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Abstract

Several methods have been developed which derive
! the orientation distribution (ODF) in a polycrystal-
§ line sample from pole figures measured by X-ray or
* neutron diffraction techniques. The theoretical back-

grounds of the conventional harmonic method, of the

vector method and of the method of Williams [J. Appl.
! Phys. (1968). 39, 4329-4335], Imhof [ Textures Micro-
i struct. (1982). 5, 73-86] and Matthies & Vinel [ Phys.
| Status Solidi B (1982). 112, K111-K120] (WIMV) are
reviewed. A quantitative comparison is then made
using the same input data and the same computer to
i evaluate resolution, errors and efficiency. The input

data consist of standard functions, Taylor predictions
. and measured pole figures covering a realistic range of
possibilities for both cubic and trigonal crystal
symmetries. Comprehensive error criteria are intro-
duced, and it is proposed to use both integral errors
(RP) and difference pole figures to assess the quality of
the pole-figure inversion. The harmonic method and
WIMY are able to reproduce the original pole figures

P

T,

I

from the ODF within computer roundoff errors. .

Resolution of the vector method, particularly for low
, crystal symmetry, is considerably worse owing to the
* Jarge-volume cells in orientation space. Computing
time is optimal for the conventional harmonic method
(for medium termination L), slightly worse for WIMV
and about an order of magnitude higher for the vector
method. Whereas the conventional Harmonic method
only reproduces the ghost-afflicted ‘part f(g) of the
ODF, the vector method satisfies automatically the
non-negativity criterion; however, only WIMV pro-
vides a general (conditional) ghost correction. In the
examples chosen the ghost-corrected ODF f(g)
closely coincides with the starting model (model with

—
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standard functions or Taylor prediction) supporting
its physical relevance. An attractive feature of WIMV
is that it leads to results of satisfactory quality using
fewer pole figures than the harmonic method. This is
particularly important for low crystal symmetries.
Furthermore, the treatment of incomplete pole figures
is straightforward.

1. Intreduction

The goal of quantitative texture analysis is to de-
termine the orientation distribution of crystallites
(ODF - orientation distribution function) in a poly-
crystalline aggregate, to interpret this distribution in
terms of processes which lead to its formation, and to
establish a relationship between the ODF and macro-
scopic properties (Wassermann & Grewen, 1962;
Bunge, 1969; Wenk, 1985). In recent years some
fundamental problems in connection with the deter-
mination of the ODF from pole figures were dis-
covered (Bunge & Esling, 1982; Jura, Pospiech &
Licke, 1980; Matthies, 1979, 1980a, 1982a, 1984,
Matthies & Helming, 1982). These were most clearly
revealed with ‘standard functions’ (Matthies, 19805,
1982b; Matthies, Vinel & Helming, 1987) which
documented the difficulty of ghosts and provided the
framework for a new quantitative approach in which
the word ‘quantitative’ is used not only to imply
calculations and representations with numbers rather
than figures but also to indicate that reliability, resolv-
ing power, source and extent of errors can be
evaluated. These developments have become feasible
with advances in computer technology. The present
paper deals with some ideas of such a ‘truly quantita-
tive texture analysis’. It compares three inversion
methods — conventional harmonic; vector, and WIMV

© 1988 International Union of Crystallography



286 SOME BASIC CONCEPTS OF TEXTURE ANALYSIS

Table 1. Frequently used symbols

y Sample direction.

h; Crystal direction.

f(g) Orientation distribution function (ODF).

Mg Method-dependent ODF derived from pole figures.
(g Reduced ODF consistent with pole figures (expressed by

even harmonic coefficients).
Py(y) Pole figure of crystal direction h;.
?;_(y) Ideal pole figure, distinguishing positive and negative
' non-equivalent directions h;.
Ph (y) Centrosymmetric measured (‘reduced’) pole figure.
(y) Reduced pole figure recalculated from f¥(g).
P(hl, y) Common symbol for various types of pole figures.

— with realistic examples and suggests a uniform
approach towards estimation of errors. There are
other methods which are not discussed here, including
nonlinear iterative harmonic approaches (e.g. Bunge,
1987; Liang, Wang & Xu, 1987; Van Houtte, 1983),
discrete methods making use of the correction
operator concept (e.g. Imhof, 1977, Pawlik, 1986;
Pospiech, 1987), and ghost correction assuming Gauss
functions (e.g. Liicke, Pospiech, Jura & Hirsch, 1986).
By makmg the test examples available for distribution
we ‘encourage proponents of other methods to use
them and compare results with those reported here.
Before demonstrating data, it is necessary to review
some of the fundamental concepts which are the basis
for quantitative texture analysis. We use a general
approach which is also applicable to low-symmetry
materials which are becoming increasingly important
in engineering and geological sciences. Some of the
most frequently used symbols are summarized in
Table 1.

2. Analytical description of orientation distributions

The orientation of a crystallite is expressed with
respect to external specimen coordinates. The rela-
tionship of an unequivocally defined right-handed
Cartesian coordinate system placed in the crystal
K°=Kg and a right-handed Cartesian coordinate
system placed in the specimen K°®= K, is given by
three numbers (symbol g) which represent three
rotations to bring K, into parallelism with K. One
choice is the set of Euler angles ¥, @, @ as defined by
Roe (1965) (cf. Fig. 2)1

gE {lPa @7 ¢}7 [KA —'KB]a
‘G space:0< ¥, d<2n1,0<O < (H

1The angles ¥, ©, @ of Roe (1965) are widely used in the
American and British texture literature. In theoretical physics they
are correspondingly denoted by «, B, y (eg. Edmonds, 1957;
Varshalovic, Moskalev & Chersonskij, 1975). European texture
researchers prefer the convention of Bunge (1969), ¢,, ®, ¢,. The
transformation is straightforward and should not cause any dif-
ficulties, o, =¥ +7/2, =0, @, = Qg— n/2.

lf 11/

Note that the angles ® and ¥ are identical with the
commonly used spherical coordinates 6 (pole dis-
tance) and ¢ (azimuth) which define the axis Z, with
respect to K 4. Formally combining (@, ¥) in a unit
vector r we can introduce the symbol (Matthies, 1979)

={¥,0,9}={r, ¢}, r=(0, V). )

The ODF f(g) describes the probability density to
expect crystallites (of unit volume and of a certain
kind) which have the orientation g within dg in a
polycrystalline sample. Thus

f(g) =0,
[f(g)dg=| d¥|sin@ do | do (¥, 6, o))
G 0 0 0

T =8n% (3)

If the crystal symmetry is higher than triclinic, the
aforementioned procedure for fixing Ky has N,
equivalent (physically undistinguishable) solutions
leading to the (crystal) symmetry relation of the ODF

f(g5,-8) =f(8), 85,€Gp,j=12....Ng. (4

The symmetry group Gy = G(%p) is the rotation part
of the point group %5 which describes the crystal
structure (crystal class). There are 11 possible pure
rotation groups Gg:C,-1, C,-2, D,-222, C5-3, D3-312,
Cy-4, D4-422, C4-6, D4-622, T-23, 0-432.1 The sample
may also possess a statistical symmetry, resulting in
several equivalent K ,:

f(g-84)=f(8), £4,€Ga, k=12, ..., Ny (5)

G, is also a pure rotation group. Because of (4) and
(5), the G space (1) can be subdivided into N Ng
elementary regions which all contain full informa-
tion about the orientation distribution of a sample
(Pospiech, 1982).

The ODF of a texture sample can be determined
directly if we are able to measure the orientation of all
the individual crystallites which compose it or a
statistical representation thereof. This can be done for
some, mainly geological, materials with the universal
stage microscope {e.g. Wenk & Wilde, 1972), or with
electron microscopy (e.g. Humphreys, 1983). The pro-
cedures are laborious and often not applicable to very
fine-grained samples. More often information about
the ODF is obtained from pole figures. Such pole
figures P(h;, y) can be interpreted as two-dimensional
projections of the three-dimensional ODF f(g) into
the projection direction h;. In practice, h; represents a
crystal direction with respect to Ky and y a sample
direction with respect to K 4. In order to analyse the

tIn this discussion of group theory Schoenflies symbols are more
appropriate than International symbols.
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information contained in pole figures we have to
classify them into three different types.

If h; is unambiguously fixed with respect to the
crystal coordinate system Ky, then the probability
that h; is pointing in a certain sample direction y is
given by the so-called ‘ideal pole figure’ 2, (y), with

Py(y) = g f(g)é(h;— g.y) dg/2n

= (1/21) g"f({hi, )74y, 0})dé,
i Py (y) dy = 4. (6)

Because 8f the crystal symmetry Gg(4), Ny equiva-
lent K (i.e. Ngequivalent h;) exist for every crystallite
leading to the property of (crystal) symmetry of the
ideal pole figure,t

ggﬂj.h,-(y) = '@h,-(y)’ &s,€ G, j=1,2,... Ng. (7)

If an infinite number of such ideal pole figures were
available, the ODF could be calculated and the
solution would be unambiguous (Matthies, 1979,
1982a; Bunge & Esling, 1982).

f(g) =(1/4n) szf(h

F(h,g) = P(—g ™ 1)+ (1/m) | dO cos (6/2)

x d[R(cos 0, h, g)1/d cos 6,
with

R(cos 0, h, g) = =(0, ¢).

(8)

In practice only a limited number of pole figures can
be measured (strongly diffracting and well separated
diffraction peaks hkl) and all measurements contain
experimental errors. Both factors lead to ambiguity,
but the case is further complicated because it is not
even possible to measure a single ideal pole figure by
diffraction, except in special directions h* for which
P,.(y) is identical to pole figures of lower content of
information described below. Even if anomalous scat-
tering is used (Bunge & Esling, 1981), Nj > Nj
equivalent h, following from the full crystal symmetry
%y are present:

h{:gbj'hi, 8,€%pj=12,..., N, 9

Ni is the number of geometricaiily distinguishable
directions in the set of the h! for & given h;. Corre-

j?h({g 1h,0}7'.y)do,y

tFor all types of pole figures considered in the paper the sample
symmetry property P(h;, g, .y) = P(h;, y) follows due to (5).

