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Abstract

Random percolation theory is a common basis for modelling intergranular
phenomena such as cracking, corrosion or diffusion. However, crystallographic
constraints in real microstructures dictate that grain boundaries are not
assembled at random. In this work a Monte Carlo method is used to construct
physically realistic networks composed of high-angle grain boundaries that are
susceptible to intergranular attack, as well as twin-variant boundaries that are
damage resistant. When crystallographic constraints are enforced, the simulated
networks exhibit triple-junction distributions that agree with experiment and
reveal the non-random nature of grain-boundary connectivity. The percolation
threshold has been determined for several constrained boundary networks and is
substantially different from the classical result of percolation theory; compared
with a randomly assembled network, about 50–75% more resistant boundaries
are required to break up the network of susceptible boundaries. Triple-junction
distributions are also shown to capture many details of the correlated percolation
problem and to provide a simple means of ranking microstructures.

} 1. Introduction

Intergranular phenomena, including corrosion, cracking and diffusion, have fre-
quently been regarded as percolative phenomena (Wells et al. 1989, Lim and
Watanabe 1990, Palumbo et al. 1991, Aust et al. 1994, Watanabe 1994, Pan et al.
1995, Gertsman and Tangri 1997, Lehockey et al. 1998, Kononenko et al. 2001). In
this framework, grain boundaries are classified as being either ‘susceptible’ or ‘resis-
tant’ to intergranular attack, and random bond percolation theory (for example
Stauffer and Aharony (1992)) has commonly been used to predict, firstly, the size
scale of susceptible boundary paths or, secondly, the threshold fraction of resistant
boundaries required to disrupt the percolating network of susceptible boundaries.
For example, Wells et al. (1989) have calculated the percolation threshold for ran-
domly assembled two-dimensional (2D) and three-dimensional (3D) grain-boundary
networks and applied the results to intergranular stress corrosion cracking data for
austenitic stainless steel. Palumbo and co-workers have also predicted the scale of
the susceptible grain-boundary network on the basis of random probabilistic analy-
sis and thereby estimated the resistance of microstructures to intergranular attack
(Palumbo et al. 1991, Aust et al. 1994, Lehockey et al. 1998).
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For many intergranular phenomena, the class of ‘twin-variant’ grain boundaries
has been correlated with improved physical properties compared with random high-
angle grain boundaries, including resistance to self-diffusion, corrosion and cracking
(Don and Majumdar 1986, Palumbo and Aust 1992, Watanabe 1993,
Thaveeprungsriporn and Was 1996, Palumbo et al. 1998, Was et al. 1998,
Gourges 2002). Within the framework of the coincidence site lattice model (Sutton
and Balluffi 1995), they are denoted as S ¼ 3n boundaries, where n is a positive
integer; among these, only the S ¼ 3, S ¼ 9 and S ¼ 27 twin variants (n4 3) are
correlated with improved properties. Because of their desirable properties, these
grain boundaries are often promoted through grain boundary engineering, which is
primarily applied to low or medium stacking fault-energy fcc metals that are suscep-
tible to annealing twinning (Gertsman et al. 1994, 1996, Palumbo 1998, Palumbo et
al. 1998, Randle 1999, Kumar et al. 2000). To estimate the resistance of a micro-
structure to intergranular damage, the fraction fS of resistant boundaries is often
measured; clearly, higher values of fS are desirable to reduce the connectivity of
susceptible grain boundaries.

As already described above, many workers have used a scalar measure such as fS
to predict the connectivity of the grain-boundary network on the basis of random
percolation theory and thereby to estimate the resistance of the microstructure to
intergranular attack. These efforts are extremely valuable, since fS can now be read-
ily assessed from large metallographic sections using electron back-scatter diffraction
(EBSD), and used to predict the performance of materials in service. However,
several researchers (for example Gertsman et al. (1996), Kumar et al. (2000) and
Schuh et al. (2002a)) have pointed out that boundary connectivity is complicated by
the need for crystallographic constraints at triple junctions according to the S-
product rule (Miyazawa et al. 1996):

SaSb ¼ m2Sc; ð1Þ

where a, b and c denote the three boundaries that meet at the junction, and m is a
common divisor of a and b. Equation (1) explicitly dictates that grain-boundary
connectivity cannot be regarded as a random binary percolation problem.

