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Abstract

In cubic polycrystals, combinations of coincidence
orientation relationships at a triple junction of grains
A, B and C can be obtained by using the equation

Yeu= EABEBC/dz’

where d is a common divisor of X,; and Y.. This
paper describes the derivation of this equation and
shows several models of polycrystals composed of
specially selected coincidence boundaries using the
above equation.

1. Introduction

The orientation relationship between two overlapping
cubic crystal lattices forming a coincidence-site lattice
(CSL) is expressed by a special rotation matrix R (CSL
matrix) (Warrington & Bufalini, 1971; Grimmer,
Bollmann & Warrington, 1974),

R=(1/DR, (1)

where every element of R [(R); 1; ;<] is integral and
(R)1<i,j<3 and X have no common factors. X is an odd
integer and defined as ‘the ratio of the total number of
lattice sites of one crystal to the number of coinciding
lattice sites’ (Warrington & Bufalini, 1971). Since
coincidence boundaries are known to exhibit important
properties in energy, fracture strength, corrosion
resistivity, diffusion coefficients, electrical conductivity
etc., it is of great interest to design such a polycrystal-
line material as composed of specially selected grains
with coincidence orientation relationships. Since crystal
grains in a polycrystal are bound to triple junctions, it is
necessary to investigate the rule that governs the
orientation relationships of the grains around the triple
junctions. For this purpose of grain boundary design, a
formula to describe the CSL orientation relationships
among the grains at triple junctions has been proposed
(Miyazawa, Ishida & Mori, 1983; Takahashi,
Miyazawa, Mori & Ishida, 1986). The purpose of this
paper is to describe the formula in detail and to give
several models of grain-boundary design in cubic
polycrystals.
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2. Combinations of X values at a triple junction

Consider a triple junction O formed by grains A, B and
C with the same cubic unit cell. X(P) is a coordinate
vector of a point P expressed by orthogonal coordinates
fixed to the crystallographic axis system of grain j. The
rotation matrix R; denoting the orientation relationship
between grains i and j is defined by X;(P) = R;'X(P).
From these definitions, the following equations are
obtained if three orthogonal coordinates bound to the
grains A, B and C have the same origin at the triple
junction O:

X3(P) = RysX,(P), @
Xc(P)= RE(I:XB(P ), 3)
X,(P)= RE;XC(P )- C))
From (2), (3) and (4),
X,(P) = Rc4RpcRX,(P), ®
then,
R pRpcRcy =E. (6)

E is the unit matrix. It can be seen in (6) that, if two of
the three rotation matrices express CSL orientation
relationships, the third matrix also expresses a CSL
orientation relationship.

The matrices at the triple junction are written as
follows from (1) when grain boundaries AB, BC and CA
are the coincidence boundaries:

Ry =(1/Z5)Rss,  Rpc = (1/Zpc)Rpe,

- 7
RCA - (I/ECA)RCA' ( )
From (6) and (7),
(1/Zc)Rca = (1/ Zpc)Y Rpc(1/ 2 45) R g
= (1/Z5Z5c) Roc 'Rup ®)

where ¢ means transpose. L.
Since every element of the product ‘Rp-‘R,; is
integral, there must be an integer / such that

Lea=TpXpc/l. &)
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Similarly,

24p = XpcXca/m (10
and

2pc = Ty X gp/n (1)

for some integers m and n. From (9), (10) and (11),

22, =n, 12)
2. =Im, (13)
Tt = (14)

If X,z and Xy are relatively prime, %5 and X3 are
also relatively prime, therefore [ must be equal to 1.
Hence, X, = X, ,3X5c. The following result is
obtained.

Proposition 1

If ¥,z and Yz are the ¥ values of coincidence
boundaries AB and BC at a triple junction of 4, B and C
grains and are relatively prime, then, at the boundary
CA,

Loy = ZpZipc. (15)

Equation (15) appeared in Doni & Bleris (1988) but it
is a special case of the general expression (51).

Consider the case that R,; and Ry are the CSL
matrices with 7 rotation axes. The m rotation matrix
around the rotation axis [HKL] (matrix with [HKL)
rotation axis of 180°) can be expressed as

2H?-M  2HK 2HL
R==| 2HK 2K*-M 2KL |, (16)
2HL 2KL 20— M

where integers H, K and L do not have a common
divisor except 1 and

M=H +K*+1I°. 17)
The matrix R is defined as
R=R/M. (18)

If M is an odd number, M and all elements of R’ do not
have a common divisor except 1 and the matrix R is
called ‘irreducible’. This is proved as follows. Let us
use the notation a| B, which expresses that B is
divisible by «. Suppose d is a prime common
divisor of M and R, ., ie dM and
d|R,] 1<ij<3, Which leads to d|2H? — M, d]2K* — M
and dj2I?—M. If M is odd, d##2. Then,
since d/M and d # 2, d|H?, i.e. d|H. Similarly, d|K
and d |L. d must be equal to 1 because H, K and L were
assumed to be relatively prime. Therefore, (16) is
irreducible when M is odd, and X = M from (1)
When M is even, two of H, K and L must be odd and
one of them must be even, i.e. (H, K, L) must be of type
(odd, odd, even), (odd, even, odd) or (even, odd, odd).