1Only applicable if crystals are noncentrosymmetric and
anomalous-scattering contribution is large enough to be measured
by texture goniometry.
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spondingly N is connected with the group Gy [¢f. (7)].
The Ni — N% additional equivalent projection direc-
tions possess the same Bragg angle in diffraction, and
this superposition of diffraction signals leads to the so-
called ‘unreduced pole figures’

Ny

Po) = (1N) 3 25,9

—(I/Nb[NB'@h(y)_*— Z g’g,h()’):| (10)

j=Np+
withg, =gz, forj =1,2,...,Ng.

The last sum in (10) expresses an overlap of ideal
pole figures and does not provide sufficient informa-
tion to obtain the ODF from (8). This effect does not
appear for structures with %5 = Ggz. But in this case
populations of left- and right-handed enantiomorphs
exist which have two ODFs which are superposed in
the experimental pole figures and cannot be separated
if their correlation is unknown.

For centrosymmetric crystals or for all regular
diffraction experiments (Friedel’s law) the +h; and
—h, directions are either equivalent in the sense of (9)
and (10) or indistinguishable by the experiment, and
we can only obtain ‘reduced pole figures’

Py (y) = [Py(y) + P_s ()12
N,
v =(1/Ny) Z g’gh,.m()’) (11)
with g, €9y =95 xC;, j=1,2,...,N, > N,. Since

N, > 2N g > Ng, there is obv1ously an absolute loss of
information leading in principle to ambiguity if the
ODF is calculated from measured pole figures.

3. The central problem of pole-figure inversion

In the following discussion we will in general refer
only to centrosymmetric crystals (with %5 belonging
to the 11 Laue groups) which compose the vast
majority of materials of interest in texture analysis.t In
these cases [with P,(y) = P,(y)], there are several
solutions when the ODF f(g) 1s determined from pole
figures which have been measured by diffraction
techniques. The structure of these solutions is

(@) =7(g) +7(g). (12)

f (g), which is consistent with all reduced pole figures
P,, (y), can be determined by (8), using reduced pole
figures instead of ideal pole ﬁgures The ‘reduced’
ODF f(g) has the form

J(&)=f(®)/2+fs(g) > <0, (13)

+For a more detailed analysis of the situation in the case of
noncentrosymmetric crystals see, for example, Matthies & Helming
(1982); Matthies (1984); Matthies et al. (1987).
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with the ‘ghost part’ {g* = [w, n], a rotation about a
direction n(6, @) through an angle @ (Matthies, 1979)}

J6(8) =fa(8) + falg),

T 2n
S =]sin0d8 [ do f(g.[©=7,0,0])/8n 20,
[ do|sin6do 2; dg tan*(w/2)
0 0 Y

x {f(g.[o=m, 6, ¢])

—f(g.[w, 6, ¢1)}/8n* > <. (14)
Let #(g) be an arbitrary function with symmetry
propérties such as (4) and (5). Exchanging f(g) for
#(g) in (13) and (14), we obtain for TM(g) the most
common form [#(g) = #(g) + #(g)]

™) =F () =F(2) — F(2) = F(2))2 — Fo(g). (15)

If we substitute 7(g) and fM(g) for f(g) in (11) and (6)
respectively [symbol P(h;, y, g) f(g)], then the follow-
ing relations are valid:

P(h, y, ©)7"(g) =0 (16)
Ph,, y, ) fM(g) = HM%@ﬂg Bo(y). (17)

Note that f M(g) (15) contains an arbitrary function
Z (g) and that the true f(g) part of the ODF f(g) =
f(g +f is, like fM(g) ‘invisible’ in P,(y), i.e. f(g)
is only one function of a whole set of pos-
sible {™(g) which follow from all % (g).

In the harmonic representation (Bunge 1969), the
distinction between f(g) and f(g) is particularly
transparent. If one uses the symmetrized harmonic
functions

fol8)

Y, {g;n)=Y,(r), g;e¥% j=12,..,.N
t=1,2,..., (%9, 1) (18)
(Matthies & Helming, 1982),
D, ([g5,-8-2841"") =D (g™ "),
gBjeGB: ]= 152, ---aNBa u= 1, 2) s L(GBa l)
84,664 j=12,. . Nyv=L12,..,LG, 1)
- (19)
and
J®)=2, % CrDl(s ™) (20)

the relationships discussed above then take (for all
possible crystal symmetries) the exact form [w=1 or
0, GB = G(@B)] «;

Zu(y) 1
T

Ph,(y) =l A 1 Z Cf'v W(G89 gﬂa la /1)

~ v ~

Ph,-(y) W(GB9 e(gB’ la :u)

gk

X Y;'fu(hi) Yl,v(hi):

(21)
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W(Gp, Fp, L, 1) = w(Gg, Gy, L L+ (=112, (22
.F(g) = Z Z C;I'VW(GBa GBa l: H)Dit,v(g_ l)a (23)
1=0(2) u,v
Mg =Y Y ctpl g™
1=1(2) u,v
+ Z Z C;l‘v[l - W(GB’ GB) la lu)]
=0(2) p.v
xwxg). (24)

Because L(Gg, |) > L(Gp, 1) > I(%,, |) certain w(Gp,
Gy, |, u) are equal to zero, i.e. the corresponding C# v
are not ‘seen’ by reduced pole figures Ph (y), espec1ally
all C{* with odd numbers | [¢f (22)] (Matthles
1979).1_For centrosymmetrlc crystals_with Ggz= G,
w(Gg, Gp, I, p) = 1 is valid. In this casef”(g) following
from the arbltrary function % (g) in (15) has the form
of the first sum in (24) with any C#" for odd 1.

From the foregoing considcrations we can conclude
that there are two reasons leading to difficulties when
the ODF is calculated from pole figures. The first one
is related to the insufficient quantity of experimental
data (ideally an infinite number is needed), and the
second one to their quality (only ‘reduced’ pole figures
can be measured). This can also be elucidated by the
following considerations.

The central problem, P, (y) —f(g), in its integral
form (11) and (6), can be simplified by discretization. If
we introduce N cells in the G space and N, cells on
the pole figure, we obtain a system of N, linear
equations for N; unknowns with

I
Np= 3 Ny,

I is the number of measured pole figures and N, the
number of data points of cells considered at y;
(j=12,. Np)ln the ith pole figure. For Ng > N,
the problem is undetermined, which can formally be
corrected by increasing the volume of G-space cells
and thereby decreasing the number of the unknowns
Ng. This obviously lowers the resolution. In principle,
the condition N; < N, can be satisfied for a small
number I, but a sufficiently large N, . But from the
structure of the solution (8), I obviously influences the
resolution, and it is desirable to use as many pole
figures as possible. In addition to the necessary con-
dition N; < N, there is also a condition of sufficiency
of information. That is, even for N; < N, (neglecting
the question of incompatibility of the equations fol-
lowing from the artificial discretization of the problem
and from experimental errors) the system of equations
may not be sufficient to give an unambiguous solu-

+An ‘invisibility’ of certain C#* can also rise in (21) for special
projection directions h¥ owing to Y, ,(h¥) = 0. For examples see the
end of § 7.1.
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tion. The criterion for sufficiency is that the rank of
the corresponding matrix must be equal to Ng.

As was qualitatively shown by Schaeben (1984), the
loss of information about the ODF in reduced pole
figures leads to the fact that this rank will always be
lower than or equal to Ns/2, demonstrating again the
‘invisibility’ of any f™(g).

In addition to the distortions due to flg) #1(8)
[cf (13)], a given fM(g) can also create maxima and
minima, or subsidiary topography changes in f™(g)
[¢f (12)] which are not present in the true ODF f(g).
All these deviations from f(g) have been named ‘ghost
effects’ (Matthies, 1979) and in general depend on the
reproduction method used.

The demand for positivity of the solution f*(g) >0
reduces the variation width of possible solutions, at
least for strong textures. For instance, if pole figures
contain zeros, P,(yo)=0 at y0, zero regions are
created in G space (Bunge & Esling, 1979), reducing
the number of the N unknowns to N. Indeed, from
f(g)=0 and the projective character of the pole
figures, f(gr,) = 0 (an exact solution!) follows for all
points in the G space belonging to the zero fibre {cf-(6)
and (11)].

gr., € (g, -0 0} ' {840 Yo O}

o (25)
£5,€95- 24, €Ga4, 0<@<2m

If there is a sufficient number of pole-figure zeros,
the variation width of fM(g) may disappear. In the
discretization approach such a situation arises for
N <Ng/2, ie if the condition of sufficiency of
information is obeyed. Unfortunately the existence of
pole-figure zeros depends on the given sample. A
subjective definition of the zeros is rather arbitrary
and leads only to good ODF approximations for very
sharp textures (Lee, Bunge & Esling, 1986).

In the general case of smooth textures, more rigor-
ous assumptions need to be applied to obtain a unique
solution. These assumptions may take into account
practical experience about the general structure of
ODPF’s following from theoretical models such as that
of Taylor (1938) which explains the development of
deformation textures. One assumption may be that
the ghost-corrected ODF should be as smooth as
possible without subsidiary maxima and minima.

Independently of how a ghost-corrected f M(g) is
found, there is a set of demands that needs to be
satisfied. The first is that f™(g) has best to explain the
experimental pole figures. Indeed; any f M(g) (with or
without ghosts) explaining the Pf,'_(y) better than an
fM'(g) derived from the same starting values F,,‘,(y ;) by
another method (even with elements of ghost correc-
tion) is to be preferred.