In a recent study (Schuh et al. 2002a), issues of boundary connectivity were
examined experimentally in a Ni-based alloy, by identifying isolated clusters of
connected grain boundaries from 2D EBSD data sets. That work demonstrated
that the grain-boundary topology developed during sequential grain-boundary engi-
neering processing could not be predicted on the basis of a random assignment of
grain boundaries according to fS. Additionally, the coordination of S boundaries at
triple junctions was found to reflect more accurately the true topology of the grain-
boundary network. Preliminary Monte Carlo (MC) simulations of grain-boundary
networks have also shown that the non-random character of triple-junction distribu-
tions could be accounted for through the application of crystallographic constraints
at each junction (Minich et al. 2002). In the present article we expand on these issues
by exploring connectivity and percolation for simulated 2D grain-boundary net-
works. We present an MC method for construction of physically reasonable grain
boundary networks correlated at triple junctions according to equation (1), and
examine the relationships between fS, triple-junction correlations, network connec-
tivity and the percolation threshold for susceptible grain boundaries.
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} 2. Construction of constrained networks

To date, experimental studies of grain-boundary character distribution (GBCD)
and grain-boundary networks have been restricted to 2D sections of microstructures.
Accordingly, we limit our analysis here to model 2D microstructures based on a
regular hexagonal grid. For a binary random bond percolation problem, there are
only two types of boundary, for example, ‘resistant’ and ‘susceptible’ boundaries.
With a random MC approach, the full lattice is then constructed by assigning the
hexagonal grid edges as resistant boundaries with a probability fS. As described
previously, this random approach does not account for the required constraint
imposed by the S-product rule (equation (1)) at triple junctions. Unfortunately,
equation (1) cannot be simply implemented for the binary classification of ‘suscep-
tible’ and ‘resistant’; numerical values of S are required. In principle, the full range
of positive odd integers are possible values for S in cubic crystals; so, once a bound-
ary is identified as resistant, there is a question as to how it is assigned a S value in a
physically meaningful manner.

We adopt a simple approach to simulating grain-boundary networks, using four
boundary types: three twin variants, S ¼ 3, S ¼ 9 and S ¼ 27, which are all assumed
to be ‘resistant’, and an additional random large-angle boundary type, which is
susceptible to intergranular damage and represents all S greater than 29. This sim-
plification is quite reasonable for low to medium stacking-fault-energy materials,
where the population of low-S boundaries is almost entirely twin variants, and
more than half comprised S ¼ 3 boundaries. Furthermore, the remaining types of
low-S boundaries (S ¼ 5, S ¼ 7, S ¼ 11, etc.) not only are infrequently observed in
most metals but also are more tenuously linked to special properties (Randle 1999,
Gourges 2002). For these reasons, and as a first approximation of the full complexity
of grain-boundary networks, we consider only the twin variant boundaries for the
purposes of the present simulations.

The construction of a correlated hexagonal grain boundary network proceeds
according to the flow chart in figure 1. It is assumed that, of the three boundaries
that coordinate a triple junction, two may be assigned on the basis of a random
selection procedure; the third boundary is then required to satisfy the constraint
imposed by equation (1). Unconstrained boundaries are chosen as follows. Firstly,
the boundary is assigned as ‘resistant’ or ‘susceptible’ with a probability fS or 1 � fS
respectively; the resistant boundary fraction is specified as an input to the simulation.
If the boundary is to be resistant, then it must further be assigned a S value of 3, 9 or
27. Here, a second numerical probability is introduced, A � f3=fS, which represents
the fraction of resistant boundaries that are of type S ¼ 3; A is therefore a measure
of twin-boundary prominence. In practice, the value of A is numerically usually
between 0.4 and 0.9, based on experiments (Kumar et al. 2000, Schuh et al. 2002c)
and simulations of multiple twinning events (Gertsman and Tangri 1995). Palumbo
et al. (1992) considered the efficiency of twinning in producing other low-S bound-
aries theoretically and suggested that A ¼ 2=3 for the case where each twin boundary
coordinates one additional low-S boundary. Thus, the value of A is experimentally
measurable, is physically meaningful and lies within a relatively narrow range.
Although it is beyond the scope of this paper, in principle A may be physically linked
to intrinsic material properties such as stacking-fault energy, as well as the proces-
sing history of the material.