COMBINATION RULE OF X2 VALUES AT TRIPLE JUNCTIONS

Then, M/2 is found to be odd. When M is even, (16)
can be written as

R =[1/(M/2)]

—M)2) HK HL
x HK —(M/2) KL ,(19)
HL KL —(M/2)

where X' = M/2 in this case.
At a triple junction, if R,z and R, are the s rotation
matrices such that

1 -2H12 _Ml 2H1K1 2H1L1
RAB = ﬁ 2H1K1 2K12 - Ml 2K1L1
"l 2HL, 2K, 202-M,|
= (1/M)R g, (20)
. [2H} - M, 2H,K, 2H,L, ]
oL, 2KL, 23-M,)
= (1/My)Ryc, @1)
then, from (6), the following equation is derived:
Ra = RABRBC
= (1/M\M,)
MM, —2K2 +13)  2WL, +2H,K, —2WK, + 2H,L,
x | —2WL,+2H,K, MM, —2(H: +13)  2WH, +2K,L,
2WK, +2H,L, —2WH, +2K,L, MM, — 2(H? + K?)
(22)
where
(Hs, K3, Ly) = (Hy, Ky, L) x (Hy, Ky, L) (23)
and
W =(H,, K, L)) - (Hy, K;, Ly). (24)
Let the matrix kCA be defined such that
Rzi = (1/M\My)R,. (25)

Suppose that an odd integer d is a prime common
divisor of M, and M, and that d divides all elements of

RCA [= (RCA)ij,lsijsjg]. Then,

dMM, - 2K +L5), (26)
diM\M, — 2(H; + L), 27
d\M;M, — 2(H? + K?). (28)
Therefore, d|K? + L3, d|H2 + L% and d|H? + K2, lead-

ing to d|2H2, d|2K2, d|2L5 Since d is odd, d|H%, d|K?,
d|L3 and, since d is prime,

dH, diK, dL,

From the condition of normalization,
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(MM, — 2(K? + L)} + (—2WL, + 2H;K;)*
+ (2WK; +2H,L,)* = (M, M,)*,

then
&} + W = (K} + B)MM, — H: — K2 — L3).
(30)
Case 1: K2 + L2 #0
In this case,
W2 = MM, — H —K? — L2, (€3))

therefore d|W? from (29) and then d|W because d is
prime. Since d is a common divisor of H;, K3, L, and W,
d? is a common divisor of (Rcy)y1<i <3 and M;M,. If

1. M5, H;, K3, L, and W' are defined as M; = Mid,
M,=Md, H;=Hid, K;=Kjd, Ly=Lid and
W = W'd, (22) becomes

Rey = (1/MMy)
MM, - K2 +12)  2WL, +2H;K; —2WK, + 2H,L,
x| —2WL,+2HK, MM, —2H?+12) 2WH, +2K|L,

QWK +2H)L,  —2WH;+2KiL, MM, — 2(HZ +KD)

(32

Since (32) has the same matrix form as (22), each
element in parentheses in (32) is shown to be divided by
d? again if d’ is an odd prime common divisor of M;
and M} and if d’ divides every element in parentheses in
(32).
Case 2: K2+ 12=0

This time, K; = L; = 0, hence
and

IfH, #0, then H; = K,L, — L|K, = K,(L,H,/H,) —
L,(K,H,/H;) = 0. This leads to

RE,i =E= (I/Mle)Iéc,a (35)

and hence R,z = Rl and ¥, = Xp.. It is obvious that
every element of R, can be divided by d? if d is defined
as an odd common divisor of M, and M,.

If H =0, then LiH, =0 and K;H, =0 from (33)
and (34). If H, #0, then K, =L; =0. Because the
rotation axis [H,K,L,] is not defined as the zero vector,
H, must be zero. The rotation matrices R,z and R,
with the rotation axes [0K;L,] and [0K,L,] are written as

Ry = [1/(K} + L2)]
~K+1) 0 0
x 0 K2-I1* 2K,
0 KL, —~(K:-I})

» (36)
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1 —(K3 +L3) < 0 , 0
Rpe =25—73 0 > — L5 2K5L,
E+L| o L, -®-DB
(37
RC} is written as
Rgy = [1/(K} + )(KS +L3)]
(K? + L3)(KZ + 13) 0 0
0 (KK, +LL)Y  2(K,K, +L,Ly)
x —(KL, -LK,) (KL —LK)
0 “2K.K, +LiL,) (KK +LL)
&KL, - LK) —(KL, - LK)
(38)
1 [#+¥ 0 0
| A )
= Rc /MM, 40)
where
M =K+12 @41
and
M, =K?+12. 42)
In (39), x and y are defined such that
X = KIKZ +Lllzz, (43)
y=K\L, - L\L,. 44)

Let us assume here that d is an odd prime number
common to M; and M,. If d divides every element of
R, it can be shown that d? also divides every element
of R.,. This is proved as follows. From the
assumption d|2xy, then d|x or d|y, since d is an odd
prime number.

(i) If dix, then d|y?, from the assumption that d
divides every element of R.,. Since d is prime, d|y.
Therefore, it is found the d? divides every element of
Ry
_ (i) If d|y, d* is also proved to divide every element of
RCA-
From (i) and (ii), for an odd prime number d common
to M, and M,, every element of R, can be divided by
d? if d divides every element of R,.

If M{, M;, x¥’ and y’ are defined as

M, =Md, M,=Md, x=xd and y=yd,
(39) becomes

1 X% +y? 0 0
-1
=———| 0 x2-y2 2y 45)
€A ) 7
x*+y 0 _2x/y/ 2 _y/z
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Since (45) has the same matrix form as (39), every
element in square brackets in (45) can be divided by d”
again if &’ is an odd prime common divisor of M; and
M; and if d’ divides every element in square brackets in
45).

A summary of the above discussions gives the
following result.

Proposition 2

For two CSL matrices with 7 rotation axes,
Ry = (1/M))R,z and Ry = (1/My)Rpc, if d is an odd
common divisor of M; and M, and if d divides every
element of the product R,zR., then every element of
R zRpc can be divided by d?.