The second demand is that because f(g)=0,
fM(gp,) =0 should be exactly [or to a good approxi-
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mation, ie. |f*(gr, )| < 1] realized for the zero fibre
(25) belonging to a pole-figure zero ﬁ,,l_(yg) =0.

The third demand is that for any concept of ghost
correction the specific properties of the resulting f (g)
have to be explicitly characterized.

4. Consistency of reproduction methods and quality of
experimental data

Although quantitative ODF’s have been calculated
from pole figures for over 20 years, there is still no
generally accepted method for evaluating the dif-
ference between experimental and recalculated pole
figures. Moreover, even if such data are calculated
they are rarely published, which is unthinkable, for
instance, in crystal structure analysis where the scru-
tiny of the R factor 1s used to evaluate the quality of
measurements and/or of the structural interpretation.
Errors are due not only to the reproduction method
used but also to errors in the experimental data.

4.1. Error criteria in texture analysis

In texture analysis experimental pole figures are
the principal information which we possess, and
a_comparison of P,(y;) with the corresponding
Pi(y) =P, y;, /%8 recalculated from the
reproduced ODF f M(g) can give us a numerical cri-
terion for the quality of the solution. The ‘difference

pole figures’

Aﬁh,—(yj) = ﬁh,-(yj) - P‘lt!(yj)’ ]: 1’ 2" LERE} J5 (26)

are a possibility for demonstrating graphically regions
of systematic deviations.

An integral assessment of the quality can be ex-
pressed by mean errors R, weighted with the area S;
of the pole-figure cell ¢; around yj;,

S, = [ sin 8 do do, 27

J . J -
R, = 100% -21 S;| AP, (y) / _21 S;P(y). (28)
. & &

Alternatively, squared errors can be used to emphasize
large deviations. But while such mean errors can
indicate problems in data or methods for common
physical problems, they may not be most suitable for
textures.

Owing to the normalization of the ODF (3), of the
pole figures (6), and because of their probability
character, the number 1 (random orientation distri-
bution) plays a similar role in texture analysis to the
zero for common physical quantities (the boundary
between negative and positive values). Indeed, for the
textureless case, f(g) =1, P (y)=1 is valid, and a
value f(g) > 1 [Py(y) > 1]can only arise if points with
f(g) < 1[Py(y) < 1] exist simultaneously in the G and
Y space respectively. In other words, the ‘two worlds’
1<f(g)<oo and 0<f(g) <1 are to be reproduced
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with the same accuracy.t In this connection the
isotropic background [‘phon’, the Russian word for

‘murmur’ or ‘noise’, introduced by Matthies (1984),

Matthies & Vinel (1982)] plays an important role.
F=min{f(g)}, 0<F<1 (29)

can also be interpreted in terms of how many crys-
tallites are ‘textured’ [100% (1 — F)] and how many
are randomly oriented (100% F).

Analysing error characteristics (28) from this point
of view we see immediately that the corresponding
expressions discriminate against regions with small
values of ﬁhi(y) and in diffraction experiments those
are most likely to be afflicted with large absolute
errors. This inadequacy can be overcome by consider-
ing relative deviations such as

Ij= |Fh.-()’j) - ﬁhM(y])[/ﬁh(yj)
If we introduce a selecting function

O(s, x) = {(1) for {i fz (30)

the so-called ‘RP values’ are defined as

RP; j(¢) = RP;; = 100%0O[, P“hi(yj)]r,.‘j (31)
(‘local errors’) with their special forms

RPO; ;=RP; ;(0), RPI,;=RP, (1), (32)

and the corresponding mean quantities RP;, RPQ,,
RP1;, RP, RPO, and RP1 defined as

J J
RPi = .Zl RPl,j/ .zl @[8’ Ph.(yj)]’
ji= J=

RP = i RP,/I. (33)

i

The introduction of an ¢>0 permits on the one
hand (e.g. ¢ =0-005; this value has been used for all
RPO calculations) the discrimination of meaningless
errors arising, for example, from computer inaccuracy.
On the other hand (e.g. e=2, 3, 4), it is possible to
explore the quality of reproduction for the main peaks
in the pole figures. Notice that RP values are much
more sensitive than R, values and can reach large
values (e.g. poor statistics, sharp textures measured
with bad resolution, series-termination effects, large
cells in G space). Whenever RP values are high,
difference pole figures should be determined and
carefully analysed. RP values could also be weighted
as in (27) and (28).

1Note that in common physics the measure of order in systems is
connected with the entropy S. For our problem such an entropy will
be proportional to In[ f(g)], with In (1) = 0 and the two equivalent §
regions: —o0<S<0,0<S< 0.

4.2. Compatibility of pole-figure data

According to (11) and (6), different pole figures are
projections of the same function f(g) and therefore
there are certain correlations of pole-figure valueg
within a single pole figure and between different pole
figures. Only if these correlations are satisfied and the
values are compatible can we expect to find a function
which explains the measured data.

Compatibility problems are expressed in quantities
such as 4P, (y;) (26), RP;; (31), or RP; (33), but this
requires that a solution for the ODF has been ob-
tained and a poor agreement can always be attributed
to problems with the reproduction method. Therefore
it is desirable to evaluate somehow the quality of
measurements before a complete ODF reproduction is
attempted.

The external compatibility between various pole
figures can be evaluated by using invariants from
group-theoretical considerations (Matthies, 1986). For
the F coefficients of the harmonic method (cf. § 6.1),

Fi(h) = £ P (y)YH(y) dy, (34)

we find for cubic symmetry (G = 0) for[=1*=4,6, 8,
10, 14 and a fixed v and v' that the ratio [cf. (20), L(O,
I*)=1]

F(h)/F{'(h)=C[/ClY =KL v, V)  (35)

is independent of h;, ie. it has the same value for
different pole figures which can be tested.

The initial compatibility within a pole figure can be
addressed with the ‘single pole-figure fit’. A set of data
ﬁhi(yj) can only be called a pole figure if at least one
function f;(g) > 0 exists which has P, (y) as a projec-
tion. In this case it is irrelevant whether fi(g) is
compatible with other pole figures or whether it
resembles the true ODF f(g). If we calculate ﬁ,‘,‘f(y) for
f™M(g) =f(g) and the RP; value from (33), then RP; for
a single pole-figure fit should always be smaller than
the corresponding RP, for an I pole-figure fit. If RP;
for a single pole-figure fit is bad, it indicates poor
internal compatibility.

Single pole-figure fits can be obtained with repro-
duction methods which contain nonlinear operations
(cf- §§ 6.2, 6.3). However, the use of single pole-figure
fits to evaluate internal compatibility does not imply
that we recommend obtaining f ™( g) from a single pole
figure. On the other hand, poor pole figures with large
internal errors add uncertainty and are better omitted
from the analysis. The approximation of f™(g) by
fM(g) is only possible for large regions of zero or
uniform background (¢f. § 3 — the case N; < Ng/2).

5. Recommendation for a standard procedure

It would be highly desirable if some standard pro-
cedure were followed to facilitate comparisons and
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interpretations. We suggest here some quantitative
approaches and hope to stimulate discussion on how
to implement a more uniform approach. This is
particularly important at this time as reproduction
methods are increasingly applied to non-cubic
materials and to low sample symmetries, particularly
in earth sciences. If everyone develops his own system
of notations or follows his own conventions in
evaluating the quality of his results, there is bound to
be chaos (see also in this context the discussions of a
panel at the International Conference on Texture of
Materials in Sante Fe (Wenk, Bunge, Kallend, Liicke,
Matthies, Pospiech & Van Houtte, 1987).

N
5.1. Choice of coordinate systems

5.1.1. Crystal coordinate system. The values of the
Euler angles which specify the orientation g of a
crystallite with respect to sample coordinates K,
depend on how the crystal coordinate system Kp is
fixed in the crystal lattice. In the cubic case (Gp=
0-432), Xz, Yp, Zg arc naturally parallel to the
orthogonal edges of the unit cell and the same seems
appropriate for all other cases with orthogonal edges.
For lower erystal symmetry there are several subject-
ive choices.

Matthies et al. (1987) propose a uniform system for
fixing K in the crystal lattice which applies to all 230
space groups. Each space group belongs to one of
seven crystal systems which define a unit cell with
three basis vectors A, =a, A, =b, A; =c [see Inter-
national Tables for Crystallography, Vol. A. (Hahn,
1983)]. The monoclinic system is traditionally de-
scribed in the first setting and hexagonal coordinates
are used for the rhombohedral system. Following the
rules of Haussiihl (1983) we use the right-handed set
{A;, Ay, Ay} with

(A,.[A, x A5]1>0 (36)

to construct a right-handed Cartesian coordinate
system K(X, Y, Z):

ZIA;, Y[A;xA, X|YXZ 37

This corresponds to the standard convention in crys-

tallography and physics (e.g. Nye, 1957). Since the signs .

of A, are not determined and also because lengths a, b, ¢
can be identical due to symmetry, there can be several
equivalent possibilities.

Each crystal structure also belongs to a crystal class
%, with rotation group Gz (Matthies & Helming,
1982). Rules (36) and (37) yield Ny equivalent crystal
coordinate systems Ky for G, with highest symmetry
such as in the hexagonal case G§™ = Dg-622, N3™
= 12. But also included in the hexagonal system are
structures with &z = D,-6m2,i.e. Gg = D3-312, Ny = 6.
Among the 12 possible choices there are two physically
distinguishable subsets of six. In order to select one of
the subsets, positive axis directions can be assigned
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based on structural details. For the trigonal example
(95 =D;,-31m, Gg=D;-312) discussed in §7, the
rhombohedral basis vectors A,, A,, A, are trans-
formed to hexagonal vectors by Aj=A;—A,,
AL=A,—A; and Ay =A  +A,+A;, and Zg| A},
X || A} is chosen.

