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Abstract

In this note we present an implementation of the fast marching algorithm for solving
Eikonal equations that reduces the original run-time from O(N log N) to linear. This
lower run-time cost is obtained while keeping an error bound of the same order of
magnitude as the original algorithm. This improvement is achieved introducing the
straight forward untidy priority queue, obtained via a quantization of the priorities
in the marching computation. We present the underlying framework, estimations
on the error, and examples showing the usefulness of the proposed approach.
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1 Introduction

The fast marching method [15] has been introduced to solve the static Hamilton-
Jacobi (Eikonal) equation |∇T |F = 1, in a computationally efficient way. Here
F > 0 is the front moving speed and T is the travel time. 1 1/F and T may
also be interpreted as travel cost and intrinsic distance respectively. Regard-
ing the computationally efficient implementation of this equation, Tsitsiklis
[18] first described an optimal-control approach, while independently Sethian
[14] and Helmsen [7] both developed techniques based on upwind numerical
schemes. The complexity of their approach is O(N log N) (Tsitsiklis, [18], also
presented O(N) implementations, see below), where N is the total number
of grid points. 2 The algorithm is an extension to the classical Dijkstra tech-
nique, and is based on finding (at each step) the point with the minimal T
value in the narrow band set of points that are being updated, and setting it

1 To avoid abuse of notation, throughout this paper T represents both the analytic
solution and the grid values when the equation is later discretized.
2 In practice, the number of visited points during the computation.
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to be alive (points that got their final value of T ). Neighbors of this point are
then updated and the process is repeated until all points in the domain have
been processed. All involved numerical computations use upwind schemes.
The point with the minimal T value is usually found using a heap priority
queue based on a tree. Insertion time to such a heap is O(log n) where n is
the number of points in the narrow band. Due to the positiveness of F , every
point is visited at most a constant number of times, and from this the time
complexity of the algorithm is O(N log N). See [15,18] for additional details.

Due to the broad applications of weighted distance functions obtained by
solving the above mentioned Eikonal equation, e.g., [8,15], its efficient im-
plementation and numerous extensions have been studied. In particular, fast
sweeping algorithms have been proposed, e.g., [2,17,20] (early ideas in this
direction were proposed by Danielsson [5]). This technique is based on using
a pre-defined sweep strategy, replacing the use of the heap priority queue to
find the next point to process, and thereby reducing the overall complexity to
O(N). 3

Here we propose a new implementation of the fast marching algorithm which
reduces the computational complexity to O(N) (N being in practice the num-
ber of visited points, as in the original fast marching). This is based on the
concept that when solving the Eikonal equation for the current grid point, we
can quantize (round) the priority values, thereby allowing the use of a table in-
stead of a tree, reducing the updating complexity from O(log N) to O(1). This
is done with the help of a data structure denoted as untidy priority queue. We
show that the possible error introduced by this simplification can be kept of
the same order of magnitude as the numerical error introduced by the spatial
discretization inherent to numerical implementations, while in practice, the
errors introduced by this approximation are virtually insignificant. In layman
words, the idea here proposed is that in the same way that numerical imple-
mentations introduce errors due to space discretization, we can also allow for
errors in the value computed from the Eikonal equation when used to set the
priority for the current grid point. When this is properly done, computational
complexity is improved at no theoretical or practical cost. The rest of this
note provides details on this and examples.

3 Here N is the number of grid points in a bounding box of the region of interest.
Although theoretically this is the same “N” as in the original fast marching imple-
mentation, it can be much larger in practice (in particular for largely non-uniform
speeds F ) because fast marching requires computation of visited points only. The
constant in the O(N) theoretical complexity of the fast sweeping algorithm is de-
pendent on the speed F , while this dependency doesn’t exist in the original fast
marching algorithm implementation.
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2 Algorithm Description

Our method is based on the special properties that grid points hold in the
maintained priority queue. When the T value of all points in the queue are
always larger or equal than the T value of the latest point extracted from the
queue, the queue is denominated as a monotone priority queue. This important
subclass of priority queues is used in applications such as event scheduling and
discrete event simulation. In the fast marching algorithm the queue maintained
for the narrow band (NB) has a monotone behavior. If we assume that F is
bounded, we can conclude that the T values of the points currently in the
queue are also bounded, since there is a maximal possible increment Imax over
the point with the minimal T value currently in queue. 4 When a priority
queue involves only points with T values in a fixed size range, it is possible
to use data structures based on a circular array, see Figure 1. Each entry
(bucket) of the circular array contains a list of points with “similar” T value.
The calendar queue [3] and some of its improvements [1,11,13] are all such
queues based on a cyclic bucket sort where the probabilistic complexity of the
insert and remove operations is O(1). 5

Let Pmin be the point with time Tmin which is the minimal time in the queue
and Pr with time Tr be the next point to be removed from the queue. For
the calendar queue Pr = Pmin always holds, i.e., we are always guaranteed
to get the point with the highest priority (lowest T ). However, since the fast
marching algorithm already has an error dependent on the grid density h,
O(h) for smooth solutions, it is not necessary to strictly keep Pr = Pmin

to achieve the same general order of numerical error. We propose to use an
untidy priority queue where Pr ≈ Pmin. The queue is based on the circular
array, which is a simplification of the calendar queue. Entries in the circular
array of size d represent uniformly quantized levels of T , equally spaced every
∆. If T̂ is the quantized value of T , let T̂0, T̂1, . . . , T̂d−1 be the discrete levels
of the array entries such that T̂0 < T̂1 < . . . < T̂d−1. Entry T̂i keeps a FIFO
list of grid points with T values in the range [T̂i, T̂i+1] that quantize to T̂i.

