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ABSTRACT 
 

Superconductivity in high-Tc materials is often modeled as a percolation problem in which grain 
boundaries are classified as strong or weak-links for current transmission based on their 
disorientation angle.  Using Monte Carlo simulations, we have explored the topology and 
percolation thresholds for grain boundary networks in orthorhombic and tetragonal polycrystals 
where the grain boundary disorientations are assigned in a crystallographically consistent manner.  
We find that the networks are highly nonrandom, and that the percolation thresholds differ from 
those found with standard percolation theory.  For biaxially textured materials, we have also 
developed an analytical model that illustrates the role of local crystallographic constraint on the 
observed nonrandom behavior.   
 

INTRODUCTION 
 

Grain boundaries play a significant role in determining the critical current densities of high-
temperature oxide superconductors, as Jc varies inversely with grain boundary misorientation [1-
3].  In order to optimize the microstructure of the oxide film, substrates are processed in such a 
way as to impart a high fraction of low-angle (strong-link) boundaries to the oxide films [1, 2, 4].  
A small fraction of weak-link boundaries can be tolerated in the microstructure as long as they do 
not form a connected path across the film, so the connectivity and percolative properties of the 
grain boundary network are of prime importance to the resulting properties.     
 
The local connectivity among strong- and weak-link boundaries may be quantified by the triple 
junction distribution (TJD) which gives the population of junctions Ji coordinated by i (= 0, 1, 2, 
or 3) strong-link boundaries.  If boundaries are randomly assigned as strong-links (with 
probability p) or weak-links (with probability 1 – p), these populations are:  

 

( ) i3i
i p1p

i

3
J −−








=          (1) 

 

where the combinations 








i

3
are equal to 1, 3, 3, and 1 for i = 0, 1, 2, and 3 respectively.  We have 

recently performed a survey of existing experimental data [5], and find that these data do not 
follow the predictions of Eq. (1), but instead fall on different universal curves, independent of 
material class or crystal structure.  This is illustrated in Fig. 1, which includes data points from 
high-Tc superconductors [6-8] as well as the biaxially-textured Ni substrates that are often used in 
their production [1, 2, 9].  Here we see that triple junctions coordinated by two strong-link and 
one weak-link boundary (J2 junctions) occur less frequently than expected on the basis of a 
random assignment process, with a concurrent increase in the population of J3 junctions. 
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As Figure 1 illustrates, grain boundary networks have short-range nonrandom correlations at 
triple junctions; the assumption that grain boundaries can be randomly assigned character is thus 
invalid.  Unfortunately, models based upon standard percolation theory, which is in turn based 
upon the random assignment of boundary character, are still used frequently to model 
superconductivity [4, 10-12].  As we will discuss later, grain boundaries are constrained by the 
requirement for crystallographic consistency at triple junctions, which gives rise to the 
nonrandom form of the data in Fig. 1, and which must be accounted for in realistic 
microstructural models.  It has been the goal of our recent work to understand the origins of local 
boundary correlations on the basis of formal crystallography, and to determine the effects of such 
correlations on the percolation behavior of grain boundary networks.  In what follows, we 
summarize our recent results, placing emphasis on the relevance of these issues for modeling 
superconductivity.   
 

COMPUTER SIMULATIONS 
 

To examine the local coordination of grain boundaries at triple junctions in a crystallographically 
consistent manner, we use Monte Carlo simulations to assemble 2-D polycrystals with 1000 
grains per side.  The details of the simulations are provided elsewhere [5, 13], but the resulting 
microstructures exhibit either a fiber texture, or a single, general texture component (i.e., the 
typical biaxial texture).  We have examined various crystal structures, including cubic, 
orthorhombic and tetragonal crystals.  The misorientation of each grain boundary is determined 
directly from the grain orientations, and those with misorientation angles below a threshold value, 
θt, are classified as strong-links, while those with higher misorientations are considered weak-
links.  The TJDs for these crystallographically consistent networks are found to deviate 
significantly from those of randomly assembled networks, and are in good agreement with the 
experimental data points from Fig. 1.  As an example, the population of J2 junctions is shown in 
Figure 2, where the simulation results are shown as dotted (biaxial texture) and dashed (fiber 