With such a scheme we can divide the 32 crystal
classes into a cubic and hexagonal branch with
G52 = 0-432 and G3* = D¢-622 respectively using
the K variants of the last ones as starting sets. Then
the Euler angles which describe a symmetry element
g, contained in a given Gp are identical to those of
gg. in G52 In order to find equivalent orientations
g =gp,8.84, for a given Gg, one has only to con-
sider those gy, in g™ tables for G5 = 0-432 (Matthies
& Wagner, 1981), or G3** = D¢-622 (Helming &
Matthies, 1984), which are contained in Gg.

5.1.2. Sample coordinate system. The definition of
sample coordinates K , is more arbitrary. If the sample
possesses a statistical symmetry, it is useful to choose
axes for K, which are parallel to symmetry axes such
as in rolling of metals with three perpendicular two-
fold axes. Traditionally, X, is chosen parallel to the
rolling, Y , parallel to the transverse, and Z, parallel
to the normal direction. In axisymmetric textures Z
is parallel to the rotation axis. In torsion experiments
it is sensible to place the twofold axis parallel to Z,
(shear-plane normal parallel to Y ,).

In geological samples symmetry is often lower owing
to a complicated strain path. Here it has become
customary to use mesoscopic fabric coordinates to
define K, with Y, parallel to the lineation and X,
parallel to the foliation (schistosity) normal. Since
rocks are often deformed in plane strain geometry, Z 4
becomes the direction of no deformation. This also
makes it easiest to distinguish between pure and simple
shear.

It is possible to transform f(g) and define new K4
coordinates after the ODF reproduction has been
done (e.g. Bunge & Esling, 1985), but this requires
considerable effort and it is certainly advantageous to
choose K, before pole figures are measured or to
transfer the pole-figure data to the new K.

5.2. Choice of Euler angles

Euler angles have almost uniformly been accepted
as the most efficient method of texture representation.
Since the convention of Roe (1965) g={¥, O, &}
= {a, B, y} is easier to visualize, particularly for low
crystal symmetry, and consistent with crystallo-
graphic conventions, we prefer it, but the transfor-
mation to the convention of Bunge (1969) is easy
(see footnote in § 2) and can be done in final output
data without requiring any changes in the computer
codes. Another convention which is more symmetrical
has been introduced recently by Kocks (1987).



292

5.3. ODF representation

Because of symmetry [(4) and (5)], the G space (1)
can be divided into N,Njp elementary regions, each
containing the compiete information about the ODF.
Usually the ODF is represented within such an
elementary region (or a somewhat enlarged region) as
a set of planar sections in which densities are con-
toured. Sections are at constant @ (or ¥), and rectan-
gular axes are used for ¥ (or ) and @ as shown in
Fig. 1. Unfortunately in such a representation G space
and its symmetry are badly distorted, particularly at
0 = 0 or . In addition, symmetrically related ‘texture
components’ (maxima on ODF) are not very obvious
on these maps.

In order to overcome these difficulties a ‘spherical’
representation was proposed by Wenk, O’Brien & You
(1985) and Wenk & Kocks (1987) which is in closer
correspondence with pole figures. From (2), the distri-
bution f({r, @ =constant}) can be interpreted as a
distribution of Z, axes on the surface of a unit sphere
and represented as constant ¢ sections with @ and ¥
as spherical coordinates (Fig. 1b). The spherical distri-
bution is then represented in equal-area projection
which has the added advantage of having an undistor-
ted total texture intensity contained in an orientation
peak. Because the angle @ is known for each section,
the full orientation of a component can be immediate-
ly constructed using Fig. 2 (Schmidt net). Recently
variations to this representation have been proposed
(e.g. Bunge 1987; Helming, Matthies & Vinel, 1987).

Depending on a particular application, both rectan-
gular and polar representations will no doubt be used.

&=45°

o TM

(b)

Fig. 1. Comparison of # =0 and & = 45° ODF sections in rectan-
gular () and spherical (b) representations. The example corre-
sponds to f(g) for MIX2 shown in Fig. 4. Lowest contour is
1 m.r.d., contour interval 0-5 m.r.d. (m.rd. = multiples of a random
distribution).
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However, we advocate some uniformity in choosing a
particular region of G space. Unless the texture dis-
plays axjal symmetry, we prefer @ = constant sections
[called by Wenk & Kocks (1987) COD’s or crystal
orientation distributions] because the crystal has a
strict symmetry which can be rigorously applied,
whereas the sample has only a statistical symmetry
which is more or less approximated and best seen in ¢
— constant sections. Of the various equivalent choices
for the G-space region (using Kp discussed in § 5.1) we
recommend those indicated in Table 2. Because of the
inclined position of the threefold axes in the cubic
system, elementary regions have a complicated
structure  Pospiech, 1982), and it has become custom-
ary to represent a threefold enlarged elementary
region.

5.4. Error criteria

As was explained in § 4, difference pole figures and
RP values are informative quantities to assess the
quality of experimental data and of the reproduction
method and we will discuss them in some detail in § 7.
It should become a prerequisite to publish error value
for every ODF. Note that experimental pole figures
need to be normalized in order to reproduce an ODF
and to calculate the error quantities. This leads to
additional complications if only incomplete pole
figures have been measured.

Fig. 2. Definition of Euler angles ¥, ‘@, & relating a Cartesian
coordinate system placed in the crystal, Ky(Xg, Yy, Zy), with a
Cartesian coordinate system placed in the specimen, K (X450 Ya
Z ). Polar coordinates, equal-area projection. K 4 will be parallel
to K, after the three rotations: rotation of K, around the axis Z4
through the angle Y[K, —» K(X', Y, Z'=Z )} rotation of K’
around the axis Y’ through the angle @{ K’ — K"(X", " = Y,Z"
=Z,)]: rotation of K" around the axis Z” through the angle
O[K" — Kp{ X5, Yy, Zg)}
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Table 2. Recommended G-space region for different
sample and crystal symmetries

Sample symmetry:

G,=Ci-1 0<¥<2n
C,-2 0<¥Y<n
D,-222 0<¥Y<n/2

Crystal symmetry:
cubic branch

Gp = 0-432 0<O <2, 0<P<nf2 (threefold region)
T-23 0<O<n/2; 0P (threefold region)
D,-422 0<O<n/2, 0<P<n/2
Cu4 0<O<m 0<P<n/2
D,-222 0<O@<n/2; 0<P<n
C,-2 0<O<n, 0<P<Ln
c,-¥ 0<@<m 0<d<2n

hexagonal branch

Gy = Dg-622 0<O@<n/2, 0sP<n/3
Ce-6 0<@<m 0<d<n/3
D5-312 0<@<n/2, 0<P<2n/3
C5-3 0<@<m 0<P<2n3

5.5. Characteristics of the ghost correction

The condition f*(g) > 0 leads to a nonlinear prob-
lem that can only be solved in an iterative way. The
starting estimate of the ODF solution, the iteration
algorithm (which may contain hidden conditions) and
explicitly formulated additional conditions all deter-
mine the resulting f™(g). Its properties should be
clearly specified. One of the parameters which charac-
terizes f(g) is, for example, the texture index (sharp-
ness of the ODF)

Ng
[r= gfz(g) dg/8n* ~ Z:lffV,./gﬂ2 (38)

with ¥V, the volume of the nth G-space cell.

6. Some features of reproduction methods

Some aspects of the approach recommended above
will be applied in § 7 to realistic examples. Three
methods of quantitative texture analysis will be com-
pared using the same input data, the same computer
facilities, and presently existing programs which have
been tested by those who developed them. A brief
discussion of the algorithms used in these three
methods and of their characteristic properties seems
appropriate [see also Matthies (1984), Wenk (1985)
and Wenk, Bunge, Kallend, Liicke, Matthies, Pospiech
& Van Houtte (1987) for more details and other
methods].

6.1. Harmonic method §

In the ‘conventional harmonic method’ (Bunge,
1969, 1982; Bunge & Esling, 1982), Fouriet coefficients
C! (20) are obtained through their relationship (21)
with experimental values F,,,(yj) (i=12,..,1
j=1,2,...,J). Because of the factor w, it is only
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1=0(2)
which contains a ghost part (13) and L-dependent
termination errors. In general, instead of (21) one uses
equations which refer to only one I,

L
possible to obtain fX(g) > <0 [cf (23) with ]

471 L(Gg. 1) - .
F:’(hl) = 2l + 1 Zl C;l'vw(GBa ng l, )u) Y?fu(hi}:
u=

(39)

or modified equations deduced from them by a least-
squares algorithm (Bunge, 1969) [see also (34)].

The solubility of (39) for the unknown Ci*’ with
w =1 depends on the degree of the expansion L and
the number of available pole figures I[L(%, L) <I].
L also determines the resolution in f*(g) which can be
described with the orientation distance dw; ~2m/L.
Let b be the half-width of an ODF peak. In order to
obtain a good reproduction, the expansion should
extend to a degree L based on a sufficient number of
pole figures I (in each the distance in the measuring
grid AY should be less than b/2), such that Ao, < b.In
the harmonic method, errors depend, in addition to
data quality, on series-termination effects, computer
precision, and the integration algorithm used for (34)
(Humbert, 1976).

A rough approximation is obtained by the rectangle
method

~ J ~
i Py(y) Y (y) dy = ; Py YELY)S;-

S;= | dy. (40)
Y

More accurate is the staircase approximation
J
iPh;()’) YY) dy ~ '21 Ph,—(yj)J YY) dy, (41)
i= i

which is used in many standard programs. The
smallest integration errors are obtained by means of
one-dimensional (Dahms & Bunge, 1986) or two-
dimensional cubic splines.