Suppose d‘{‘dz‘g ...dY to be the odd greatest common
divisor of M, and M,, where dy, d,, ... and d, (d; # d;
for i#j) are odd prime numbers and the integers
a,f,...,y>1. M and M, are denoted as M; =
(@d;...d)M; and M, = (did’...dY)M,, where M,
and M have no common divisor except 1 or 2. Then,
(25) is written as

Rei =Reu/(didy ... d)Mi(d3dy ... )M,

fore,B,y,...> 1. (46)
If the integers d/, dy, ... and d,, (d; # d; for i’ #j') are
assumed to be some of the prime numbers d,, d,, ... and
d,, the product d.d, ...d, is a common divisor of M,
and M, . If the product d,.d, . . .d, divides (Rey); 1< j<3»
it is shown from the above discussion that (d,.d, ... d,, )
can also divide (RCA)g,lsi, j<3- If the quotient

(IECA)ij,lsi’jS:;/(dlrdzl e dn/) iS deI]Oted as
(Rca)ij, 1<i,j<3 the following equation is obtained:

Readyi<ijes/@rdy - .y}
(d:dl ... d)M;(deds ... d0M,)(dd,, . ..d,)
_ (R%A )ij, 1<i,j<3
@d ... dM@rd ... .dwm,
= (R/c,q)ij,lgi, j53/ MM,

for integers o, 8, y/,... > 0.

Further, if (R,); 1< j<3 can be divided by the odd
common divisor dy.d,. . ..d,, (dy#dy for i" #j") of Mg
and M7, and the quotient (Ri);i 1< j<3/(ddyr ... dy)
is denoted as (R¢); 1< j<3» then

(Rep)ii<ijes/ @y .. . dy)
@d? ... a& M @d .. dM)d.dy...d,)

47)

— (kgA)y 1<i,j<3
@'dd ... dWMydedl ... dM;
= (R,éA)U,lsi, st/ M f”Mél/ (48)

for integers «”, B”,y",... > 0. The above process is
repeated until (Ré,',"),‘j‘ls,-, j<3 cannot be divided by the
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common factor of M{"" and M;"-'. Therefore, X', is
found to have the form of the following equation when
M, and M, are odd:

L= ZpXpc/ dz» (49)

where d is a common divisor of ¥,z and Xp..

The process to obtain (49) is applicable also when
even factors are contained in M; and M, because the
elements of matrix (Riy); 1< j<3 are divisible by the
even factors after the successive divisions by odd
factors. In this case, the following equation holds for
o, =01:

Tea= (Ml /2'1)(1‘42/2'9)/‘12 = ZABEBC/dZ' (50)

Table 1 shows the numerically calculated axis and angle
pairs of the CSL matrices that satisfy R,R,R; =E.
Z3([111],180.00) means the X3 CSL matrix whose
rotation axis and angle are [111] and 180.0°,
respectively. Equation (49) has been deduced using
two coincidence matrices with the m rotation axes,
whereas Table 1 shows that (49) holds also when R,
and Rpc do not have the m rotation axis. From the
numerical calculations, (49) is conjectured to be valid in
general for the CSL matrices that do not have 7 rotation
axes and is called ‘the combination rule of X values at a
triple junction’ here.

The above discussions may be summarized as
follows.

Proposition 3

At the triple junction of X,,, X;. and X,
coincidence boundaries, the following equation is
obtained for a common divisor d of X,z and Xy :

Lea= ZpZipc/ &, (51)

Similarly, for a common divisor d’ of Xy, and X,
and for a common divisor d” of ¥, and Xz, the
following equations hold at the triple junction:

g = EBCZCA/d,Z
Xpc = EABECA/d”Z’

(52)
3

From (51), (52) and (53), the following equation is
obtained:

(ZasZpcZca)? = ddd’. (54)

Proposition 4

(Z5ZpcEcq)? is an odd integer at the triple
junction of coincidence boundaries with Xz, X5 and
ECA'

Values of (Z 5 Zpc Zc,)"/? are shown in Table 1. The
value (X5 X5 X,)"? is conjectured to be the unit-cell
volume of the lattice that is formed from the
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Table 1. Axis-angle pairs of the CSL matrices that satisfy R,R,R; = E