In the case where a resistant boundary is not S ¼ 3, then it is either S ¼ 9 or
S ¼ 27. The boundary is then assigned as a type S ¼ 9 with probability A, and
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S ¼ 27 with probability 1 � A. This approach is justified by experimental data
(Kumar et al. 2000, Schuh et al. 2002c), where f3=fS � f9=ð f9 þ f27), and is physically
reasonable as well; two S ¼ 3 boundaries must interact to produce each S ¼ 9
boundary (giving a local value A ¼ 2=3), while a S ¼ 3 and S ¼ 9 boundary (or a
total of at least three S ¼ 3 boundaries) are required to generate a single S ¼ 27
boundary (giving A5 0:5). Thus, S ¼ 3 boundaries are most prominent among twin
variants, and the S ¼ 9 population is larger than that of S ¼ 27 boundaries in
roughly the same proportion.
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Figure 1. Flow chart illustrating the MC method of assembling grain-boundary networks.



The above approach allows the entire GBCD to be specified using only two
parameters, fS and A, and the selection procedure outlined in figure 1 is summarized
as follows. The probability fx of assigning an unconstrained boundary as type x is
given as

f3 ¼ fSA; ð2 aÞ

f9 ¼ fSð1 � AÞA; ð2 bÞ

f27 ¼ fSð1 � AÞ2; ð2 cÞ

fSusceptible ¼ 1 � fS: ð2 dÞ

As noted earlier, at each triple junction, only two of three boundaries can be
regarded as unconstrained, and the third boundary must then be chosen such that it
satisfies the constraint of equation (1). All the combinations that meet the constraint
for this limited population of boundaries are assembled in figure 2. As shown in the
flow chart in figure 1, after each boundary is assigned by the scheme above, the
algorithm identifies the adjacent boundaries and checks to see that equation (1) is
satisfied. If there is a violation of equation (1), then the boundary is discarded and
the assignment process begins again; this process is repeated until an acceptable
boundary is selected.

In the present MC scheme, it is important to note that the input or ‘local’ values
of fS and A are not necessarily equal to the ‘global’ values in the completed network.
Because of the nature of the crystallographic constraint, the global values of these
parameters evolve during the simulation and, on average, differ from the input
values by about 0.1. In the discussions that follow, we always refer to the global
values of fS and A ð¼ f3=fSÞ and note that these global quantities parametrize the
networks and not the method used to construct them.

} 3. Triple-junction distributions

A simple metric for boundary connectivity is given by the so-called triple junc-
tion distribution, which classifies the node points of the network into four types
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Figure 2. The four types of triple junction, Ji (i ¼ 0; 1; 2; 3), shown together with all possible
combinations of boundary types that satisfy crystallographic constraints (equation (1))
for the limited population of boundary types used in the MC simulations.



(Gertsman and Tangri 1995, Gertsman et al. 1996, Randle and Davies 1999, Kumar
et al. 2000). The type Ji (i ¼ 0; 1; 2 or 3Þ junction coordinates i resistant and 3 � i
susceptible boundaries, as shown in figure 2. If a triple junction is assembled through
a process of random sampling without regard to crystallographic constraint, then the
probabilities of forming each junction type are given by

J0 ¼ ð1 � fSÞ3; ð3 aÞ

J1 ¼ 3fSð1 � fSÞ2; ð3 bÞ

J2 ¼ 3f 2
Sð1 � fSÞ; ð3 cÞ

J2 ¼ f 3
S : ð3 dÞ

In figure 3, this random triple-junction distribution is plotted as a function of fS, for
all four types Ji. Also shown in figure 3 are experimental data points from the studies
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Figure 3. The triple-junction distributions for grain-boundary networks: (- - -) analytical
solution based on purely random sampling (equation (3)); (——), constrained
lattices constructed using the MC algorithm; (*), experimental data points for Cu
and Ni-base alloys from Schuh et al. (2002a); (&), experimental data points for Cu and
Ni-base alloys from Kumar et al. (2000); (~), experimental data points for Cu and Ni-
base alloys from Randle and Davies (1999).