The possibilities of the conventional harmonic
method are limited by L(I), which is particularly
critical for materials with low symmetries where only a
few pole figures can be measured satisfactorily.
Computer time (for L=~20) is low, particularly if
functions D, (g, "), Yi.W(¥) and Y, ,(h;) arcstored ina
library. With increasing L the size of these arrays
increases rapidly and the large number of terms
(positive and negative) in the sums may cause prob-
lems with roundoff errors.

The positivity condition f M(g) >0 can be used for a
ghost correction such as in the zero domain method
(Bunge & Esling, 1979) or in Van Houtte’s (1983)
f=h? approach. Both methods are based on fX(g),
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constructing f™(g) such that fX(g) +f™(g) 20 and
that [in accordance with (16) and (17)] the RP value
for f*(g) is not increased (see also Wenk, Bunge,
Kallend, Liicke, Matthies, Pospiech & Van Houtte,
1987).

Another approach for a ghost correction, especially
useful for interpretations, is to model the ODF with a
set of N Gauss functions

N
U@ =Fe+ 3 LS (b, 83, 8) 20,
(42)
F+ )Y I,=1
n=1

The parameters (intensity I, half-width b and position
g9, isotropic background F,) are determined by fitting
X g) and f™X(g) (Liicke et al., 1986; Matthies, 1982b).
This method is useful for sharp textures with few
components (e.g. f.cc. metals deformed by rolling);
medium textures do not as a rule really consist of
separate Gauss functions forming complicated distri-
butions, and in this case the method is at best an
approximation. Furthermore, f™(g) (without termin-
ation errors) may not be identical with f*(g). There-
fore the RP values for f™(g) and f%(g) are generally
different. In the examples considered in the following
sections we will deal with the conventional harmonic
method only.

6.2. Vector method

The vector method (Ruer & Baro, 1977; Schaeben,
Vadon & Wenk, 1985; Vadon, 1981) discretizes the
task Fhl_(yj) — f(g,) into a set of linear equations which
are solved directly with an iterative procedure such
that f(g,) >0. The iteration algorithm with a zero
approximation fM(g)=1 produces a solution
f¥(g) =0 with a minimal texture index (Matthies,
1984) which is close to f(g). Schaecben’s (1984) at-
tempts to suppress secondary minima have not
yielded significant improvements because the main
properties of the iteration algorithm are maintained.
Ounly in the case of sharp textures with large zero
regions in the pole figures will f¥(g) be close to f(g).

The resolution of the vector method depends largely
on the size of cells in G and Y space. Since N; <IN, is
a necessary condition, the ODF discretization is
generally much coarser than the pole-figure grid. The
method works with large (but sparse) matrices in the
range N Ny, which implies a lot of computer time and
large storage capacity for low symmetry and also, if
good resolution is required, a large number of pole
figures.

6.3. WIMYV method

“
7

Based on principles of earlier reproduction methods
(Williams, 1968; Imhof, 1982) and on a detailed
analysis of the origin of ‘ghosts’, Matthies & Vinel
(1982) developed an iterative reproduction method

with a conditional ghost correction which supplies for
minimal RP values f#(g) > 0 with a maximum texture
index (few but sharp peaks) (see also Matthies, 1982¢;
Matthies & Wenk, 1985).

The basic elements of the method are product
functions of the type

1 M

[]1 n1 Ph,-(g_l'hm,-)’ h, g, .h, £, €%, (43)
whereby f™(g) is always > 0 and it produces an exact
solution for every zero fibre associated with P, (yd) =0
(25), i.e. f(gr,) = 0. These conditions are augmented
by requiring a maximum phon F=min {f¥(g)}
— max for a minimum RP. The method needs neither
harmonic functions nor matrix operations, and works
with positive numbers only. For its effective organiz-
ation the'method requires rather large arrays of stored
addresses defining the cells in G space [¢f. (6), (11),
g=1{&,h;, 0.} '.{ym, 0}]1 or in pole-figure space
[¢f. (43), y=g, '.h,,] which contain corresponding g
or y. The method converges rapidly and permits — as
does the vector method - analysis of the internal
compatibility of single measured pole figures.

For pole figures with poor statistics it is advisable to
smooth fM(g), for example, by convolution with
Gaussians such as for single grain measurements
(Wagner, Wenk, Esling & Bunge, 1981) or by filtering,
Such filtering of high frequencies. which contain no
information is effectively achieved in the harmonic
method by series termination; however, this does not
guarantee that fM(g) > 0.

In concluding this short summary of principles it
should be emphasized that mathematically correct
reproduction methods should produce for the same
input pole figures similar RP values (i.e. similar
recalculated pole figures) except for differences in the
degree to which the input information is used.
However, depending on the method-specific pro-
perties of the result, there are differences in f™(g).

7. Numerical comparison of methods

The methods described above are all mathematically
sound and can reproduce ODF’s within the limit-
ations which we have indicated. Whereas ODF’s vary
because of inherent assumptions, each method should
be able to regenerate the original pole figures which
served as input within the resolution which depends
on discretization, degree of expansion, etc. We have
used several sets of input pole figures and analysed the
same data with the same computer to obtain infor-
mation about resolution, errors, computer time, mem-
ory, and disk storage requirements.t The computer

1The pole-figure data for all test examples are available for
distribution and may be obtained by sending an IBM PC floppy disk
to H.-R. Wenk.
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Table 3. Computer programs

Method Specification Author
Cubic—orthorhombic Rectangular ~ Based on Jura, Pospiech

harmonic integration & Bunge (1976)
(incomplete Staircase Based on Bechler-Ferry,

Wagner, Humbert,
Esling & Baro (1981)

pole figures) integration

Trigonal-triclinic Staircase Wagner (1984)
harmonic integration
Vector Vadon (1981), modified by
Schaeben (1984)
WIMVY Matthies & Vinel (1982),

modified by Matthies &
Wenk

iz

used was an IBM 3081 with the VM/SP CMS opera-
ting system. Programs used were the most advanced
versions at the time, kindly supplied by proponents of
each method (Table 3). In each case we tried to get
optimum results. Comparisons are done on two levels:
experimental and recalculated pole figures (Figs. 3, 5,
7, and 9) and ODF’s (Figs. 4, 6, 8, and 10). In three
examples (cubic and trigonal standard distributions as
well as Taylor simulation) the initial ODF was known
and pole figures were generated from the known ODF.
In the last example (measured pole figures) the true
ODF is unknown. Input pole figures contain norma-
lized densities in a 5 x 5° array with four-digit ac-
curacy. Whereas these data represent densities at ¢
and ¢ values of 0, 5° etc., all methods discussed here
assume that this value is constant over the size of the
box, ie. from 0 to 2:5°, 2:5 to 7-5° etc. Output pole
figures as well as ODF’s were calculated in the same 5°
grid. In the case of the vector method some additional
comments are in order. First, it uses a different pole-
figure grid with boxes extending from 0 to 5°, 5 to 10°
etc. This clearly has advantages for programming
because it avoids special-case situations at borders.
Secondly, the vector method uses different coordinates
in ODF space (Ruer, 1976). It therefore requires
interpolation to bring input and output data into
conformity. This was done in such a way as to
maintain maxima and minima during the necessary
smoothing. It turned out that uncertainties introduced
during interpolation are smaller than those inherent in
the method. Equal densities in these arrays were then
contoured (using a contouring routine designed by
Vadon, private communication) and are represented
in polar coordinates in equal-area projection. Table 3
describes the computer codes. Table 4 contains in-
formation about central processor time; Tables 5-8
contain RP error values and additignal information
about pole figures and ODF’s. ¢

7.1. Standard distributions

Properties of each method can best be illustrated if
we assume a model ODF f(g) and calculate from it
mathematically a set of pole figures P,(y). These pole
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Table 4. Typical computer processor times (IBM
VP/CMS 3081 Level 0313)

Pole Time

Method figures (s) Details

WIMYV cubic 1 4 1 FON step
cubic 3 7 . .
trigonal 3 28 <10 iterations
trigonal 6 63

Harmonic cubic 3 <2 L= 16,]'
trigonal 6 50

Vector cubic 1 97 200 iterations
cubic 3 184
trigonal 3 533

This does not include calculation of data arrays, matrices and
library functions and except for WIMYV also does not contain the
calculation of ODF sections.

figures which serve as input are free of experimental
errors. With such an approach not only can we
compare pole figures ﬁhi(y ;) Pi{(y,) but also ODF’s
f(g) <> fM(g). We have to guarantee that errors pro-
duced in calculating pole figures [(6), (11)] are negligi-
bly small. This can be achieved with so-called standard
functions (Matthies, 1980b, 1982b). Corresponding
computer programs were developed at Rossendorf
(Matthies et al., 1987) forall9gand G, = D, C,, D3,
C,, C, mixing bell-shaped distributions [cf. (42)] of
Gaussian or Lorentzian form at g¢ with any half-
width b, and intensity /,. With these programs it is
possible to calculate f(g), f(g), Pi(y), Fi(h) and
C#¥ with a ‘standard accuracy’ (e.g. 1411, 14f1,
|4 P| < 0-005).F

Cubic—orthorhombic symmetry — MIX2 {Figs. 3, 4;
Table 5; see also Matthies & Vinel (1982)]. The
standard ODF in Fig. 3(a) consists of three com-
ponents which approximate a fc.c. rolling texture
(by =b,=by=17°% isotropic  background F,
= (-3095).

g) = {011}211) = {¥ = 5474, © = 45, & =0°},
‘brass component’, I, = 0-315, Lorentzian.

g9=1{123}(634) = {¥ =3102,0 =367, 9 =2656"},
‘S position’, I, = 0-315, Lorentzian.

8= {112} (111 = {¥ =0, © = 3526, ¥ =45°},

‘copper component’, [ = 00605, Gaussian.

