,
are the components of a normal to a particular plane, this plane is denoted by the symbol
(kkl), in brackets. While the set of all planes equivalent to the plane (hkl) is derived in the
same way and denoted by {hkl}, in braces. These symbols for planes are not used in the
present paper.

The simplest of all the problems under consideration can be stated as follows. Given a
single fixed reference line (defined by one of two opposite directions) and another single
line defined by a random direction, uniformly distributed on a sphere, what is the prob-
ability distribution of the least angle between these two lines or of the least angle of rota-
tion required to make the random line coincide with the reference line? It is known that
the cosine of both these angles is uniformly distributed in the range (0, 1), but what is the
answer if instead of two single lines there are two congruent (i.e. superposable) sets of lines,
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the lines of each set being fixed relative to one another? The present paper gives practical
answers to some problems of this latter type when the lines of each set are invariant under
the rotations of the cubic group.

2. STATEMENT OF PROBLEMS

Consider two cubes, 4 and B, and imagine 4 to be a fixed reference cube and B to be
initially coincident with 4 but free to rotate in any manner about the common centre of
4 and B. If B is rotated through an arbitrary angle about some arbitrary axis there are 24
definite rotations which will restore B into coincidence with A. These rotations are just the
reverse of the original rotation taken together with the 24 proper symmetry operations
associated with a cube having indistinguishable faces. Further, each of these 24 rotations
can be represented as a single rotation about some definite axis and through some definite
angle. Then, of the 24 angles of rotation so defined, there is one (or more) which is least in
magnitude and this least angle may be taken as a measure of the disorientation of the two
cubes and will be called the angle of disorientation.

In 1949, F. C. Frank proposed over morning coffee the problem of determining the greatest
possible angle of disorientation of two cubes. The answer to the analogous problem for
squares in two dimensions is of course 45°, but in three dimensions the answer is not at all
obvious. However, by a tedious consideration of all possibilities it can be shown that the
maximum value of the angle of disorientation is 2 arcos }(2+,/2) = 62-80°, and that the
rotation which achieves this maximum disorientation is most simply described as a rotation
of 90° about any of the axes (110), i.e. axes parallel to a face diagonal. A more difficult
problem is to determine the probability distribution of the angle of disorientation when the
cube B takes all orientations with equal probability. An estimate of this probability distri-
bution is made in the present paper.

Another problem which has arisen in the course of experimental work (Ogilvie, 1952)
can be described in simplified form as follows. In an aggregate of cubic crystals a particular
event may occur only when one of the directions, (100) say, in one crystal is within, say,
5° of one of the (100) directions in a neighbouring crystal. Then it may be asked what pro-
portion of pairs of crystals in a random aggregate would comply with this last requirement.
The problem can be formulated as follows. Imagine a set of three fixed wires passing through
the centre and parallel to the directions (100) of cube 4 and a similar set of three wires
parallel to the directions (100) of cube B. Then, if B is given a random rotation there are
nine definite acute angles between pairs of wires (taking one from each set) and the least of
these angles will be called Min (100). The probability distributions of Min (100}, and the
analogous Min (110}, Min (112}, Min {123) and Min [(110), (112}, (123)] are also estimated
in the present paper.

The method of calculation is described in § 3 and the results are given in § 4. The method
of constructing 150 random orthogonal matrices and their testing for randomness is set
out in §5.

3. METHOD OF CALCULATION

The calculations were performed by the method of random sampling. Since any rotation
can be represented by a 3 x 3 orthogonal matrix (Jeffreys & Jeffreys, 1946, p. 114), 150
random orthogonal 3 x 3 matrices were constructed as described in §4. Then with each
matrix the following calculations were made.
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If a given matrix represents a rotation through an angle  about some axis, then the trace
of the matrix (i.e. the sum of the elements in the leading diagonal) is equal to 1+ 2 cos .
Thus, to determine the angle of disorientation it is necessary, in principle, to calculate the
trace of each of the 24 matrices found by combining the given matrix with the 24 symmetry
operations of a cube and to choose the greatest of these 24 values. However, this greatest
trace can be found easily from the following rule. Taking into account only the magnitude
of each element, add to the largest element the greater of the two diagonal sums of the four
elements not lying in the same row or column as the largest element. This rule can be derived
by straightforward but tedious consideration of all the possibilities.

Since the elements of the given matrix are just the cosines of the 9 angles between the
new and the old (100} directions, Min (100) is determined by the element of largest
magnitude in the matrix.