Figure 1. Triple junction 
distributions from existing 
experimental data for Ni 
substrates (filled points) [1, 2, 
9] and high Tc superconductors 
(open points) [6-8].  These data 
are compared to the triple 
junction distribution for a 
random assemblage of 
boundaries as given by Eq. (1) 
(solid lines).   
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texture) lines.  The other populations, J0, J1 and J3, also shift away from the random distributions 
and toward the data, though the effects of crystallographic constraint are less noticeable than for 
J2.  In these simulations, different threshold angles were used (θt = 2 to 10°) and the TJD has been 
found to be invariant with respect to θt or crystal structure. 
 

ANALYTICAL MODEL 
 

The nonrandom coordination of grain boundaries at triple junctions is a direct consequence of 
local crystallographic constraints, which can be captured analytically using formal 
crystallography.  We have studied these local correlations in some detail, and have recently 
developed a closed-form analytical solution for the nonrandom TJD in the case of microstructures 
with textures ranging from ideal fiber to ideal biaxial [5].  In our approach, the assignment of 
grain boundary character is dependent on how many of the other boundaries at the triple junction 
have been previously assigned, and what those specific assignments were.  For this purpose we 

introduce a local transition probability, y
xΠ , defined as the density distribution of strong-link 

boundaries at a triple junction where y (= 0, 1 or 2) boundaries have been previously assigned, x 
of which have been classified as strong-link boundaries.  In terms of these local transition 
probabilities, the TJD is simply given by: 
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For J1 and J2, there are three terms in the equation since there are three unique variants of each of 
these junctions.  In an unconstrained system where the local assignment probabilities are not 

Figure 2. Population of J2 triple 
junctions (two strong-link 
boundaries and one weak-link 
boundary) in a randomly assembled 
network (solid line), and 
crystallographically consistent 
networks with either biaxial texture 
(dotted line) or fiber texture 
(dashed line).  The points are the 
experimental data from Figure 1. 
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order-dependent, all boundaries may be assigned as strong-links with probability y
xΠ  = p and Eq. 

(2) reduces exactly to Eq. (1).   
 
The analytical derivation of the local transition probabilities is lengthy and can be found in Ref. 
[5]; for lack of space we present here only a brief summary.  Beginning with the premise that all 
grains rotate about a common crystallographic axis, the distribution of their in-plane orientation 
angles, φ, is given by a uniform, random distribution on the range [-φmax, φmax], where φmax 
controls the sharpness of the texture.  Grain boundary misorientations, θ, are then calculated 
simply as the difference between neighboring grain orientations (i.e., θb = φA - φC).  Although by 
convention, misorientation angles are often referred to as the absolute value of θ, the present 
derivation is mathematically simplified by allowing for both positive and negative values of θ.  In 
this case, crystallographic consistency requires that the sum of the grain boundary misorientation 
angles for boundaries a, b, and c be zero:  

θa + θb +θc = 0          (3) 
To begin, we assume that the misorientation of boundary a, θa, is known.  Assignment of θa 
necessarily limits the possible orientations for the two neighboring grains, φB and φC, with respect 
to each other such that φB may have the full range of values and φC is restricted to the range: 
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The distribution of possible misorientation angles for boundary b, F(θb) is then found through the 
convolution of the orientation distributions of grains A and C, averaged over all values of θa:  
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where F(φA) is a uniform, random distribution on the entire range [-φmax, φmax], and F(φC) is a 
uniform, random distribution on the range given by Eq. (4).  In this expression, F(θa) is the 
distribution of boundary disorientations, which is a symmetric triangular distribution centered 
around θ = 0.  Using Eqs. (4,5), closed form expressions for F(θb) may be found readily.  Finally, 
the local transition probabilities can be found by determining the density of the distribution F(θ) 
with a misorientation angle lower than θt:  
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where y
xF  is the density distribution given y (= 0, 1 or 2) boundaries that have been assigned, x of 

which are strong-links; the functions y
xF  are found by partitioning the full functions F from Eq. 

