ON THE RANDOM DISORIENTATION OF TWO CUBES
D. C. HANDSCOMB

1. Introduction. We are given two identical symmetrical bodies (e.g.,
hes) with independent random orientations; then we can always, in several
w=vs, turn one of these bodies about some axis through its centre of gravity,
« as to bring it into the same orientation as the other ‘body. The smallest
s=zle of rotation needed will be called the disorientation, d, of the two bodies,
=i we shall be concerned with the distribution of & under these conditions.

Iznoring symmetry, the relative orientation of the bodies is given uniquely
—odulo rotations of 2r) by a single rotation; the required smallest rotation
- he combination of this with some member of the symmetry group of the
weedv. Using this fact only, and constructing random orthogonal matrices to
s<cribe the rotations, Mackenzie and Thomson (6) get an estimate of the
+-ribution of d for cubes, by the Monte Carlo method. I shall now show how,

-nother method, the distribution can be found explicitly.

2. Representation of rotations. We want a rotation to stand for the
—i.tive orientation of two independently oriented bodies; the distribution

¢ —otations must therefore be invariant under any further arbitrary rotation
 either body. Delthiel (5, pp. 99-106) sets out to obtain a distribution
jant in just such a manner. In the course of his work he represents the

Tvar:
Varl

—eation Z through angle V about the axis with direction cosines a, 3, ¥ by

e coordinates A = asinV, p = BsiniV, » = ysin}V, p = cos3 ¥, satisfying

w44 pt =1

He goes on to find the law of composition of rotations so represented, which
= altering his notation slightly):

N =N + ' — v’ + N,
W= =N 4 e’ o\ A+,
v o= Ay — .u.P\’ 4 Pp" + o,
p = — N — ' — v’ + o,

where the rotation 2" is the resultant of Zand Z’ in that order. Note that
s », pand —\, — g, —v, — p both correspond to the same rotation, a
ot which he does not mention. After this he changes his co-ordinates again
i obtains the probability measure he is looking for.
However the equation A2 + p® + »* + p* = 1 above may be regarded as
== equation of a hypersphere in 4-space, simply by taking A, u, v, p as Car-
we<ian co-ordinates, so that every rotation corresponds to a pair of antipodal
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points of the unit hypersphere. It is easy to verify that his measure is equiva-
lent to the measure of hypersurface of this hypersphere; indeed its invariance
under the group of rotations is evident from the law of composition, which
shows that the transformation (\, ¢/, ¥/, p') — (A", ", ¥", p"") is simply a
rotation of 4-space when A 4 u?® + »* + p? = 1.

The identity _# corresponds to = (0,0, 0, 1) and #, the inverse of 2,
to + (A, g, v, — p)-

Suppose now that we apply an arbitrary rotation 2 to a symmetrical body;

what is the smallest rotation needed to restore it to its original aspect?’ If G
is the rotational symmetry group of the body'in its original state, we want
to find the rotation . € G, such that " = %% has the smallest possible
value of V”. Now the fourth line of the law of combination states that
cosiV” = R.8 (to use vector notation), and . € G implies that .7 € G, so
that we need only look for the .%° giving the largest value to R.S, which is the
member S of the set of points of the hypersphere representing G, which is
nearest to the point R representing #; we can then find the value of V",
which is d.

3. Application to Cubes. Take lines parallel to the edges of one cube as
axes; its 24 symmetry rotations are then represented by the following points
and their antipodes:

Identity
Rotations of:
m about (1, 0, 0) etc.

(0,0,0,1)

(1,0,0,0) (0,1,0,0) (0,0, 1,0)

i inbOUt (l 1 1) etc. (2! 2 2:%) (_ %v = %s = %s %)
(445G -3 -39
G- (—5% 43
GHh -3 (-3 -4 51

x about (0, 1, 1) etc. (0, v%, v/%,0) (\/% y V3, 0) (W/3,v3,0,0)

0, v — v5,0) - v$0) (V3 — v3,0,0)

+ irabout (1,0,0) etc. (1/%,0,0, v3) (0, 0, v3) (0,0, v3, v3)
(= +v%,0,0,v3) (0, — %.0, v3) (0,0, — V3, V%)