R,

Z3([1 1 1], 180.00)
Z3((1 1 1], 180.00)
Z3([1 1 1], 180.00)
Z3([1 1 1], 180.00)
=3([1 1 1], 180.00)
Z3([1 1 1], 180.00)
F3({1 1 1], 180.00)
Z3((1 1 1], 180.00)
Z3([1 1 1], 180.00)
Z3([1 1 1], 180.00)
Z3((11 1], 180.00)
Z3((1 1 1], 180.00)
T3(11 1 1], 180.00)
Z3([1 1 1], 180.00)
Z3([1 1 1], 180.00)
5(12 1 0], 180.00)
Z5([2 1 0], 180.00)
=5(12 1 0], 180.00)
Z5(12 1 0], 180.00)
Z5(12 1 0], 180.00)
5(2 1 0], 180.00)
T5(2 1 0], 180.00)
(3 2 1], 180.00)
(3 2 1], 180.00)
T3 2 1], 180.00)
29(12 2 1], 180.00)
29(2 2 1], 180.00)
29((2 2 1], 180.00)
29([2 2 1], 180.00)
29([2 2 1], 180.00)
Z9(2 2 1], 180.00)
$9([2 2 1], 180.00)
29(2 2 1], 180.00)
S9([2 2 1], 180.00)
29([2 2 1], 180.00)
Z15([5 2 1], 180.00)
Z15((5 2 1], 180.00)
Z15([5 2 1], 180.00)
Z15((5 2 11, 180.00)
Z15((5 2 11, 180.00)
Z15([5 2 1], 180.00)
Z15([5 2 11, 180.00)
Z15((5 2 1], 180.00)
T15([5 2 1], 180.00)
Z15([5 2 1], 180.00)
Z15((5 2 1], 180.00)
E21b([4 2 1], 180.00)
Z21b([4 2 1], 180.00)
Z21b([4 2 1], 180.00)
221b([4 2 1], 180.00)
£21b({4 2 1], 180.00
E21a((5 4 1], 180.00)
X25a([4 3 0], 180.00)
225b([4 3 5], 180.00)
%25a(4 3 0], 180.00)
25b([5 4 3], 180.00)
25b([4 3 0], 90.00)
Z25b([5 4 3], 180.00)
>25a([4 3 0], 180.00)
25a({4 3 0], 180.00)
Z25b([5 4 3], 180.00)
25b([4 3 0], 90.00)
T25b([5 4 3], 180.00)
Z25b([5 4 3], 180.00)
25b([4 3 0], 90.00)
225b([4 3 0], 90.00)
235a((5 3 1], 180.00)
335a([5 3 1], 180.00)
=35a([5 3 1], 180.00)
35a((5 3 1], 180.00)
35a((5 3 1], 180.00)
£35b((6 5 31, 180.00)
=35b([6 5 31, 180.00)
249¢([6 3 2], 180.00)
549¢([6 3 2], 180.00)
T49¢([6 3 2], 180.00)

R,

Z9([-1 2 2], 180.00)
Z5(12 1 0], 180.00)
Z7([3 2 1], 180.00)
20 1 2], 73.40)
£9([2 2 1], 180.00)
29([0 1 -2}, 96.38)
Z11([3 1 1], 180.00)
33a([1 4 4], 180.00)
S11([—1 0 3], 144.90)
Z13a([3 2 0],180.00)
Z13b(4 3 1], 180.00)
Z13b([0 1 —3], 76.66)
Z15([5 2 1, 180.00)
T15(10 1 —2], 48.19)
Z15(—1 0 5], 137.17)
Z25a([3 4 0], 180.00)
T5(3 —1 1], 95.74)
Z7(3 2 1], 180.00)
ZU([0 1 —2], 73.40)
29([2 2 1], 180.00)
(31 1], 67.11)
295 1 1], 120.00)
Z49¢([2 6 3], 180.00)
T3 3 —1], 110.93)
Z49a([8 3 5], 180.00)
29([—5 1~1], 120.00)
Z15((5 2 1], 180.00)
Z21b([3 7 —5), 167.47)
Z2Tb([-3 —4 2], 94.25)
Z2Tb([3 5 —4), 148.41)
33a((1-7 -9}, 170.01)
233b([—1 —5 —6], 151.50)
39a([—2 7 5], 180.00)
245¢([-3 —4 —1], 65.03)
245b((—3 —11 7], 171.45)
Z15((—4 2 1, 113.58)
$25a([0 7 1], 180.00)
221b([3 7 —51, 167.47)
35a([5 ~3 1], 180.00)
21a(—1 -9 —1], 167.47)
Z45a([5 —8 1], 180.00)
227a([5 3 5], 95.31)
227a([7 -3 —5), 122.48)
Z45b([5 4 2], 180.00)
Z27b((3 5 —4), 148.41)
Z27o((~3 7 7], 168.96)
221b([—1 =5 —71, 141.79)
Z49b([9 1 4], 180.00)
T49a([~8 3 5], 180.00)
E21a({4 —5 0], 162.25)
21a([5 5 —3], 113.88)
£49a([8 5 3], 180.00)
225b([4 3 0], 90.00)
25b([4 3 0], 90.00)
35a((7 —1 3], 80.96)
235a([5 3 1], 180.00)
Z35a([—1 ~7-9], 150.63)
Z35b([4 1 2], 66.42)
Z45¢([—1 8 3], 130.12)
Z45b((—11 3 —1], 117.1)
Z45c([1 —4 8], 143.13)
Z45¢([8 1 —4], 143.13)
T45b([2 =5 5], 101.54)
Z45b([—6 5 5], 155.66)
T45a([4 3 —2], 106.79)
T45a([~3 4 4], 145.31)
49¢([3 6 2], 180.00)
=35a((5 4 —2], 106.60)
Z35b([4 1 2], 66.42)
Z35b([~7 2 —1], 122.88)
35b([—3 3 1], 43.23)
>49¢([6 —2 3], 180.00)
235b([3 5 91, 130.00)
Z49c([~11 5 1], 120.00)
$49a([-3 —13 —3], 155.25)
Z49b([9 5 —3], 99.99)