by Randle and Davies (1999), Kumar et al. (2000) and Schuh et al. (2002a), which
show the triple-junction distributions experimentally measured on specimens of Cu
and a Ni-based alloy (Inconel 600). For each of these data sets, the number fraction
of resistant boundaries has been determined from the following general relation:

fS ¼ 1
3
ðJ1 þ 2J2 þ 3J3Þ: ð4Þ

In general, this quantity may be different from the ‘special boundary fraction’
reported by some workers, calculated on the basis of boundary lengths rather
than numbers. As noted by, for example, Randle and Davies (1999) and Kumar et
al. (2000), the length fraction of resistant boundaries is not expected to correlate with
the triple-junction distribution in a straightforward fashion.

As observed elsewhere (Kumar et al. 2000, Minich et al. 2002), the experimental
results assembled in figure 3 cannot be described by equation (3) based on the
random assignment of boundaries according to fS. In particular, the frequency of
J2 junctions is substantially below the prediction of equation (3 c) over the full range
of resistant boundary fractions, while the J1 and J3 junctions occur more frequently
than expected from equation (3). Physically, these results have previously been jus-
tified on the basis of crystallographic constraint via equation (1), which suggests
that, when two S boundaries meet at a triple junction, the third boundary is likely
to be of low-S type as well. Consequently, J2 junctions appear only infrequently, and
resistant boundaries tend to assemble into J1 or J3 junctions instead. The J0 junc-
tions are not directly affected by crystallographic constraint through equation (1)
and thus more closely match the expectations of a random assembly process.

Also shown in figure 3 are the results of MC simulations based on the population
of twin-variant boundaries, which incorporate the local crystallographic constraint
of equation (1). Here three physically reasonable values of the control parameter A
(the twin-boundary prominence) have been used, and an increase in A causes the
triple-junction distribution to diverge more strongly from the random case of equa-
tion (3). In particular, the constraint causes a substantial depression of the J2 junc-
tion frequency, and somewhat smaller increases in the J1 and J3 junctions, in
agreement with the experimental data. Furthermore, the MC simulations appear
to bracket the experimental data for J1, J2 and J3 from three independent studies
on two different materials. Finally, we note that crystallographic constraint has little
role in the assembly of J0 junctions, for which the MC results are very close to both
the experimental data and the predictions of equation (3).

For the triple junctions of figure 3, we do not expect that the experimental data
should be described by a single value of A, since this parameter will vary with
processing history, texture and intrinsic materials properties such as stacking-fault
energy. Furthermore, in iterative processing schedules involving multiple twinning
events, the value of A has been shown to evolve with fS, in both experiments (Kumar
et al. 2000, Schuh et al. 2002c) and simulations (Gertsman and Tangri 1995).
However, it is encouraging that the experimental data, with typical values in the
range A ¼ 0:4–0.8, are bounded by the simulation results with similar input values.

} 4. Percolation thresholds

For many material properties that are controlled by intergranular failure
mechanisms, the critical design parameter for the grain-boundary network is the
percolation threshold for the susceptible boundaries. For example, percolation mod-
els have been applied to the analysis of corrosion (Palumbo et al. 1991, Aust et al.
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1994, Lehockey et al. 1997), electromigrative diffusion (Kononenko et al. 2001) and
cracking (Lim and Watanabe 1990, Palumbo et al. 1991, Aust et al. 1994, Watanabe
1994, Pan et al. 1995, Gertsman and Tangri 1997), where it is detrimental to have a
percolating network of susceptible boundaries. However, all these analyses have
incorporated the basic assumption of random percolation theory, namely that
boundary types (susceptible versus resistant) can be selected at random from a
known distribution. With this assumption, the classical results from percolation
theory apply; the percolation threshold on a 2D hexagonal lattice is f c

S ¼ 0:347
(Stauffer and Aharony 1992). Below this value there is an infinite percolating cluster
of susceptible boundaries, which breaks up above the threshold. To our knowledge,
there is no existing theory that gives the percolation threshold for a lattice that obeys
a local constraint equation such as equation (1) at each node; we address this issue in
the following.