Now the first 12 of these points, with their antipodes, are the vertices of a
24-cell, a regular polytope with Schlifli symbol {3, 4, 3} (3, p. 156); the
remainder are the vertices of a reciprocal polytope, also a 24-cell, of the same
size. This configuration is obtained directly from the cubic group by various
methods by Coxeter (2; 4) and by Robinson (7). It is symmetrical, in the
sense that all its vertices are equivalent. Since we want to work out a distri-
bution involving only the vertex nearest to a random point of the sphere, we
can with justice select any one vertex, say (1,0, 0,0), and let the random
point be taken only from the sector of the hypersphere which is nearer to
this vertex than to any other of the 48.
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Calculation of the Distribution. We can now find the probability
<+ for any angle d. The points of 4-space subtending with the point
.0) an angle of 3d at the origin lie in the hyperplane \ = cos3d,

v meets the hypersphere in the sphere p? + v+ p? = sin®}d. Those
=== which subtend a smaller angle with this vertex than with any other of
« % lie in the hypersolid bounded by the hyperplanes X &= u = /2),
v = V2N 2=p = V2 N+t pu £+ v+ p =0, which are the loci of points
“=tant from (1,0,0,0) and from (+/%, &= +/3,0,0), (+/3,0, &= +/3,0),
0.0, =4/, (3, £ %, £+ 1, £ 3), respectively. These hyperplanes meet
— o= 1d in the 6 planes of a cube: u, v, p = £ (4/2 — 1)cos 3d, and the 8
== of an octahedron: & u & » &= p = cos }d, both concentric with the
w=== These 14 planes together bound a truncated cube, whose faces are 6
.r octagons and 8 equilateral triangles. (See (1), Plate I, No. 15, for

g=oration.)
¢ < 45°, the whole sphere lies within the truncated cube, so that p(d) is
~mmes the probability density of points of 4-space lying on this hypersphere,

48- 3 4x-sin’}d 7«
2" 180’

we== £ is measured in degrees. Thus if d < 45°,
p(d) = (2/15) (1 — cosd).

£ > 45° we have to reduce this by a factor equal to the proportion of
.« suriace of the sphere lying outside the truncated cube. If 45° < d < 60°,

& planes is 3{1 — (+/2 — 1)cot 3d}. Therefore if 45° < d < 60°:

p(d) = (2/15) (1 — cosd) (3(+/2 —1) cot 3d — 2)
= (2/15) (3(+/2 — 1)sind — 2(1 — cosd)).

© > 60°, the sphere meets the triangular faces also; it does not meet the
== orovided that tan 3d < 2 — /2, or d < 60.6°. The proportion of area

o=

& by these 8 faces is 4(1 — (1/+4/3)cot &d). Therefore if 60° < d < 60.6°:
s(d) = (2/15) ({3(+/2 — 1) + (4/4/3)} sind — 6(1 — cos d)).

¢ > 60.6°, we have to increase this to allow for the sectors of sphere we
w= ~ut off twice, where an edge of the truncated cube goes inside the sphere.

“ oroportion of the surface of a sphere common to the interiors of two
! circles on it, of angular radii 4, B, whose centres subtend an angle C

== centre, iS:

o cos A cos B — cos C)
S(A,B,C) o z,n.l:arc i ( sin 4 sin B

B d arcc (COS B —cos Cons A)—cc»s B arc cos(ms el Dt ]
0s sin Csin A sin B sin € :

F—
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Each octagonal face meets the sphere in a circle of radius

a(d) = arc cos((+/2 — 1)cot 3d),
GEODESIC GR(

each triangular face in one of radius

b(d) = arc cos ((1/+/3)cot id), I

two octagonal faces meeting at right angles and a face of each type meeting
at an angle = — ¢, where cos ¢ = 1/4/3. The maximum value of d
attained when all the vertices of the truncated cube lie on the sphere, whes
cosd = (242 — 1), d = 62.8°. Therefore if 60.6° < d < 62.8°;

p(d) = (2/15)[{3(v/2 — 1) + (4/+/3)}sin d
+ {12 S(a,a,37) + 24 S(a,b,c) — 6} (1 — cos d)].

4. Introduction. Ina

g aces which admit geods
f=r. not necessarily o
2l surfaces which ca
two such surfaces are
§2) smilar Bonnet asso
§=) both Poisson surfac
both Scherk surface
e==e (i) the mappings
5 of self-isometries of
e=ted by the projecth
srses and similarities
geodesic group of 2 s
rmations. 1he twe
for example,

Substituting and simplifying:
p(d) = (2/15) [{3(v/2 — 1) 4+ (4/4/3)} sind — 6(1 — cos d)]
i f cot’id
+ (8/57) (1 — cosd) -larc cos ?)—_T:m
1d — 2+/2
| + %ar{: CcOs (%2_‘6(—){_;; )}
“ : 2—1 t 3d
— (8/5m) sin d{2(\/2 — 1) arc cos (ﬁ _(\{\/2 "—)IC}(;C(;tg%d}i)

(v/2 — 1)%ot 3d )1
+ (1/4/3) arc cos ( 3= COtz%dﬁ -

D= .

dmits only non-t
= on an image of the
will remain. T

This completes the distribution. The mean works out to be 42.7°. . s
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