The remaining calculations are all similar and only the determination of Min (123) will
be described. First the matrix is used to calculate the new directions corresponding to each
of the 24 (proper) variants of [123] (the remaining 24 are obtained by changing all signs).
If a particular member of the set (123) is transformed into [u, u,u;] then the cosine of the
angle between this direction and the nearest direction of the set (123) is

le(lu_?l+2lum|+3|ul[),
where u,, u,, and u; are the numerically smallest, middle and largest of u,, u, and u;. The
greatest of the 24 cosines so calculated determines Min (123). A table showing the bounds
for | u,|, |u,, | and | ;| consistent with a series of different angular deviations from [123]
was used to reject most of the 24 possibilities by visual inspection; the cosines were only
computed accurately for the few remaining cases.

Finally, when the results of the calculations had been accumulated for the 150 matrices,
the number of cases in which the various angles lay in suitably chosen ranges were counted
and the numbers so obtained used as estimates of the corresponding frequencies.

4. RESULTS AND DISCUSSION

The results are presented in the form of a series of histograms in Fig. 1. The ordinates have
been normalized to represent probability densities when the unit of measurement along the
abscissa is 1°, and the figures along the top of each histogram are the actual number of cases
counted in the indicated range. If p is the estimated probability of an angle lying in a
particular range, then an estimate of the standard error of p based on a sample of 150 is
[p(1 —p)/1501%, and horizontal dotted lines have been drawn one standard error above and
below the top of each rectangle of the histograms. The mean Z and the standard deviation s
of the estimated distribution are given on each histogram and are also indicated 13\(“

of the arrow and range at the bottom of each histogram. :

The dotted curves superposed on each histogram give an indication of the form of each
frequency function. These have been adjusted so that the area under each curve is unity.
Except for Min (110) each frequency function appears to have a single maximum, and
even in the case of Min (110) the existence of a double hump is by no means certain.
However, there are, for finer subdivisions of the ranges, indications of more than one hump
in some of the other frequency functions and the nature of the problem suggests that the
true frequency functions may consist of a number of continuous arcs which join at sharp

‘ corners.

eans
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As was mentioned in the .introduction, a tedious argument shows that the greatest
possible value for the angle of disorientation is 62-80°. A similar argument shows that the
greatest possible value of Min (100) is arcos 2 = 48-19° and that the rotation which achieves
the corresponding disorientation is most simply described as a rotation of 60° about an
axis (111). Although no further results of this type are known to the authors it is easily
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Fig. 1. Histograms derived from a random sample of 150. The ordinate is probability density when the
angles are measured in degrees. The figures at the top are the number of cases counted in each
range while the horizontal dotted lines indicate limits corresponding to one standard error from
the estimated total probability for each range. The mean Z and the standard deviation s of the
estimated distribution are indicated by the arrow and range at the bottom. An estimate of the
maximum value z,, of each variable is also given. The dotted curves indicate the general shape of

each frequency function.

shown that a rotation of 45° about an axis (100) gives Min (110) = arcos }(2 +/2) = 31-40°,
and the results given in Fig. 1 suggest that this is probably its greatest possible value. The
values, ,,, of the greatest possible values of each variable are given in Fig. 1 and where the
value is associated with limits of error it has been estimated as follows.

A rotation is uniquely defined by three suitable independent variables (e.g. the Eulerian -
angles) so that the variation of Min(110), say, can be represented by means of a four-
dimensional hypersurface. Now experience obtained in the calculation of the maximum
values of the angle of disorientation and Min (100) suggests that in all cases the appropriate
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hypersurface can be approximated in the neighbourhood of = z,, by a number of hyper-
planes all intersecting at a common point. Thus, when z is sufficiently near x,, the prob-
ability density would be expected to be proportional to (z,, —z)%. Except for the angle of
disorientation and Min {100} this expected behaviour can be roughly verified from Fig. 1
and z,, has been estimated by plotting p? against the mean value of z for the range concerned.
The limits of error stated in Fig. 1 are no more than reasonable guesses and the maximum
30 + 1° given for Min (110) is to be compared with the known result that the maximum is
probably 31-40°.