Percolation was studied on hexagonal grids with 100 grains on each side, invol-
ving about 3 	 104 grain boundaries. For given input values of fS and A, several
hundred lattices were constructed, and the fraction of networks containing a perco-
lative susceptible grain boundary cluster was calculated. Figure 4 shows this value P
as a function of the resistant boundary fraction fS. The black line in figure 4 is the
result of such simulations for the case where susceptible and resistant boundaries are
assigned by a random selection process, and no constraint is enforced. As expected,
there is a critical value of fS that separates regimes of percolating or non-percolating
susceptible grain-boundary networks. In figure 4 this transition is not abrupt at the
theoretical value of f c

S ¼ 0:347 (Stauffer and Aharony 1992) but exhibits some spread
around this value; this is a finite-size effect that would disappear if the simulated
lattice size were increased towards infinity.
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Figure 4. The probability P that susceptible boundaries percolate on a finite grid measuring
100 grains on a side, as a function of the resistant boundary fraction fS. The black line
illustrates the results for unconstrained assignment of boundaries, which agrees with
the results of classical random percolation theory. The grey lines show the shift of the
percolation threshold when crystallographic constraints are enforced.



The grey lines in figure 4 illustrate the effect of crystallographic constraint on the
percolation threshold, for two example values of the twin prominence A. Local
constraints are found to impact substantially on the percolation behaviour, giving
percolation thresholds of f c

S � 0:5 and f c
S � 0:55 for input values A ¼ 0:67 and

A ¼ 0:5 respectively. Figure 5 summarizes the results of our MC simulations for
four different reasonable values of A, comparing the resulting percolation thresholds
with that expected on the basis of a random assembly process. Over the range
A ¼ 0:4–0.75, the percolation threshold is substantially higher than the value of
f c
S ¼ 0:347 for the random assembly case. Furthermore, the changes in f c

S with A
are non-monotonic; there appears to be an inflection near A ¼ 0:67, beyond which
the percolation threshold rises. This increase may be expected, since in the limit
where A ! 1, all the resistant boundaries are type S ¼ 3. According to the con-
straint expressed in figure 2 and equation (1), it then becomes impossible for a triple
junction to coordinate either two or three resistant boundaries; only the 3,R,R and
R,R,R combinations in figure 2 would be allowed. Accordingly, it would become
impossible to break up the percolating susceptible boundary network, and the per-
colation threshold should diverge to unity. Of course, in this limit, the resistant
fraction cannot exceed fS ¼ 1=3; so the susceptible boundary network cannot be
significantly disrupted. The upward concavity of the data in figure 5 is thus reason-
able and confirms that crystallographic constraint necessarily increases the percola-
tion threshold; there is apparently no special case where a constrained lattice can
approach the threshold of a randomly assembled lattice.
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Figure 5. Percolation thresholds for susceptible boundaries, in crystallographically con-
strained 2D lattices (*), plotted as a function of the twin-boundary prominence A.
Also shown are the percolation thresholds that result when S ¼ 3 boundaries are
excluded from the analysis (*).



From the viewpoint of materials design, the results presented in figures 4 and 5
are of prime importance. If engineering materials are to be qualified as ‘resistant’ to
some form of intergranular attack, then fS must exceed the percolation threshold of
the susceptible boundary network. The substantially higher percolation threshold for
crystallographically constrained lattices (figures 4 and 5) indicates that the grain-
boundary network must be judged according to a higher standard than random
percolation theory would suggest. Also, figure 5 reveals that the exact value of the
percolation threshold may be a function of details in the GBCD. For example, the
multiple-twinning simulations of Gertsman and Tangri (1995) indicate that the value
of A decreases with increasing fS; experimental data (Kumar et al. 2000, Schuh et al.
2002c) show a similar trend. The percolation threshold then becomes a ‘moving target’
that increases slightlywith increasing fS according to figure 5. Traditionally, the goal of
grain-boundary engineering has been solely to increase the value of fS; the present
results suggest that a high prominence of S ¼ 3 twin boundaries (0:6 < A < 0:8)
may also be desirable to reduce the percolation threshold.