Using the cubic—orthorhombic equivalence {¥, 0,9}
= {n—¥,0,n/2 — &} (Matthies & Wagner, 1981), we
used the threefold elementary G-space region {0-180°,
0-90°, 0-45°} which allows a compact representation.
A special property of the MIX2 distribution is the

1The difference between these standard functions and the Gaus-
sian distribution suggested by Bunge (1969) consists, among other
things, in their analytical closed form for f(g),f(g) and 2, (y). This
permits calculation of the corresponding quantities without har-
monic series which are unfavorable for high-precision calculations,
especially for peaks with small half-widths.
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positivity of its reduced part [ f(g) = 006] shown in
Fig. 4 (Fs). Therefore it is to be expected that the
vector method will provide an ODF close to f(g). For
a sufficiently large L and a sufficient number of pole
figures the harmonic method should also reproduce

f(g) with good quality.

Stondard

W

WiMy

Harmonic
L=22

Vector

Fig. 3. Cubic—orthorhombic model texture MIX2, consisting of three
bell-shaped components described by standard functions. The
corresponding standard pole figures Py (y) are compared with
recalculated pole figures using different reproduction methods
{three pole-figure fits). Difference pole figures are shown on the
right side. Equal-area projection. Contour intervals for pole
figures are 0-25 m.r.d., shaded below 075 m.r.d. Contours for
difference pole figures are —0-3, —0-2, —0-1, —0-01 (dotted), 0-01,
0-1, 0-2, 0-3 m.r.d. (solid).

Standard
£

Stondard
Fs

wimv
3Pf

wimy
Ht

Harmonic
L=22

Vecfor
3pPf

Vector
i

Fig. 4. The ODF of the cubic-orthorhombic model texture MIX2
represented as ¢ sections in polar coordinates, equal-area projec-
tion. F is model f(g), Fs =f(g), WIMV, Harmonic, Vector are
ODF’s reproduced with the respective methods. Contours are
025, 05,075, 1, 1'5, 2, 3, 4, 5 m.r.d. Shaded below 0-5 m.r.d.

Fig. 3 shows contoured ‘standard’ pole figures 111,
110, and 100 based on a 5° data grid which served as
input for the ODF reproduction. They are compared
with the recalculated ones. Those from the harmonic
method (L =22) and from WIMYV are very similar,
whereas those from the vector method have peaks at
correct positions but of lower intensity, which we
attribute to the large cell size in f(g) space.

Interesting information is revealed in difference pole
figures (26). For WIMV there is a fairly random
scatter of slightly positive and slightly negative areas
on all pole figures. The strongest positive deviations
(<0-08 m.rd.) (m.r.d. = multiples of a random distri-
bution) are close to texture peaks. They often represent
single values, suggesting occasional problems due to
the simple treatment of the G-space cell structure. Such
effects could be eliminated by filtering, as mentioned
above.

In the harmonic method the range of errors is similar
(<0-04 m.r.d.), but there is very little correlation with
the texture. However, there is a conspicuous minimum
in the center of all pole figures which we attribute to the
typical poor numerical accuracy of the Cp*7!
coefficients.

Deviations are most profound in the vector method.
We discern that on the center of each peak located
near the equator there is a positive deviation, and this
is bordered by a negative area. Deviations show
mainly an azimuthal (¢) spread and are simply due to
broadened peaks in the recalculated figures. We at-
tribute this to the large cell size and the particular cell
pattern in G space which is particularly unfavorable at
large ©.

The ODF’s in Fig,. 4 illustrate that, as expected, the
harmonic method reproduces with good accuracy f(g)
with ghost features (Fs). Not only peaks, peak shapes,
and peak intensities but also regions with low values
of fM(g) agree closely with f(g). Since the half-width
of peaks is b= 17° an expansion to L =22 (¢f. § 6) is
sufficient to resolve the topography. Table 4 illustrates
that RP values improve only very slightly for L > 16.
The WIMYV solution is obtained either with F = P,
=min {P,(y;)} or after three steps in phon iterations
beginning with F, =0 which yield /¥ =049, 0-54,
0-55 respectively after three to six internal iterations.
This solution is close to f(g), demonstrating the
usefulness of the WIMV conditions for this difficult
test (high background, unknown). Of course, for
examples with many more than three components of
various magnitudes the difference between f(g) and
fM(g) may be larger because WIMV (explaining the
pole figures) prefers a solution with a maximum
texture index. This explains why peaks in f™(g) are
slightly larger than in f(g). The solution of the vector
method in this example with no pole-figure zeros is
close to f{(g), but resolution is considerably worse than
with the harmonic method. For cubic crystal symme-
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Table 5. Error analysis of cubic—orthorhombic standard

model (MIX2)
Pole Maxi- Mini- RPO RP1
figures Method* It  mum mum (%) (%)
i1 Model 243 063
w 3 243 062 0-46 0-55
w 1 2:38 063 045 Q055
Hr22 3 2-29 062 090 043
Hsl8 3 1-62 1-83
Hs22 3 0-54 0-54
Hs34 3 040 045
vV 3 2-:09 059 290 273
v 1 2-10 0-64 1-50 1-49
110 Model 2:34 0:68
w 3 2:32 0-67 0-86 1-06
Hr22 % 3 2:31 0-67 055 057
Hs18 3 1-26 1-56
Hs22 3 0-66 0-86
Hs34 3 044 056
V 3 2-19 065 2:69 2:55
100 Model 191 0-55
w 3 192 0-55 o-55 0-80
Hr22 3 187 055 078 057
Hsl18 3 111 1-39
Hs22 3 055 062
Hs34 3 0-31 0-40
Vv 3 1-90 055 3-89 4:54
ODF Model [ 577 0-54
Model | 488 006
w 3 600 0-55 063 0-80
Wi 1 589 0-48 057 0-68
Hr22 3 4-66 004 074 0-52
Hs18 3 4-27 009 1-33 1-59
Hs22 3 4-62 005 058 067
Hs34 3 4-87 006 0-38 047
14 3 4-35 003 317 328
4 1 555 001 1-50 1-49

*W = WIMYV, V = Vector, H= Harmonic (r = rectangle, s= stair-
case integration).

+I = number of pole figures used.

{Without phon iteration.

try an ODF can be obtained from a single (111) pole
figure (Vadon, 1981) and in the MIX2 case with a
large isotropic background which reduces the number
of unknowns, the single pole-figure fit is very good,
particularly with WIMV. With the harmonic method a
single pole-figure fit provides unsatisfactory resolution
(L= 10), and application of nonlinear algorithms ‘is
extremely cumbersome. Compared with the other two
methods, the vector method produces less-accurate
results with a more substantial computational effort.

Trigonal—triclinic Gauss (Figs. 5 and 6 and Table 6).
A second example is that of a single Gauss peak ODF
for trigonal crystal (3 2/m) and triclinic specimen
symmetry. Such textures are common for phyllo-
silicates in many rocks (Qertel, 1985). We use the
example mainly to illustrate the geometry of an

orientation represented as pole figures and an ODF
for a low-symmetry case. The Gauss component is at
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Table 6. Error analysis of trigonal—triclinic Gauss
standard peak (WIMYV without phon iteration)

Pole Maxi- Mini- RPO RP1
figures Method* I mum mum (%) (%)
006 Gauss 682 055
w 6 691 054 073 1-25
w 3 6-88 054 0-59 1-05
Hr 6 6-83 051 1-29 027
Hs 6 676 055 0-15 036
14 3 7-16 042 10-8 85
104 Gauss 2:63 0-55
w 6 2:61 055 1-28 071
w 3 2:62 0-56 093 063
Hr 6 2:63 0-55 1-02 037
Hs - 6 260 0-56 019 021
vV 3 2:65 0-44 63 47
012 Gauss 2:63 055
w 6 2:61 054 1-50 1-44
w -3 2:60 055 1-08 1-12
Hr 6 2-67 055 1-45 215
Hs 6 2-61 0-55 024 023
14 3 2:46 049 149 80
202 Gauss 2:64 0-55
w 6 2:67 054 1-44 1-14
Hr 6 265 054 1-02 032
Hs 6 2:62 055 021 0-21
213 Gauss 1-62 055
w 6 162 055 090 1-09
Hr 6 1-63 055 088 1-04
Hs 6 1-60 055 019 016
210 Gauss 2-63 055
w 6 2:62 054 090 1-00
Hr 6 2:63 054 1-23 036
Hs 6 2:61 055 020 022
ODF Gauss [ 20:03 055
Gauss | 1319 —0-53
w 6 2031 037 1-12 1-11
w 3 20-32 042 087 093
Hri6 6 13-38 —075 1-15 075
Hsl6 6 1310 —0-54 0-23 023
vV 3 16:8 0-0 107 71

*Symbols as for Table 5.

g =1{120° 60°, 105°} with b = 36°, | =0-45. An iso-
tropic background F.= 0-55 is added. In this example
the positive Xp axis points in the [21.0] direction
(hexagonal indexing) and ¢/a = 3419 as in the case for
the mineral calcite. Whereas f(g) 1s fairly monotonic,
f(g) displays a more complex pattern, with subsidiary
peaks (ghosts) and negative areas.

With six available pole figures the conventional
harmonic method is limited to L = 16, which is suffi-
cient for a peak width b = 36°. Distributions for f*(g)
and f(g) are very similar, including maxima (13-4
persus 13-2) and minima (=075 versus —0-53).
Differences between Pﬁ(y) and P,(y) are thought to
be due to integration errors, roundoff errors (single
precision, real x 4 = 6 digits) and cell size.

In the vector method the computer environment is
prohibitive for treatment of more than three triclinic
pole figures. In the trigonal case, G cells are large (Ag
up to 30°), which limits resolution and effectively
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reduces peak intensities. Concentrations appear close
to the correct positions but are weaker throughout.
Conversely, the background is higher. The solution
fM(g) is close, because of the large region with a flat
plateau, in general pattern and peak maximum to f(g).
Error values are much worse than for the harmonic
analysis, but ghosts are largely absent and there are no
negative areas.