RZ
Z3([0 -1 1], 109.47)
Z15(1—1 2—1], 78.46)
Z21b([—1 2—1], 44.42)
21a([0 -5 —4], 162.25)
227a((~1 1 0], 31.59)
Z27b([1 —4 -3], 157.81)
233c(f0 1 —1], 58.99)
S11([0 —1 1], 50.48)
233b([4 —3 2], 139.25)
Z39b((—2 3 —1],73.62)
=39b([=2 3 —1], 50.13)
£39a([0 —7 —5], 153.82)
Z45¢((—1 4 —3], 65.03)
T45a({—2 —7 —6], 167.90)
Z45b([7 —4 3], 130.12)
25([0 0 1], 53.13)
225b([7 1 51, 120.00)
35a([1 =2 1], 34.05)
Z35b([4 7 2], 166,27)
Z45¢([1 -2 2], 53.13)
X45b([1 3 —1], 117.10)
Z45a([—5 —5 =71, 95.74)
([0 —1 2], 73.40)
Z49b([2 6 3], 90.00)
T -1 —1], 38.21)
29(—1 —1 —5], 120.00)
Z15(0 1 2], 48.19)
>21a([—5 5 3], 113.88)
227a([~6 ~1 —1], 114.04)
Z27b([=3 5 2], 114.04)
Z33b([3 —7 5], 104.93)
233b([1 =5 2], 84.78)
T39b([1 —4 6], 111.04)
Z45b([~6 —5 —2], 116.39)
Z45a([—9 5 5], 117.10)
2256([-5 1 7], 120.00)
Z15(—1 —1 71, 134.43)
>35a([—2 5 5], 122.88)
221a([1 0 —5), 103.77)
Z35b([~2 —1 7], 122.88)
$27a([1 0 ~5], 157.81)
Z45¢([8 —1 —3], 130.12)
Z45b((3 7 —4], 130.12)
T27b([0 —1 2], 35.43)
Z45¢([—1 9 7], 117.10)
Z45a([2 —6 7], 167.90)
249¢([—1 —11 5], 120.00)
221b([1 —1 -2}, 44.42)
21b((—1 4 —41, 124.85)
249c([3 2 —9], 156.69)
T49b([3 9 5], 99.99)
221a((1 —1 1], 21.79)
£25b([4 3 0], 90.00)
25b([1 7 5], 120.00)
£35b([9 3 —5], 130.01)
$35a([—1 2 —1], 34.05)
335b([2 —1 71, 122.88)
235b([4 3 1], 119.06)
Z45¢([5 0 7], 130.12)
z45a(—5 —5 —91, 117.10)
»45b({1 —11 3], 117.10)
T45a([4 3 —4], 145.31)
>45a([13 1 —3], 171.45)
T45b([3 —7 11], 171.45)
T45a([6 7 —2], 167.90)
Z45b([—1 —2 —9], 155.65)
Z35a([0 —1 3], 64.62)
Z49b([3 6 2], 90.00)
249a([8 3 0], 119.33)
Z49b([—3 —2 —T], 105.39)
Z49c([-11 —5-7], 171.81)
235b([1 0 2], 106.60)
X49b([6 —2 3], 90.00)
249¢([—5 1 —11], 120.00)
Z49b([—5 —3 9], 99.99)
249b([5 9 31, 99.99)

(Z,5,25)'"

9
15
21
21
27
27
33
33
33
39
39
39
45
45
45
25
25
35
35
45
45
45
49
49
49
27
45
63
81
81
99
99
117
135
135
75
75
105
105
105
135
135
135
135
135
135
147
147
147
147
147
147
125
125
175
175
175
175
225
225
225
225
225
225
225
225
245
245
245
245
245
245
245
343
343
343
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coincidence points of three crystal grains. This will be
discussed elsewhere.

Candidate X values at a triple junction are easily
obtained by putting ¥, = pq, ¥, = qr and X5 = rp for
odd integers p, g and r.

3. Application of the combination rule to two-
dimensional polycrystals

Using (51), two-dimensional polycrystals with various
combinations of coincidence boundaries can be
designed. But, in this paper, design of coincidence
boundaries with a finite number of X values is
considered. To construct grain boundaries of a two-
dimensional polycrystal using a finite number of
X' (# 1) values is identical to assigning a finite number
of CSL matrices to the grains so that no adjacent grains
have the same matrix. According to Foulds (1992),
based on the four-colour theorem by Appel & Haken
(1976), ‘Any map on a plane surface can be colored
with at most four colors so that no two adjacent regions
have the same color’. If the four colors are substituted
by the four CSL matrices E, R;, R, and R,, every

Z(Rs)
2(RiR3) S(R:RY)
Z(R:) Z(R.)
R) Z(R.R)

(@)
rs

rp ar

sp sq
p Pq q

®

Fig. 1. (a) Relationships among the CSL matrices E, R;, R, and R;.
(b) A diagram to search the candidate X values in (@) using odd
" integers p, g, r and s.

COMBINATION RULE OF X VALUES AT TRIPLE JUNCTIONS

crystal grain can have one of the CSL matrices so that
no two adjacent grains have the same CSL matrix.

Relationships among E, R;, R, and R; are
schematically shown in Fig. 1(a) with the X values
derived from the orientation difference between two
matrices. Fig. 1(a) shows that all grain boundaries in a
two-dimensional polycrystal can be constructed from at
most six different X values. Fig. 1(a) contains four
triangles, ER,R,, ER,R;, ERR; and R R,R;. When
three matrices of each triangle’s vertices are assumed to
be the coincidence matrices of grains forming a triple
junction, the X values on the triangle edges must satisfy
the combination rule. A diagram to find the candidate >
values is therefore proposed in Fig. 1(b) for odd integer
p,q,rand s.

In reality, it is possible to construct grain boundaries
from a more limited number of X values. For example,
if the matrices are selected as

1122 lizi
R1=§212,R2—§2i§‘,
2 21 2 21
1122
R3=§i§?s
221

X values other than 3 and 9 do not appear because

11::34 17214
RZR;‘=§§}4_1, R3R2‘1=§c_118,
4 47 4 8 1
11{1:‘;
RR'=5|4 7 4
8 4 1

If these matrices are assigned to the grains, the grain
boundaries are made up of only £3 and X9 boundaries
as shown in Fig. 2, where the combination rule is seen
to hold at every triple junction.

