de l'axe central du déplacement, de la grandeur de la translation et de l'amplitude de la rotation, ainsi qu'il suit :

$$A = t \cos g + 2 \tan g \frac{1}{2} \theta \left(Z \cos h - Y \cos l \right),$$

$$B = t \cos h + 2 \tan g \frac{1}{2} \theta \left(X \cos l - X \cos g \right),$$

$$\Gamma = t \cos l + 2 \tan g \frac{1}{2} \theta \left(Y \cos g - X \cos h \right),$$

$$m = 2 \tan g \frac{1}{2} \theta \cos g, \quad n = 2 \tan g \frac{1}{2} \theta \cos h, \quad p = 2 \tan g \frac{1}{2} \theta \cos l.$$

Si l'on désigne par α , β , γ , les variations des coordonnées de l'origine des axes coordonnés, on aura les relations suivantes :

$$egin{aligned} lpha &= A \,+\, rac{1}{2}\,(\,p\ell-n\gamma), \ \ell &= B \,+\, rac{1}{2}\,(m\gamma-plpha), \ \gamma &= \Gamma \,+\, rac{1}{2}\,(\,nlpha-m\ell), \end{aligned}$$

au moyen desquelles on remplacera, quand on voudra, les constantes A, B, Γ , par leurs valeurs en fonction des variations α , ℓ , γ ; et l'on aurait ainsi

$$\Delta x = \alpha + 2 \tan \frac{1}{2} \theta \left[(y - \frac{1}{2} \theta) \cos l - (z - \frac{1}{2} \gamma) \cos h \right],$$

$$\Delta y = \theta + 2 \tan \frac{1}{2} \theta \left[(z - \frac{1}{2} \gamma) \cos g - (x - \frac{1}{2} \alpha) \cos l \right],$$

$$\Delta z = \gamma + 2 \tan \frac{1}{2} \theta \left[(x - \frac{1}{2} \alpha) \cos h - (y - \frac{1}{2} \theta) \cos g \right],$$

dont les premiers termes α , β , γ , expriment les moments de la translation relative à l'origine des coordonnées dont la valeur est $\sqrt{x^2 + \beta^2 + \gamma^2}$, et ceux affectés de la rotation expriment les moments de cette rotation autour de l'axe relatif à l'origine. Nous aurions pu établir directement ces formules, comme celles qui précèdent, et que nous avons construites sur l'axe central.

Équations de l'axe central.

16. Les équations de l'axe central se déduisent à leur tour des formules ci-dessus, avec la plus grande simplicité; car pour tous les points de cet axe, l'effet de la rotation étant nul, on a $\Delta x = t \cos g$, $\Delta y = t \cos h$, $\Delta z = t \cos l$; les coordonnées x, y, z, appartiennent à