The WIMV analysis for both three and six pole
figures reproduces f(g) with excellent accuracy, but
the WIMYV conditions are admittedly ideally tailored
to such a simple model distribution. Note that the
maximum for WIMV is slightly larger than in f(g)
(20-3 versus 20-0) and much larger than the maximum
in f(g) (13-2). In Fig. 5 we also show a recalculated
ideal pole figure 2, (y) for h; = (21.0> || + X5 [¢f (6)].

Standord Hormonic L=16 Vector
Ya

006

104

202

012

203,213

2i0,210

2io

upper
hamisphers

2io
tower
homisphere

Fig. 5. Trigonal-triclinic Gauss at ¥ = 120, ® =60, ¢ =105°.
Standard pole figures ﬁh‘_(y) are compared with recalculated pole
figures using different reproduction methods. The ideal pole
figure + ¢21.0> 2, (y) is also shown on upper and lower hemi-
spheres. Equal area projection, contour interval for 006 is
2 mr.d., for all others I m.r.d., lowest contour is 1-0 m.rd.
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In the case of trigonal 3 2/m symmetry, positive and
negative directions [uv.w] which are not perpendi-
cular to a twofold rotation axis are physically different
and can be distinguished (Weiss & Wenk, 1985),
¢21.0) is such an example. (21.3) is another but is
not shown. For all other pole figures (00.65, {10.4,
{20.25%, and <01.2), h¥ and —hf are related by a
twofold rotation and are therefore indistinguishable,
even in correlatior: to other crystal directions. In these
cases Py (y) = Py (y) = Py (y) and correspondingly in-
formation is lost. In the WIMYV analysis the initial
phon was set to zero. Already after the first refinement
cycle f4,. converged close tO fun- A second phon
iteration (using f™,, as starting value) improved the
wiMV 6 Pf

Harmonic L =16 Vector 3Pf

Standard Gouss F Standord Gouss Fs

\\ o=\'."‘ ’/—‘\ /C 3 o
A @_@2\\ / f.tp

OIJ \“ i
S

/o\l/

Fig. 6. Trigonal-triclinic Gauss at ¥ = 120, @ = 60, ¢ = 105°. ODF
represented as @ sections in polar coordinates, equal-area projec-
tion. F is model f(g), Fs=f(g), WIMV (six pole figures),
Harmonic (six pole figures), Vector (three pole figures) are ODF’s
reproduced with the respective methods. The solution for WIMV
with three pole figures is visually identical to that for six pole
figures. Contoursare 0, 1,3,5,7,9,11,13,15,17,19 m.r.d. Negative
areas are dotted. ’
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results slightly. Notice the regular axial symmetry of
the Gauss peak in pole figures. This symmetry is
commonly distorted by G-space representation, even
in the relatively undistorted representation with polar
coordinates. It is particularly evident in the peak
shape and in the low contour levels of f(g). If one uses
a special ‘n/4 projection’ of the o sections (Helming et
al., 1987), this distortion disappears.

7.2. Trigonal-orthorhombic symmetry— Taylor (Figs.l
and 8 and Table 7)

The previous examples with model distributions
constructed by standard functions provided conve-
nient test cases but were highly artificial. In order to
investigate a more realistic case we have simulated a

Vector

Harmonic L=16

()

'l G

wiMyv

N
A
S

Taytor (=16
3

006

104

SO A
v ROEGRABIS
202
213,213
2i0,210
2io
upoar
hemisphars
2io

fower
nemisphece

o

Fig. 7. Trigonal-orthorhombic model text’pre based on a Taylor
simulation for calcite (¢f Wenk, Takeshita, Van Houtte & Wagner,
1986). Input pole figures (Taylor L= 16) are compared with
recalculated pole figures using different reproduction methods. X,
is direction of principal compressive strain, Y, of principal
extensive strain. The two bottom diagrams are ideal pole figures
Py (y) for + {210). Equal-area projection, contour interval for
006 is 0-S m.r.d.: for all others 0-25 m.r.d., dotted below 1 m.r.d.
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texture for calcite polycrystals after plane strain—pure
shear deformation with the Taylor theory (Wenk,
Takeshita, Van Houtte & Wagner, 1986; Takeshita,
Tomé, Wenk & Kocks, 1987). The Taylor calculation
used 1440 representative orientations which were
smoothed by expressing each orientation with a Gaus-
sian profile of 10° half-width and then expanding the
distribution with harmonic functions up to order L
= 16(Wagner, Wenk, Esling & Bunge, 1981). Bothf(g)
=f(g) and f(g) =f(g) (Fig. 8) show a complicated
three-dimensional distribution, far too complex to be
expressed with a few standard functions. Only a small
region in f(g) is close to zero (0-01), but there are
significant negative regions in f(g) (—05). Note that
for trigonal-orthorhombic symmetry @ sections need
only to extend from 30 to 90° and of course a 180°
sector in ¥ would be sufficient. We show the full
hemisphere to make it easier to compare with the other

Taylor F
L=16

Taylor Fs
L=16

wiMv
6 Pf

Harmonic
L=16, 6Pf

wiMy
006,104,012

Vector
006,104,012

vector

012,104,270

Fig. 8. Trigonal-orthorhombic model texture based on a Taylor
simulation for calcite. ODF represented as & sections in polar
coordinates, equal-area projection. F is model f(g), Fs =f(g),
WIMYV (three and six pole figures), Harmonic (six pole figures),
Vector (three pole figures, two combinations) are ODF’s repro-
duced with the respective methods. X , is direction of principal
compressive strain. Contour iniervals are 0-5 m.r.d. Shaded below
05 m.rd.
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Table 7. Error analysis of trigonal-orthorhombic Tay-

lor model
Pole Maxi- Mini- RPO RP1
figures Method* I mum mum (%) (%)
006 Taylor 2-80 0-19
WF=0 6 2-83 0-20 2:02 1-17
WF=0 3 2:86 019 0-80 1-10
Hrl6 6 2-79 019 0-89 015
Vi 3 244 013 150 130
104 Taylor 2-87 0-52
w 6 278 057 197 057
w . 3 291 0-53 163 053
Hr16 6 2-86 051 090 051
V1 3 2:61 052 8-0 82
012  Taylor 1-87 014
“w 6 183 012 264 133
w 3 1-82 013 3-08 1-60
Hrl6 6 1-86 014 1-23 025
V1 3 1-52 032 134 9-8
V2 3 1-51 0-32 132 109
202 Taylor 212 0-46
w 6 2:08 046 3-52 2:35
Hri6 6 212 045 098 037
V2 3 171 0-50 83 55
213 Taylor 1-43 0-54
w 6 143 0-59 1-65 1-20
Hr16 6 137 0-54 094 122
210 ©  Taylor 1-98 0-38
w 6 2:00 039 2:05 125
Hrl6 6 1-86 036 1-:37 1-64
V2 3 190 0-65 147 68
ODF Taylor f 4-49 —002
Taylor [ 3-94 —0-49
w 6 4:95 0-01 231 1-57
w 3 510 0-06 1-84 122
Hrl6 6 396 —0-67 1-05 0-64
V1 3 448 00 121 10-3
V2 3 3-82 00 121 77

*Symbols as for Table 5.

trigonal ODF’s and to illustrate how symmetry ap-
pears in these representations. From the coefficients of
the harmonic expansion we have also calculated six
pole figures (to L = 16) which served as input for the
analysis (Fig. 7). Since the harmonic apparatus was
used to calculate the initial pole figures, the recal-
culated coefficients [and thus pole figures and ()
agree closely with coefficients obtained from individual
orientations, confirming mainly the internal consis-
tency of all programs and documenting the magnitude
of rounding errors.

The vector method using three pole figures yielded
unsatisfactory results. This is particularly evident n
fM(g). Whereas peaks are more or less at the correct
positions, intensities are off. We see the reason for the
lack of resolution in the tell size, which cannot
represent this rugged topography. It could only be
improved by using a finer discretization of pole
figures, which may not be physically meaningful.
Some important features, such as the maximum at
P =90, @ =45 and @ = 90°, are simply missing.

SOME BASIC CONCEPTS OF TEXTURE ANALYSIS

WIMYV with three or six pole figures generates
fM(g) very close to f(g), indicating that WIMYV
conditions are not only applicable to special model
distributions but also to physically meaningful models
of texture development by slip. Interestingly, analyses
with three and with six pole figures yield almost
identical results. RP errors for WIMV are slightly
larger than for the harmonic method because the
harmonic method simply checked for internal
consistency. .

Even though the texture shows orthorhombic
symmetry, all calculations were done with triclinic
sample symmetry, which is the reason for minor
deviations from orthorhombic symmetry in the case of
the vector method. Wenk, Johnson & Matthies (1988)
have illustrated this same example by decopvoluting
the WIMV £M(g) explicitly into ™(g) and f*(g). As
was shown, f™(g), which is not implicit in the pole
figures, is very close to the corresponding Taylor
solution f(g). The reproduction method is therefore
significant when Taylor ODF’s are compared with
ODF’s calculated from experimental pole figure. The
maximum in the WIMV ODF (495) is slightly
exaggerated over f(g) (4'5) owing to the WIMV
condition of maximum texture index, and much
higher than the maximum in f(g) (39).