Using the following CSL matrices,

1184 17214
4 4 7| 4 8 1
11212%
Ro=5|4 7 41,

8 4 1

it is possible to make a polycrystal model that contains
only X9 boundaries since the following relationships
are obtained in this case:
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1 4 8 18 4
RR'=-14 7 4|, R3R{‘=%814,
8 4 1 4 4 7
17&4
R1R3‘1=§ii§
4 8 1

Table 2 shows such combinations of CSL matrices that
are closed about one, two or three kinds of X values.

4. Application of the combination rule to three-
dimensional polycrystals

In three-dimensional polycrystals, quadruple junctions
where four crystal grains meet appear. Fig. 3 shows a
model of quadruple junction O formed by the gains 1, 2,
3 and 4 with a shape of a truncated octahedron. Six
grain boundaries denoted as OP,P,P; (GBl),
OP\P,PsPP;  (GB2), OP\PgP;PcPy, (GB3),
OP;PyPyP(P; (GB4), OP,PsP,,P;;P;, (GB5) and
OP,P,,P,, (GB6) meet at point O and are assumed to
be coincidence boundaries with X values of Xy,
o, epss Zgpa, Xgps and Xgge, respectively. The
coincidence boundaries form four sets of X
values, Xgp — Zop — Tgps,  Zop — Zgpa — Lops
gy — Lgps — Lgps and Lgp — Xgpy — Tps, around
the triple lines OP;, OP;, OP;, and OP;, respectively,
and their relationships are schematically shown in Fig.
4. The X values of each set must satisfy the combination
rule but are confined to the values that are determined
by the crystal orientation relationships around the
quadruple junction. Since the orientation relationships
of grains at quadruple junction are described by the

\ I 9 3R39'
R. i E j: R T\L R,
— R E
3*( R,

)——3—( R. )_3

RZ 3 E 3\ /9 1 3\

Fig. 2. A two-dimensional polycrystal model composed of only X3
and X9 boundaries. Matrices E, R,, R, and R, represent orientation
of grains.
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same diagram as Fig. 1(a), the CSL matrices of Table 2
are also applicable to the case of a quadruple junction.

Fig. 5 shows a cubic unit cell composed of eight
b.c.c. sub unit cells. Four CSL matrices E, R, R, and
R; are put to each lattice point so that the same matrix
does not come to the nearest neighbors by three-
dimensional translations of the unit cell. The figure
demonstrates that whole grain boundaries in a
polycrystalline aggregate become the coincidence
boundaries with specially selected ¥ values if crystal
grains have the shape of a truncated octahedron. For
example, three-dimensional polycrystal with only X3
and X9 boundaries, or X9 boundaries or ¥3, X5 and
X15 boundaries, or X25 boundaries can be con-

Fig. 3. A model of quadruple junction O formed by the truncated
octahehdrons 1, 2, 3 and 4.

ZaBs Sora

ZcBi

Fig. 4. A diagram showing the relationships among the six
coincidence boundaries meeting at the quadruple junction O of
Fig. 3.
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Table 2. Combinations of the CSL matrices (axis-angle pairs) closed for ¥ values < 49

4
°

R
23([11 1], 180.00)
23([11 11, 180.00)
£3([1 1 1], 180.00)
23([11 1], 180.00)
23([1 1 11, 180.00)
Z3([1 1 1], 180.00)
Z3([111], 180.00)
23([1 1 1], 180.00)
5([100], 36.87)
5([2 10}, 180.00)
29([2 2 1], 180.00)
29([2 2 1, 180.00)
29([2 2 1], 180.00)
29([2 2 1], 180.00)
29([2 2 1], 180.00)
29([2 2 1], 180.00)
29([2 2 1], 180.00)
Z15((5 2 1], 180.00)
Z15((5 2 1], 180.00)
15(5 2 1], 180.00)
Z15(5 2 1], 180.00)
Z15([5 2 1], 180.00)
£25a([4 3 0], 180.00)
X25a([4 3 0], 180.00)
£49a([8 5 3], 180.00)
Z49b([9 4 1], 180.00)
Z49¢([6 3 2], 180.00)
$49¢([6 3 2], 180.00)
Z49¢({6 3 2], 180.00)
- X49¢([6 3 2], 180.00)
349¢([6 3 2], 180.00)
Z49¢([6 3 2], 180.00)
249¢([6 3 2], 180.00)

ORI AUNHWN =

R,
Z3([-11 1], 180.00)
Z5([0 2 1, 180.00)
Z7([3 2 1}, 180.00)
Z7([-32 1], 180.00)
29((22 11, 180.00)
29([—22 1], 180.00)
T11([3 1 1], 180.00)
Z13a([3 2 0], 180.00)
Z([3 —2 1], 180.00)
29(1 —22), 180.00)
29(1 ~22), 180.00)
527a([5 —1 11, 180.00)
£27a((5 —1 1), 180.00)
227b([1 7 2], 180.00)
Z45b([2 5 4], 180.00)
Z45¢([—7 5 4], 180.00)
245¢(14 7 51, 180.00)
=21a([S —1 4], 180.00)
221b([2 —1 4], 180.00)
221b([—1 2 4], 180.00)
221b([1 4 2], 180.00)
D21b([2 —4 1], 180.00)
Z25b([4 3 0], 90.00)
325b([4 3 0], 90.00)
Z49b([—9 4 1], 180.00)
Z49b([1 9 4], 180.00)
$49a([8 —3 5], 180.00)
49a([8 —3 5], 180.00)

R,

Z3([1 —11], 180.00)
Z15([S —1 2], 180.00)

RyR;!
X9([0 —1 1], 141.06)
T15(1—1—12], 78.46)

RyR;!
9([—1 —10], 141.06)
Z3([-1 -1 2], 180.00)