Figure 1(a) gives an example of the proposed untidy priority queue. In this
example d = 6 so that 6∆ = Imax. Arrival times T are then assumed to be in
the range [T̂0, T̂0 + Imax]. The queue keeps track of the memory location L0 of
entry T̂0 in the array (the entry corresponding to the current value of T ). In
this example, T̂0 is the 3rd entry from the top so L0 ← 3. When a new point

4 The value of Imax depends on the discretization used. For schemes using canon-
ical 2 × D-point neighborhoods, Imax = max (1/F )h, where D is the problem
dimension and h the grid size. For schemes using all 3D − 1 adjacent neighbors,
Imax = max(1/F )

√
Dh.

5 Yet, worst case complexity is O(log n) which happens if too many elements have
nearly equal priorities.
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Fig. 1. Operational queue for the narrow band, see text for details.

Pa with time Ta is added to the queue, according to its quantized time value
T̂a, it is placed in the end of the list of entry Tj, where j ← (T̂a − T̂0)/∆.
Finding entry Tj in memory can be done using a simple modulo operation:
Lj = (j + L0)/∆ mod d. The next point to be removed from the queue, Pr,

will always be the first point in the T̂0 entry. The figure displays numbers
which correspond to the order in which the points would be removed if no
new points are added to the queue during the process. Note that due to the
quantization, Pr is not necessarily Pmin, but we can guarantee that T̂min = T̂r

so 0 ≤ T̂r − T̂min < ∆. When the list at position T̂0 is emptied, the next non-
empty list is used (list at position T̂1 in this example). The entry T̂0 is now
used to store T values quantized to T̂0 + 6∆ (circular queue). For consistency,
all labels are shifted forward one position so the new Pmin is now at position
T̂0 as shown in Figure 1(b).

Note that the quantization is used only to place the grid point in the queue,
while the actual T value is used to solve the Eikonal equation when the grid
point is selected. Therefore, errors can only occur due to wrong selection order.

The average complexity of the remove operation is O(1) as long as O(d) ≤
O(n), since the operation may involve searching for a non-empty queue (see
additional comments at the end of Section 2.1). Selecting a constant size d
of order O(1) or by using automatic resizing techniques as presented in [3], it
is possible to guarantee a worst case average complexity of O(1). The insert
operation has no searching involved and therefore its run-time complexity is
O(1).

An extreme case occurs when Imax � 0 and increments with same magnitude
of Imax are rare. This causes a “waste” in accuracy, since many discrete levels
in the circular array would contain empty lists. Prior knowledge of such in-
crement distributions permits to handle the rare large increments separately
as suggested in [3], thereby avoiding such a situation.

To conclude, let us point out that Tsitsiklis [18] also described O(N) variations
for solving the Eikonal equation (although the constant can be much larger
than in his O(N log N) approach). His approach, which contains a complete
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theoretical analysis, is based on buckets and a more elaborated discretization
of the equation, which is “more cumbersome and is unlikely to be used when
the dimension is higher than three” [18]. His bucket data structure is a linear
array of length proportional to max T . In contrast, our approach does not re-
quire a new discretization (which in the case of [18] includes an optimization
step which is more expensive to solve), uses a cyclic array thereby no needing
to estimate the maximal distance T and being more memory efficient, has very
small (practical) constant in the O(N) complexity, and quantizes the values
only for queue placing and not for actual computation (this causes errors very
rarely in practice as detailed below). Thereby, the approach here proposed is
simpler, faster, valid for any dimension (as well as for the extensions reported
in the literature for computing geodesics on manifolds [9,12]), and memory
efficient. In [6] the authors also use a bucket structure in a circular queue to
achieve an O(N) implementation of Dijkstra’s algorithm, although their work
assumes integer increments as in Dial’s approach (see also [18] for additional
comments and extensions to Dial’s algorithm). The authors of [10] also men-
tioned that numerical precision can be exploited to eliminate the tree search,
but no algorithm was proposed.

2.1 Error Bounds

Assuming a given state of the algorithm, we would like to bound the additional
error in the computation of T of an alive point when it is selected out of
order using the untidy priority queue. Recall that the non-quantized values
are always stored in the queue, so an error can result only as a consequence
of wrong order in the selection. The analysis presented below corresponds to
one single step of the proposed algorithm, and we show below that the error
order is the same as in the original fast marching algorithm.

If Pr 6= Pmin is the next point to be removed from the queue, since the untidy
priority queue restricts Tr and Tmin to share the same discrete level, an error
ε = Tr − Tmin ≤ ∆ will be incurred. Note that ε > 0 since the algorithm
may only increase the value of points in NB, so removing a point early may
only cause Tr not to reach Tmin. Therefore the introduced error can not be
negative.