(5) based on their neighborhood (i.e., x and y).  Solving Eq. (6) then results in expressions for y
xΠ  

that depend only on p, the global fraction of strong-link boundaries, and which can be derived in 
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closed form.  Since these expressions are quite long they are omitted here for brevity, but the 
reader is referred to Ref. [5] for details.  The functional form of the transition probabilities is 

given by the solid lines in Figure 3.  If boundaries can be assigned randomly, y
xΠ  would equal p 

exactly; deviation above this line means that a strong-link boundary is more likely to coordinate 
the junction than in the random case, while deviation below means that a weak-link boundary is 
crystallographically preferred.  In Fig. 3, it is clear that only the first boundary may be assigned 
randomly.  As the number of assigned boundaries increases from zero to two, the constraint on 

the system increases and the deviations from the line y
xΠ  = p are greater.   

 
The most significant effects of the crystallographic constraint emerge after two boundaries have 
been previously assigned (Fig. 3c).  From these local transition probabilities, 2

xΠ , the nonrandom 

nature of the triple junction distribution may be appreciated.  For example, 2
1Π  is less than p for 

all values of p, such that it is relatively unlikely that the third boundary will be assigned as a 
strong-link boundary.  This means that J1 junctions are more likely to form, while J2 junctions will 
occur infrequently.  The decreased population of J2 junctions is even more strongly favored by 

2
2Π , which is greater than p for all values of p.  For triple junctions in which two boundaries are 

assigned as strong-links, the probability is very high that the third boundary will also be a strong-
link boundary, promoting J3 over J2 junctions.  These trends agree quite well with those observed 

in the experimental data in Fig. 1, and in fact the values of y
xΠ can be used with Eq. (2) to obtain a 

complete TJD that matches the experimental data quite well [5]; in Fig. 2 the simulation results 
for the fiber textured case are reproduced exactly by this analytical model.  This approach 
illustrates the strong constraints imposed by the need for crystallographic consistency at triple 
junctions, and captures the true correlations known to exist in textured superconductor materials. 
 

 
Figure 3. The solid lines represent the analytical model for y

xΠ  [5], the density distribution of 
strong-link boundaries at a triple junction where y (= 0, 1 or 2) boundaries have been assigned, x 
(≤ y) of which have been classified as strong-links.  In a randomly assembled lattice, the 

expectation value is y
xΠ  = p (dashed lines).  If y

xΠ  is greater than p, a strong-link boundary is 

more likely to coordinate the junction, while if y
xΠ  is less than p, a strong-link boundary is less 

likely.   
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DETERMINATION OF THE PERCOLATION THRESHOLDS 
 

In addition to inducing nonrandom correlations at triple junctions, crystallographic constraints 
also influence the topology of the grain boundary network, leading to different percolation 
thresholds.  We have found the percolation thresholds from the simulated 2-D polycrystals 
described previously using the standard Hoshen-Kopelman algorithm [14], where the simulations 
used various crystal structures and different values of θt.  Here we present the percolation 
threshold for current flow, which is related to the bond percolation problem on the grain boundary 
network through the dual lattice [15].  The percolation thresholds for the non-conducting to 
conducting transition are pc ≈ 0.313 and 0.336 for fiber and biaxial textures respectively, different 
from the expected percolation threshold of pc ≈ 0.347 for a random problem.  Again, crystal 
structure and θt are found to have no effect on pc.  From a materials design perspective, the shift 
in pc implies that fewer strong-links are needed to develop superconducting paths than one might 
nominally expect.  Of course superconductivity is not a simple binary percolation problem in 
practice, but the nonrandom nature of the grain boundary network is inescapable, and is also 
expected to influence more complex physical models of superconductivity in polycrystals. 
 

CONCLUSIONS 
 

Through an analysis of existing experimental data as well as computer simulations, we have 
found that when grain boundary networks are divided into populations of low- and high-angle 
boundaries (as is relevant for superconductivity), they have nonrandom connectivity at the 
nearest-neighbor level.  These local correlations can be accurately captured by considering the 
constraint of crystallography around a triple junction, and result in percolation thresholds that 
differ from that of a randomly assembled lattice.     
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