321b(f—2 1 4], 180.00) X21b([—12 —1], 44.42) T3([1 -2 1]), 180.00)
321a([—1 —4 5], 180.00) £21a([—1 —4 5], 180.00) Z3([1 1 1], 180.00)

29((1 -2 2), 180.00)
Z9([—1 —2 2], 180.00)
Z33a([1 4 4], 180.00)
Z39b([—2 3 —1], 50.13)
Z35a([—5 1 3, 180.00)
245b((—2 4 5], 180.00)
29([~2 12), 180.00)
E27b([1 7 2], 180.00)
Z27Tb([—1 2 7], 180.00)
Z2Tb({—1 2 7}, 180.00)
Z45a([8 5 1], 180.00)
x4sa({1 —S 8], 180.00)
Z45b([—2 4 5], 180.00)
T35a([—5 1 3], 180.00)
35a([5 1 31, 180.00)
Z35a((5 —3 1], 180.00)
E35b([5 6 3], 180.00)
Z35b([5 —3 6], 180.00)
Z25b([—4 —3 0], 90.00)
Z25b([—3 4 0], 90.00)
Z49b([—1 9 4], 180.00)
49b([4 1 9], 180.00)

327a([~110], 31.59)

£9([~2 12}, 180.00)

Z27b([—1 -3 4], 157.81) T9([2 1 2], 180.00)

£33¢([0 1 —1], 58.99)
Z39b({—2 3 —1], 73.62)
=35a([9 —7 1], 150.63)
Z45b([—2 4 5}, 180.00)
29(-2 12], 180.00)
E27b((1 1 —4}, 109.47)
227b([1 1 —4], 109.47)
227a((~1 —1 4], 70.53)
245¢([1 —2 2), 53.13)
Z45a([1 —5 8], 180.00)
Z45b([1 -2 2], 36.87)
Z35b([3 =5 —5], 80.96)

=3([0 —1 —1], 109.47)
Z3((~2 —1 1], 180.00)
IS([1 2 1], 101.54)
Z5([210), 180.00)
29([22 1], 180.00)
29([—1 —14], 180.00)
29([~1 —4 1], 180.00)
Z9([5 —1 1], 120.00)
Z9([~12 ~2], 90.00)
29(12 2 1], 180.00)
29([1 -2 2], 90.00)
Z15(1 5 0], 137.17)

X35a([1 -2 —1], 122.88) Z15([—12 1], 78.46)

Z35b([2 =7 41, 166.27)
35b([0 —1 2], 106.60)

Z15(—2 -3 11, 150.07)
Z15([0 1 —2], 48.19)

X35a([2 -1 8], 166.27) X15([—-3 —1 2], 86.18)

525b({—4 —3 0], 90.00)
Z25b(—4 —3 0], 90.00)
Z49¢([1 5 —11], 120.00)
$49¢([1 —5 11], 120.00)

Z49b([—1 —4 9], 180.00) Z49b([3 —2 —6], 90.00)
Z49b([—4 —9 1], 180.00) Z49b([3 —2 —6], 90.00)
49b([—1 —4 9], 180.00) T49b([—4 —9 1], 180.00) Z49a([—5 8 3], 180.00)
T49c([2 —6 3], 180.00)  £49a([8 ~3 5], 180.00) Z49c([—3 2 6], 180.00)
T49¢([2 —6 3], 180.00)  T49b({—1 —4 9], 180.00) Z49c([—3 2 6], 180.00)
Z49¢([2 —6 3], 180.00)  T49b(f—4 —9 1], 180.00) Z49c([—3 2 6], 180.00)
249¢(12 —6 3], 180.00) 49c([—3 2 6], 180.00) E49c([—3 2 6], 180.00)

25a([4 3 0], 180.00)
525b([-7 1 5], 120.00)
Z49¢([1 5 —11], 120.00)
Z49¢c([11 1 —5], 120.00)

R R;!
29([—101], 141.06)
Z5(1~1-12), 101.54)
ZU[-12 —13, 135.59)
T([-32 1], 180.00)
227b([—4 1 3], 157.81)
Z27b([4 -3 —11, 157.81)
S11([0 1 —1], 50.48)
Z13b([4 3 1], 180.00)
=7([-302], 149.00)
29([1 —22), 180.00)
29([1 —22), 180.00)
227a([1 1 —41, 70.53)
227b([-4 5 —2], 131.81)
27b([~4 5 —2], 131.81)
Z45b([1 -2 2], 36.87)
Z45c([—7 5 4], 180.00)
Z45a([—12 2], 126.87)
Z21b([1 —4 3], 103.77)
Z21b([—12 1], 44.42)
21a([—10 5], 103.77)
21b([0 1 —2], 58.41)
X21a([-3 5 5], 113.88)
£25b([~4 —3 0], 90.00)
225b([—4 —3 5], 180.00)
Z49¢c(f1 5 —11], 120.00)
Z49¢([-5 11 1], 120.00)

249¢([—1 —11 5], 120.00) 249a([-5 8 3], 180.00)

249¢([—3 2 6], 180.00)
249¢([11 -5 —1], 120.00)
49b([—3 2 6], 90.00)
Z49b([6 3 2], 90.00)
Z49b([3 —2 —6], 90.00)
49¢([6 3 2], 180.00)

Z49b([3 —2 —6], 90.00)
T49b([3 —2 —6], 90.00)
Z49b([—3 2 6], 90.00)
T49a([—5 8 3], 180.00)
Z49b([3 —2 —6], 90.00)
249¢([2 —6 3], 180.00)

structed. Fig. 6 shows a model of polycrystal that
contains only ¥3 and ¥'9 boundaries.