A simple argument accounts for the initial linear rise of the frequency functions for all
the Min (uvw) in Fig. 1. If the set (uvw) has 2n members defining n distinct lines Min (uvw)
is the least of the n? angles 6; between pairs of lines and cos §; is nniformly distributed on
the range (0, 1). Now the method of inclusion and exclusion shows that Pr {Min {wvw) < 6}
lies between the limits* X Pr{f; <6} and X Pr{f; <60}~ X Pr{f;<0,0;<0}. Thus, for 6

% % i<j
sufficiently small b Vi Cuvwy < ) =2 Pr 6, < 6) = n¥(1 —cos ).
The corresponding density function is n2sin @, and the estimated frequency functions in
Fig. 1 are in substantial agreement with this prediction up to an angle of about 24/n degrees.

5. CALCULATION OF RANDOM ORTHOGONAL MATRICES

Since the elements in successive columns of an orthogonal 3 x 3 matrix can be regarded as
the components of three orthogonal unit vectors, a random orthogonal matrix can be
constructed as follows. Choose a random unit vector X and write its components as the first
column. Choose.a second random vector y’ which is independent of x. These two vectors
define a random plane and in this plane there is a unit vector y perpendicular to x. The
components of y form the second column while the third column consists of the components
of X x y = z which is normal to the random plane. Thus, the problem is reduced to that of
computing the components of a random unit vector.
Let 2,, x,, 2, be three independent unit normal deviates with joint probability density

(2m)~texp (- $Za3).

This density is constant on the surface of the sphere 22 = constant, so that given the value
of § = X2 the probability that the point (z,, x,, ;) lies in any area of the surface of the sphere
is simply proportional to that area. Thus, the direction of the vector [z, #,, #,] is distributed

unlformly and X =[x, Xy, 3]/ St

is a random unit vector.
Similarly, we can find another independent random unit vector

Y = [ Yo 43)/ T,
where T' = 32 Then, if P = x.y/,
Y = [Sy,— Px,, 8y, — Py, Syz — P, /[S(ST — Pz)]é-

Finally, the remaining column of the required matrix follows by computing z = xx y.
The values of the random normal deviates were taken from the tables of Mahalanobis,

* This remark is due to Dr H. A. David of the Department of Statistics, University of Melbourne.
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Bose, Ray & Banerji (1934) and as a check on the overall accuracy of the calculations the
column sums ¢,, ¢, and ¢; were formed and it was verified that

ci+cE+ct=3.

The standard deviation of divergences from this equality due to rounding off errors is about
2 units in the last figure retained in the matrix elements.

The distributions of z,/S* and of the column sums ¢ are closely related to the ¢-distribution
and in three dimensions are both distributed uniformly* (Cramer, 1946, pp. 240, 387).
Thus, although they are not independent, all nine elements of a random orthogonal matrix
are uniformly distributed on the range (—1, 1) while the column sums are uniformly dis-
tributed on the range (—./3,4/3).

The 150 matrices were tested for deviations from these predictions by dividing the range
of each variable into 10 equal parts and testing for uniformity of distribution by means of
a x2-test with 9 degrees of freedom. The greatest value of ¥2 obtained from the elements
was 15-7 and for the column sums 22-6, while the corresponding mean values of y2 were 9-4
and 16-9. However, after permuting the columns in all the six possible ways,t these maxima
dropped to 13-1 and 15-9 respectively while the corresponding means were 9-7 and 12-4.
Thus there was then no significant deviation from uniformity of distribution at the 59,
level (x2 = 16-9).

The following four rotation matrices are typical of those computed by the above method:

0-8527 0-4846 0-1953 0-2294 —0-6454 —0-7286
0-2780 —0-7374 0-6155 0-9035 0-4196 —0-0872
0-4423 —0-4705 —0-7636 0-3620 —0-6383 0-6794
0-0443 —0-9973 0-0584 —0-3763 0-5764 0-7254
0-9773 0-0554 0-2045 0-7487 0-6504 —0-1285
—0-2072 0-0480 0-9771 —0-5458 0-4947 —0-6763

The authors wish to thank Dr E. J. Williams for suggesting the method used for cal-
culating the random orthogonal matrices and Dr G. J. Ogilvie and Prof. F. C. Frank for
discussion. Mr A. W. Davis checked the counting.
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* Thus, the cosine of the angle between a fixed direction and a random direction is uniformly dis-
tributed on the range (—1, 1). Hence, if £ the cosine of the co-latitude 'is chosen at random in the
range (—1, 1) and the longitude ¢ at random in the range (—, )

[(1—&*)?} cos ¢, (1 £ sin @, £],

is @ random unit vector; the sign of the square root is taken positively and negatively at random. This
method of calculation of a random unit vector is suitable for high speed computers.
t This removes any bias due to calculating the successive columns in a definite order.