Since ε ≤ ∆ = Imax/d and Imax = O(h), by selecting d ∼ O(1/h) we can
achieve ε = O(h2) (h is the grid size). This is the same error introduced
per single step in the original first order fast marching algorithm (for smooth
solutions). As in the original algorithm, a finite path has O(1/h) steps, 6 and
therefore the accumulated additional error is bounded by O(h). This is the

6 This is due to the use of the FIFO ordering within a bucket, the frontier propa-
gates and “serpentine” type of paths are avoided.
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same order of magnitude of error as in the original fast marching algorithm,
only that computational complexity is reduced to O(N).

The theoretical complexity of the whole algorithm is O([1 + d/n]N) (the [1 +
d/n] term comes from the search for a non-empty bucket as mentioned before
plus one access to the element in the non-empty bucket). As long as O(d) ≤
O(n), O(1+d/n) = O(1) as stated before, leading to the mentioned complexity
of O(N) for the overall algorithm. Since in theory, to preserve the accuracy of
the original fast marching algorithm, d ∼ O(1/h), it might happen that O(d) >
O(n). It is expected that the denser the grid, the larger the average number
of points n in the frontier, 7 thereby avoiding this situation of extensively
searching for a non-empty bucket and preserving the overall O(N) complexity
(recall also the possibility of using queue resizing techniques as mentioned
above).

To conclude let us point out that for more accurate numerical implementations
of the fast marching algorithm, the idea here presented of priority quantization
can be exploited as well, just using a finer quantization of the order of the
desired overall accuracy.

3 Numerical Experiments

Numerical experiments show that errors (with respect to the original fast
marching algorithm implementation) caused due to the misordering are very
rare, small, and in practice far from the upper bounds computed above. In
addition to the examples here presented, we tested with the velocity functions
in [19] for which the exact solution to the Eikonal equation is known, and
find that the algorithm here proposed produced absolutely no additional er-
ror compared to the original fast marching algorithm implementation. These
examples usually exhibit symmetry and/or regularity in the solution which
makes them unsensible to the kind of ordering errors possibly introduced by
our algorithm.

Figure 2 presents error statistics versus the number of discrete levels (errors
with respect to the original fast marching algorithm implementation). Numeri-
cal experiments show that few discrete levels are enough to achieve a negligible
error.

Figure 3 gives an example of a fast marching application. The task is to
segment the lake just by giving 4 points on the shore of the lake, following [4].
The segmentation based on the distance function generated using the untidy

7 It is expected that n ∼ O(1/hD−1), where D is the dimensionality of the grid.
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Fig. 2. Error statistics compared to an accurate queue. (a) Statistics when creating
a time/distance function on a 2000× 2000 grid with random 1/F (sampled from a
uniform distribution in (0, 1]). (b) Same statistics when 1/F is a decreasing function
of the image gradient, Figure 3.

(a) (b)

Fig. 3. The segmentation example (note that the lake has been detected, green con-
tour) shows that the quantization error does not interfere with fundamental fast
marching applications. (Image size 1163 x 1463.)

priority queue is identical to the segmentation archived using an accurate
queue. Yet, the run-time when using the untidy priority queue is much shorter
(see below). Additional examples are available online at
http://mountains.ece.umn.edu/∼liron/fastmarching/.

Figure 4 shows the O(N) run-time complexity and execution times for the
proposed algorithm. We show that the average number of queue operations
done per point in the grid is constant as the grid size N goes to infinity.
Using our implementation, the time required to compute distances (from a
single seed) in a 2000x2000 grid with random 1/F sampled from a uniform
distribution in (0, 1], using 1000 discrete buckets, is 1.251 seconds. When F
is an edge map obtained from the 1163x1463 image displayed in Figure 3(a),
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Fig. 4. Comparison of run-time statistics with fast marching on a square grid with
random 1/F . Left: Queue search operations are shown. For the heap operations,
these include both the heap access and the priority comparisons. For the untidy pri-
ority queue, operations are array entry access and search for a non empty bucket.
Right: Overall running times. Note that we obtain a factor of two improvement,
regardless of the grid size. This is because the bottleneck is largely determined by
factors other than queue management operations alone, e.g., memory allocation.
These factors are significantly reduced when, as expected in real applications, com-
puting the distance T is just one part of the whole task (e.g., the data is already in
memory).

the time required is 0.591 seconds. The computer used for the measurements
is a Pentium 4 laptop with 2Ghz processor speed.

4 Concluding Remarks

In this note we have shown a linear complexity implementation of the fast
marching algorithm for solving Eikonal equations. The proposed algorithm
maintains the overall error and simplicity of the original, higher complexity,
implementation. The basic idea is to quantize the priority values and use
classical data structures, in particular, an untidy priority queue. The concepts
can be applied in any dimension and for solving the Eikonal equation on flat
and non-flat domains. To further improve the simple error estimates presented
in this work, a detailed study of the probability of misordering due to the
priority quantization needs to be pursued. Results in this direction will be
reported elsewhere.
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