As previously discussed, four CSL matrices are
sufficient in constructing a two-dimensional polycrys-
tal with only the coincidence boundaries whose X
values are not equal to 1. But when columnar crystal
grains are formed on a single-crystalline substrate
with the same lattice constant as the columnar grains,

Fig. 5. CSL matrices E, R,, R, and R; assigned to the lattice points of

a cubic unit cell composed of eight b.c.c. sub unit cells.

at least one more CSL matrix is necessary so that the
grain—-substrate interfaces and the grain boundaries can
be made of the coincidence boundaries (X # 1) only.
Fig. 7(a) gives a diagram to find those matrices, and
contains 13 triangles: E,R\R,, E,R\R;, E,R,R;,
R\R,R;, E,R\R;, E,R\R,, E,R;R,, R\R;R;, E;R\R,,
E;R\R,, E;R,R,, R\R,R, and R,R;R,. Each triangle
corresponds to a set of coincidence boundaries at a

97\9
¥ 3 Na ° A/ 3
9
939 9 | 3|9
3
9 9
939 3
3
3/ 3
o 9
o 9
9 9
= 3 3
9

Fig. 6. A polycrystal model formed by truncated octahedrons, where
grain boundaries are composed of only ¥3 and X9 boundaries.
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Table 3. Examples of the CSL matrices (axis—angle pairs) closed for X values < 49

R, R, R, R, R{'R,
No. 1 3 9 9 9 3
(111 (—2-21) 2-12] [-122] [1-10]
180.00 180.00 180.00 180.00 109.47
No.2 3 =5 15 452 z15
{-1-1-11 [-210] 2-15) [~185] [-713]
60.00 180.00 180.00 180.00 165.17
No.3 3 7 =7 7 21b
(in B21] (-321) B-21] {1-21]
180.00 180.00 180.00 180.00 44.42
No. 4 =3 15 =15 =15 =5
nin (-5-21] 2-15] [~152} [(1-21j
180.00 180.00 180.00 180.00 101.54
No.5 15 15 215 x15 25b
5211 [-215] [1-52] 251] (1-31]
180.00 180.00 180.00 180.00 168.52

triple junction and each three X values on the triangle
edges must satisfy the combination rule. Fig. 7(b)
shows an example of candidate X values for Fig.
7(a). It is expected that the whole grain boundaries
can be composed of only X3, X7, ¥21 and X49
coincidence boundaries. Several combinations of the

Z(R3'Ra) Z(R3'R4)
ZRIRYER)
Z(Rz) (R Z(Rs)
Z(Ri'Rz) /@\E(R;‘Rs)
Z(R2. Z(Rs
R (R2 Z(Rz2'Rs) (R) Rs
(@
7 17
R: R

Fig. 7. (a) A diagram showing the relationships among five CSL
matrices, E (= E, = E, = E3), R, R,, R; and R,. X values derived
from the orientation difference between two CSL matrices are
shown on the triangle edges. (b) Examples of the combinations of 3
values that satisfy (a).
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Ry'Ry Ri'R, Ry'Ry Ry'R, Ry'R,
3 x3 X9 x9 %9
[-101] [01-1] [-122] [2-12] [-2-21]
109.47 109.47 180.00 180.00 180.00
x5 zZ15 23 9 23
[=21-2] [1-3—-4] [120] =1-23] [B1-1]
143.13 137.17 131.81 123.75 146.44
2la Z21b Z49%c X49¢ X49c
[-1-45] [-3-25] [0-12] [-103] [230]
180.00 144.05 146.80 129.25 62.01
x5 x5 X25b 2255 225b
[-211] f11-2) [-131] [-11-3] 31-11
101.54 101.54 168.52 168.52 168.52
X25b 325a X25b 25b 225b
[-1-3] [11=7] [=3-1-1] [2-111 [-5-15]
168.52 91.15 168.52 156.93 91.15

CSL matrices that are closed for special X' values are
numerically obtained as shown in Table 3. Figs. 8(a)
and (b) show the grain-boundary models to demon-
strate the consideration. The CSL matrices E and
R;-R, of group No. 3 in Table 3 are assigned to the
grains in Fig. 8(a) so that the same matrices do not
adjoin each other and the calculated X values are given
to the grain boundaries as shown in Fig. 8(b). The
combination rule is seen to hold at every triple junction
of the grain boundaries and grain-substrate interfaces.

5. Conclusions

Grain boundaries in cubic polycrystals have been
discussed for the special cases that the orientation

R R >
Rs : Re > Ri
R Rs
Ri Ri ﬁ
Re
Rs

E

@

®
Fig. 8. (@) A model of columnar grains with coincidence boundaries
grown on a single-crystalline substrate. CSL matrices E, R,, R, and
R, are assigned to the grains so that the same matrix may not adjoin.
(b) Assigned X values according to Table 3 and (). Numbers on the
top surface of columnar grains indicate X' values of grain—substrate
interfaces.
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relationships among the grains at triple junctions are
described by the CSL matrices. Three coincidence
boundaries can meet at a triple junction bound by a
combination rule about the X values. The combina-
tion rule can be used to find candidate X' values of
coincidence boundaries at triple junctions and also at
quadruple junctions. Examples of the CSL matrices
that satisfy the combination rule have been tabulated
and models of grain boundaries with selected X
values have been demonstrated. The grain boundaries
in the actual polycrystals are not always described by
the ideal CSL orientation relationships but the
combination rule is expected to be useful in the
design of polycrystals with important coincidence
boundaries.

COMBINATION RULE OF 2 VALUES AT TRIPLE JUNCTIONS
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