Although the present results are limited to 2D lattices, the relationship between
percolation and cluster properties in two and three dimensions is well known for
standard percolation problems (Stauffer and Aharony 1992), and there are scaling
laws that link these problems with those in even higher-dimensional spaces as well.
At present, the appropriate scaling laws for the present constrained percolation
problem are not yet known; future research in this area will focus on scaling and
extension to higher dimensions. One limitation to the power of such scaling laws is
the necessity that the microstructure (i.e. the GBCD) be isotropic. Fortunately,
experimental work has repeatedly shown that twin-dominated microstructures
tend to be texture-free and essentially isotropic. At any rate, the present observation
of a shift in the percolation thresholds in two dimensions strongly suggest that
crystallographic constraint should also increase the percolation thresholds in three
dimensions.

In the literature on grain-boundary engineering, it has been observed that S ¼ 3
twin boundaries (especially coherent twin boundaries) may not strongly affect the
connectivity of the grain-boundary network, since these boundaries do not replace
susceptible boundaries per se but rather develop in the interior of existing grains
(Alexandreanu et al. 2001, Alexandreanu and Was 2001). We believe that this line of
reasoning partly explains why the percolation thresholds in constrained lattices are
higher than those of a randomly assembled lattice. In some sense, the S ¼ 3 bound-
aries may contribute less than other S boundaries to the topology of the network; so
their inclusion in the analysis inflates fS without a commensurate reduction of the
susceptible boundary connectivity. If this point of view were strictly interpreted, then
twin boundaries would be completely excluded from the analysis, counting neither as
resistant nor as susceptible. This philosophy has been followed in some experimental
studies where coherent S ¼ 3 boundaries were neglected (Crawford and Was 1992,
Thaveeprungsriporn and Was 1996, 1997, Alexandreanu et al. 2001), while other
studies have emphasized the importance of S ¼ 3 boundaries in the grain-boundary
network (Kumar et al. 2000).

Excluding all S ¼ 3 boundaries from the analysis amounts to a redefinition of
the resistant boundary fraction according to:

f 0
S ¼ fS

1 � A

1 � fSA
; ð5Þ
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where the quantities on the right-hand side are those already defined (which include
the S ¼ 3 boundaries), and the new quantity, f 0

S, is the resistant fraction of bound-
aries when the S ¼ 3 boundaries are ignored. In figure 5, the open circles show the
percolation thresholds for constrained lattices, after correcting the data with equa-
tion (5). Of course, the exclusion of S ¼ 3 boundaries does reduce the percolation
threshold, bringing it closer to that expected for a randomly assembled lattice.
However, if the S ¼ 3 boundaries played no role whatever in determining the con-
nectivity of the boundary network, then the corrected data in figure 5 should collapse
on to a horizontal line. Such is clearly not the case. In a statistical sense, then, the
S ¼ 3 boundaries do appear to impact the connectivity of the network; simply
neglecting these boundaries does not reduce the problem to one of a random-assem-
bly process. Therefore, these simulations offer no reason why the S ¼ 3 boundaries
should be neglected from the GBCD analysis. Of course, the present MC networks
are only simple representations of true microstructures and do not capture the
physics of twinning. Most notably, there is no differentiation between coherent
and incoherent S ¼ 3 boundaries in the present simulations; more detailed physical
simulations may yield somewhat different conclusions in the role of S ¼ 3 bound-
aries. Also, since equation (1) is strictly valid only for exact coincident-site lattice
(CSL) orientations, the present simulations have not allowed for small deviations
from ideal twin or twin-variant orientations.