7.3. Actual measurements (ODF unknown) (Figs. 9-11,
Table 8).

The first column of Fig. 9 shows pole figures of an
experimentally deformed limestone which were measu-
red by neutron and X-ray diffraction. The sample K338
was deformed in plane strain-pure shear
at 673 K (Wenk, Kern & Wagner, 1981) and displavs
approximately orthorhombic sample symmetry, but
no symmetry was assumed in the calculations. Three
pole figures (00.6), (10.4) and (01.2) were measured on
a 1 cm? cube by neutron diffraction, another two, (20.2)
and (21.3), on a small area of a slab cut through
the central part of the sample with X-ray diffraction in
reflection geometry. Since there is some sample
heterogeneity — the central part (X-ray) shows stron-
ger preferred orientation than the average over a large
volume (neutron) — the combination of the two data
sets causes problems. This will become apparent in the
ODF reproduction. The example is not an optimal
data set but is useful to demonstrate error analysis for
real data.

In this case the true ODF is obviously unknown.
We can only assume that similar differences exist
between f(g) and f(g) as in the case of Taylor becausc
similar mechanisms and a similar strain history were
assumed in the simulation and in this experiment
(Takeshita et al., 1987). A glance at Table 8 illustrates
that RP values range between 5 and 10% rather than
between 0-5 and 1% as in the previous examples. The
three neutron pole figures were analyzed with WIMV
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and vector methods. The excellent resolution of WIMV
is demonstrated in the pole-figure compari-
sons (Fig. 9). Compare, for example, P,4s with
P¥,¢, which agree within minor details such as slight
deviations from orthorhombic symmetry. Resolution
with the vector method, using the same data, is much
less satisfactory.

In the conventional harmonic method three pole
figures are only enough to expand to L =6, which
cannot resolve any details. Therefore we used five pole
figures and L = 12, and obtained similar RP values to
WIMYV method with the same five pole figures. But RP
values for five pole figures are much higher than for
three. We attribute this to incompatibility of neutron
and X-ray pole figures. Recalculated pole figures are
consistently weaker than the experimental X-ray pole
figures which were measured in the central part of the
specimen with the strongest preferred orientation. This
is well documented with difference pole figures (measu-
red — calculated) (Fig. 11) in which positive peaks
appear for X-ray and negative deviations for neutron
pole figures. Interestingly, three- and five-pole-figure
WIMYV ODF’s are similar (Fig. 10) and compare well
with the Taylor prediction for similar deformation
conditions (Fig. 8), as do ideal pole figures for (2105,

WiMv 5Pf Hermonic L=12 wiMv 3P/ Veclor 3Pf
- .
o00 M R0y e”if@% % oﬂo ]
/\@ Y /& WA /“(“;"
D QL

Fig. 9. Trigonal-triclinic texture of experiméntally deformed lime-
stone K338 (Wenk, Kern & Wagner, 1981) . Pole figures measured
by neutron (N) and X-ray diffraction (X) are compared with
recalculated pole figures using different reproduction methods. X
is direction of principal compressive strain. The two bottom
diagrams are ideal pole figures Py (y) for + {210). Equal-area
projection, confour interval is (-5, dotted below 1 m.r.d.

which lack an inversion center (Fig. 9). The harmonic
method reproduces qualitatively the principal features
but with much noise. Since negative areas are insignifi-
cant, the positivity condition alone could not remedy
the situation. The vector method with these real data
for a complex texture fails to resolve the ODF.

8. Concluding remarks

The first part of this paper summarizes the most
important aspects of quantitative texture analysis,
particularly in view of the loss of information if the
ODF is reproduced from pole figures. In recent years,
with increasing popularity of quantitative texture

wiMv
5pPf

Harmonic
L=12,5Pf

wiMy
3Pf

Vectar
3Pf

Fig. 10. Trigonal-triclinic texture of experimentally deformed lime-
stone K338. ODF represented as @ sections in polar coordinates,
equal-area projection. F is model f(g), Fs =f{(g), WIMV (three
and five pole figures), Harmonic (five pole figures), Vector (three
pole figures) are ODF’s reproduced with the respective methods.
X 4 is direction of principal compressive strain. Contour intervals
are 05 m.r.d. Shaded below 0-5 m.rd.

neutron X-

wiMy 3pf

Fig. 11. Difference pole figures (experimental — calculated) for
texture shown in Figs. 9 and 10, reproduced by WIMV (three and
five pole-figure fit), illustrate incompatibility of neutron and X-ray
pole figures due to sample heterogeneity. Large positive deviations
are apparent in the X-ray pole figures. Contour intervals are 0-1
m.r.d; negative arcas are dotted.
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Table 8. Error analysis of experimentally deformed
limestone texture, K338 (three neutron and two X-ray

pole figures)

Pole Maxi- Mini- RPO RP1
figures Method* I mum mum (%) (%)

006 Neutron 2:06 022
w S 1-88 021 100 58
w 3 2-01 022 27 19
H12 5 1-93 020 84 4-7
14 3 2-44 020 85 72

104 Neutron 1-70 046
w S 1-63 048 66 40
w 3 1-59 050 46 2:8
H12 5 1-66 041 73 80
vV 3 171 0-04 11-0 100
012 <«Neutron 1-73 040 '
w 5 1-78 042 73 63
w 3 {-81 039 7-1 61
HI12 5 1-72 0-38 81 87
14 3 1-41 038 88 78

202 X-ray 2-49 043
w 5 2-:00 0-61 194 94
H12 5 1-87 0-52 231 117

213 X-ray 1-86 071
w 5 1-37 072 175 129
H12 5 1-39 072 17-2 14-0
ODF W 5 4-57 019 122 77
- W 3 438 0-20 48 36
H12 S 3-27 —0-43 12-8 9-4
|4 3 335 00 94 83

*Symbols as for Table 5.

analysis, both in materials science and geology, con-
siderable diversity has developed in conventions,
mathematical procedures, representation, and error
evaluation, which can cause confusion as texture
analysis is applied more and more to low-symmetry
materials. It is clear that more uniformity would be
very desirable, particularly for applications of texture
data. We make some recommendations about -the
choice of Euler angles, crystal coordinates, ODF
representation and error criteria which appear to be a
useful basis for further discussions.

In the second part we use the recommended pro-
cedure to analyse several test examples with the
conventional harmonic, vector and WIMV methods.
We find in the numerical results considerable agree-
ment with the intrinsic properties of each method.

The conventional harmonic method reproduces the
ghost-afflicted reduced ODF f(g) with good quality
and relatively little computational effort. Resolution is
limited by series termination (L) and to some extent
by the integration algorithm used to calculate F
coefficients. If nonlinear conditional ghost corrections
are introduced, the computdtional effort increases and
requires an iterative approach. Zero ranges in pole
figures often do not exist and are difficult to define and
therefore the corresponding ghost-correction method
is not applicable. For low crystal symmetry the num-
ber of required pole figures to obtain a high enough

expansion (at least L= 16 is generally desirable) is
often beyond the number which can be satisfactorily
measured owing to frequent peak overlaps at low
symmetry (Wenk, Bunge, Jansen & Pannetier, 1986).
A main advantage of the harmonic method is the
elegant representation of macroscopic physical pro-
perties (Bunge, 1969), needing for their calculation a
small number of coefficients, C{-*, only.

For WIMV the resolution is much less dependent
on the number of pole figures because the method in a
maximum way makes use of experimental information
contained in each pole figure. Rather surprisingly,
single-pole-figure fits often reproduce f(g) with good
accuracy, but clearly more pole figures are desirable to
ascertain consistency. The small number of required
pole figures offers a definite advantage for low crystal
symmetry. Also, in an on-line metallurgical produc-
tion environment a minimum amount of experimental
measurements can be a crucial factor. WIMYV, with its
assumptions of maximum background and smooth
peak shape, is able to resolve f( g) not only for model
distributions constructed by standard functions but
also for Taylor predictions and therefore seems to be
most suitable for deformation textures. The computer
effort is considerable and requires large arrays which
relate cells in ODF and pole-figure space. The result of
WIMYV is a three-dimensional density distribution,
but from this array Fourier coefficients C{-*, both even
and odd, can easily be calculated and used to obtain
properties in an effective manner. Alternatively, phys-
ical properties can be calculated directly from
weighted averaging over the ODF array (Wenk,
Johnson & Matthies, 1988). Even though we have not
demonstrated this here, WIMYV is also well suited to
treat incomplete pole figures because the product
approach makes normalization straightforward.

The vector method, with the ingenious principle of a
linear relationship between cells in pole-figure and
ODF space, is the most transparent of all three
methods and produces f™(g) > 0; however, it is sev-
erely limited by the requirement that there need to
be more cells in pole-figure space than in G space,
resulting in large volume elements which average over
large regions in the ODF. For cubic—orthorhombic
symmetry the vector method produces a semiquan-
titative solution which is (for missing pole-figure
zeros) close to f(g) with its reduced peak maxima and
ghost components. For trigonal-triclinic symmetry we
have failed to obtain satisfactory results. Moreover,
the method is most demanding of computer resources.

Harmonic and WIMYV methods are equally quan-
titative as measured by RP values. Pole figures with
RP values of less than 2% represent an almost perfect
match close to the internal resolution of the method.
RP values between 2 and 5% are expected for good
measurements, and an average RP of less than 5% 1is
representative of a good reproduction. On the other
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hand, if RP exceeds 10% this indicates some dei-
ciency, and difference pole figures are necessary to
identify the problem, which may be sample hetero-
geneity, error in data correction, a relative rotation
error, or simply counting statistics. A poor RP value
does not necessarily indicate that the data are worth-
less, particularly if pole figures display strong peaks.
For publication purposes, we recommend showing
measured pole figures and difference pole figures in
addition to ODF’s. The latter display systematic
errors more transparently than recalculated figures.
The intrinsic resolution of WIMV and harmonic
methods is about a factor of 2-5 better than errors
introduced even by the best experimental pole-figure
data which, are presently available, and we recom-
mend that more effort should now be directed towards
measuring truly quantitative pole figures and assess-
ing uncertainties in the data. Some efforts at standard-
ization are presently under way (e.g. Wenk, Kern,
Pannetier, Hofler, Schifer, Will & Brokmeier, 1987).
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