} 5. Microstructural rankings

A topic of perennial interest to the field of grain-boundary engineering is ranking
of microstructures on the basis of susceptibility to intergranular attack.
Traditionally, the resistant boundary fraction fS has been used for this purpose
(Palumbo et al. 1991, 1998, Aust et al. 1994, Lehockey et al. 1998). However, because
grain-boundary networks do not conform to standard percolation theory, fS is not
expected to correlate with the size scale of susceptible boundary clusters. Recent
experimental work has led to the development of a new ranking criterion in compar-
able dimensionless units with the resistant boundary fraction, based on the triple-
junction types: �

J2

1 � J3

�1=2

: ð6Þ

This ranking criterion was advanced by Kumar et al. (2000) on the basis of a crack
arrest argument.

In recent experimental work by Schuh et al. (2002a), five different specimens of
Inconel 600 were analysed to assess the scale of the largest path of susceptible
boundaries in the microstructure. Those workers found that the criterion of equation
(6) provided a true quantitative ranking of the microstructures, while fS was more
prone to ranking errors and was not as quantitatively accurate. That study, while
suggestive, was based on only five data points and was prone to several sources of
experimental error. The present MC technique allows many networks to be readily
constructed and analysed, without substantial limitations on the size or quality of the
data. We have therefore performed detailed analytical work to classify the size and
shape of grain-boundary clusters, using the same techniques proposed by Schuh et
al. (2002a). Qualitatively, we find identical results with that experimental work.
Specifically, the ranking criterion of Kumar et al. (2000) (equation (6)) is consistently
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a more accurate predictor of the size scale of susceptible boundary clusters than is
the resistant boundary fraction. Although this has been found to be true for many
thousands of simulated networks, we present here just one example that particularly
highlights this important result.

Figure 6 shows the relationship between the two ranking parameters and the size
of the susceptible boundary network for 56 simulated lattices. All these lattices
exhibited a resistant boundary fraction within a very narrow range:
fS ¼ 0:70 � 0:01. The internal control parameter was also constrained to a narrow
range of physically reasonable values: A ¼ 0:62 � 0:11. The quantity plotted in figure
6, D90, represents the maximum linear dimension (caliper dimension) of a cluster of
susceptible boundaries, in units of grain edge length; the subscript 90 here refers to
the ninetieth percentile of all boundary clusters in the microstructure. In essence,
90% of all susceptible boundary paths are smaller than D90, which is a scalar mea-
sure of the susceptible boundary connectivity.

Figure 6 (a) shows the relationship between fS and the susceptible boundary path
lengths. Since all the data were acquired on lattices with similar values of fS, this
figure simply shows the amount of scatter in D90 for a given resistant boundary
fraction. If fS were the only microstructural descriptor available, then the scale of
susceptible boundary paths could only be approximated to within about �25 grain
edge lengths. If some of the higher values of D90 are treated simply as outliers, there
is still an uncertainty of �10 or more grain edges. In short, fS cannot accurately
predict the size scale of potential failure paths.

Figure 6 (b) shows the same data points, now plotted against the ranking criter-
ion of equation (6) based on the triple-junction distributions of the simulated lattices.
Compared with the vertical trend in figure 6 (a), the data in figure 6 (b) have spread
on to a well-defined curve, where D90 is a sensitive function of the ranking criterion.
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Figure 6. Examples of material ranking based on (a) fS or (b) the criterion of equation (6).
The parameter D90 is the size of the ninetieth percentile cluster of susceptible grain
boundaries in units of the grain edge length; 90% of susceptible boundary paths are
smaller than D90. Whereas D90 is poorly predicted by fS in (a), it is sensitively depen-
dent on the criterion of equation (6) in (b). For these simulations, A ¼ 0:62 � 0:11.



Thus, if the triple-junction distribution of the microstructure can be assessed, then
the scale of susceptible boundary clusters can be uniquely determined with little
error. From a physical point of view, equation (6) incorporates subtle issues of
boundary connectivity that are not captured by fS. These connectivity variations
arise owing to changes in the details of the GBCD, since many GBCDs are
possible for a single value of fS. Although we have parametrized all the subtle
variations in GBCD into the scalar value of A in the present simulations, the
concepts revealed here are general; the connectivity of the grain-boundary net-
work is in part dictated by the GBCD, independently of fS. Consequently, from a
materials ranking point of view, we find that equation (6) (figure 6 (b)) is much
more useful and reliable than fS (figure 6 (a)), which can never fully characterize
the microstructure.

It is important to note that experimentally the values of J2 and J3 are usually
derived on the basis of the full set of CSL boundaries (up to S ¼ 29), whereas the
present MC model neglects the majority of these boundaries and focuses only on the
twin variants. This difference raises the question as to how important the non-S ¼ 3n

boundaries are in terms of the connectivity of the random boundary network; if
twin-variant boundaries only rarely assemble into J2 junctions, then it is possible
that non-S ¼ 3n boundaries are largely responsible for those junctions in experimen-
tal microstructures. Although the ‘susceptible’ or ‘resistant’ nature of such bound-
aries may be open to question, we find that experimental triple-junction distributions
such as those in figure 3 are qualitatively very similar whether or not the non-
S ¼ 3nS boundaries are included in the analysis (Schuh et al. 2002b).
Furthermore, preliminary MC simulations using the full range of positive odd inte-
gers for S exhibit the same qualitative features as the present twin-variant-based
model (Stölken et al. 2001). Thus, although the present model is quite simple, we
believe that it captures the essential statistical features of the grain boundary net-
work.

The criterion of equation (6) contains information about the nearest-neighbour
correlations between grain boundaries and has been found here and elsewhere to
correlate well with the connectivity of the boundary network. These findings suggest
that only nearest-neighbour information is necessary to capture the network topol-
ogy fully and that no higher-order correlations are required. To test this hypothesis,
we have conducted a series of simulations in which grain boundary types were
assigned (according to figure 1) around isolated triple junctions, which were not
assembled into a connected lattice. We find that, to within a very narrow
margin of error, the triple-junction distributions are identical with those found
when a 2D lattice is constructed. This result is illustrated for the J2 and J3 junctions
in figure 7.

Since crystallographic constraints are only applied locally at each triple junction,
it is intuitively reasonable that long-range correlations play a minor role in grain-
boundary networks. Any long-range structure that arises in the network can there-
fore be reasonably regarded simply as emergent structure arising from cluster growth
processes, as in percolation theory. These results also imply that the triple-junction
distribution is unaffected by other topological features of the grain-boundary net-
work, such as variation in the number of grain edges around each grain. Finally, the
results in figure 7 also lend credence to the use of equation (6) to rank microstruc-
tures, since the triple-junction distribution used in equation (6) captures the domi-
nant correlations in the network.
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} 6. Summary and conclusions

Connectivity and percolation of susceptible grain boundaries are of considerable
interest to intergranular degradation processes such as corrosion and cracking.
Although many previous researchers have treated these phenomena using a random
bond percolation approach, grain boundaries cannot be assembled in a random
fashion because of crystallographic constraints at triple junctions. Here we have
developed an MC approach to the simulation of grain-boundary networks, based
on the assumption that twin-variant boundaries are resistant to intergranular attack.
The method has been used to study connectivity and percolation of 2D grain-bound-
ary networks, with the following major results.
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Figure 7. Distributions of (a) J2 and (b) J3 triple junctions determined from MC simulations
on a hexagonal lattice (——), and on isolated triple junctions that are not connected to
one another (*).



(1) Using a single, narrowly confined control parameter, the MC method can
accurately describe triple-junction distributions recently measured on several
different metals. These distributions are significantly different from predic-
tions of random percolation theory, because of the tendency for damage-
resistant boundaries to aggregate in the microstructure.

(2) Crystallographic constraints on the grain-boundary network substantially
change the percolation threshold for susceptible grain boundaries.
Random percolation theory predicts a break-up of the susceptible boundary
network when the resistant boundary fraction exceeds f c

S ¼ 0:347; the con-
strained lattices exhibit a percolation threshold above f c

S ¼ 0:50.
(3) Whereas the resistant boundary fraction has commonly been used to rank

microstructures for their susceptibility to intergranular failure, the MC
simulations show that this parameter is not sensitive to the complex topol-
ogies found in grain-boundary networks. For a single value of fS, many
GBCDs are possible, and large variations in the length of susceptible bound-
ary paths are found. In contrast, a ranking based on triple-junction distribu-
tions is more quantitatively accurate, since these distributions capture the
dominant correlations in the network.
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